

R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce (Autonomous), Ratnagiri Board of Studies in Chemistry

Academic Year 2024-25

PG Courses:

S.	Type of the	No.	Course	Nomenclature	S.	Туре	No.	Course	Nomenclature
N.	course	of	Code		N.	of the	of	code	
		Cr.				course	Cr.		
			mester I					emester II	
1	Major	04	PSCH 101	Inorganic	1	Major	04	PSCH 201	Inorganic
	Mandatory			Chemistry-I		Mandatory			Chemistry-II
2	Major	04	PSCH 102	Organic	2	Major	04	PSCH 202	Organic
	Mandatory			Chemistry-I		Mandatory			Chemistry-II
3	Major	04	PSCH 103	Analytical	3	Major	04	PSCH 203	Analytical
	Mandatory			Chemistry-I		Mandatory			Chemistry-II
4	Major	02	PSCH 104	Chemistry	4	Major	02	PSCH 204	Chemistry
	Mandatory			Practical-I		Mandatory			Practical-
				(Organic					(Organic
				Chemistry and					Chemistry and
				Analytical					Analytical
				Chemistry)					Chemistry)
5	Major	02	PSCH 105	Physical	5	Major	02	PSCH 205	Physical
	Electives			Chemistry I		Electives			Chemistry III
6	Major		PSCH 106	Chemistry	6	Major	02	PSCH 206	Chemistry
	Electives	02		Practical E-I		Electives			Practical E-III
				(Physical and					(Physical and
				Inorganic					Inorganic
				Chemistry)					Chemistry)
7	Major	02	PSCH 107	Physical	7	Major	02	PSCH 207	Physical
/	Electives	02	FSCI1107	Chemistry II		Electives	02	F SCI1 207	Chemistry IV
8	Major	02	PSCH 108	Chemistry	8	Major	02	PSCH 208	Chemistry
0	Electives	02	1 SCI1 100	Practical E-II	0	Electives	02	1 SCI1 200	Practical E-IV
	Lieeuves			(Physical and		Liectives			(Physical and
				Inorganic					Inorganic
				Chemistry)					Chemistry)
9	Major	04	PSCH 109	Research	9	Major	04	PSCH 209	On Job
	Mandatory			Methodology		Mandatory			Training/Interns
	····· J					,			hipField
									Project/Extende
									d Experiment
	Major	04	PSACH309	Research					
	Mandatory			Project (RP)					

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 2 | Page

S.	Type of	No.	Course	Nomenclature	S.	Туре	No.	Course	Nomenclature
N.	the course	of	Code		N.	of the	of	code	
		Cr.				course	Cr.		
		Sen	nester III				Sem	nester IV	
1	Major Mandatory- I	4	PSACH301	Quality in Analytical Chemistry I	1	Major Mandatory- I	4	PSACH401	Quality in Analytical Chemistry -II
2	Major Mandatory- II	4	PSACH302	Advanced Instrumental Techniques –I	2	Major Mandatory- II	4	PSACH402	Advanced Instrumental Techniques –II
3	Major Mandatory- III	4	PSACH303	Bio analytical Chemistry and Food Analysis	3	Major Mandatory- III	4	PSACH403	Analytical Chemistry Practical Group (A+B+C)
4	Major Mandatory- IV	2	PSACH304	Analytical Chemistry Practical Group (A + B)					
5	Major Electives-I	02	PSACH305	Environmental Chemistry	5	Major Electives-I	4	PSACH404	Selected Topics in Analytical Chemistry
6	Major Electives-I	02	PSACH306	Analytical Chemistry Practical Group (C + D)	6	Major Electives-II	4	PSACH405	Pharmaceutical and Organic Analysis
7	Major Electives-II	02	PSCHA 307	Industrially Important Materials	7	Major Mandatory	06	PSACH406	Research Project (RP)
8	Major Electives-II	02	PSACH308	Analytical Chemistry Practical Group (C + D)					
9	Major Mandatory	04	PSACH309	Research Project (RP)					

Master of Science (M.Sc) Programme

under Choice Based Credit System

Course Structure M.Sc. II Analytical Chemistry (To be implemented from Academic Year 2024-25)

No. of Courses	Semester III	Crea	lits	No. of Courses	Semester IV	Credits		
	Major Mandatory				Major Mandatory			
PSACH301	Quality in Analytical Chemistry-I	04		PSACH401	Quality in Analytical Chemistry-II	04		
PSACH302	Advanced Instrumental Techniques –I	04	ļ	PSACH402	Advanced Instrumental Techniques -II	04	04	
PSACH303	Bio Analytical Chemistry and Food Analysis	04		PSACH403	Analytical Chemistry Practical Group (A+B+C)	04	04	
PSACH304	Analytical Chemistry Practical Group (A + B)	02	2					
	Major Electives				Major Electives			
PSACH305	Environmental Chemistry	02	04	PSACH404	Selected Topics In Analytical Chemistry	04	04	
PSACH306	Analytical Chemistry Practical Group (C + D)	02	04				04	
	OR				OR		L	
PSACH307	Industrially Important Materials	02	04	PSACH405	Pharmaceutical and Organic Analysis	04	04	
PSACH308	Analytical Chemistry Practical Group (C + D)	02						
PSACH309 Research Project (RP)		04		PSACH406	Research Project (RP)	06)	
	Total Credits	22	2		Total Credits	22		

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 4 | Page

Syllabus for Masters of Science in Analytical Chemistry for the year 2024-25

Name of Programme	Masters of Science
Level	PG
No of Semesters	04
Year of Implementation	2024-25
Programme Specific	At the end of the Programme, Learner will be able to
-	

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 5 | Page

Relevance of PSOs to	Analytical chemistry is a powerful discipline with a far- reaching
the local, regional,	impact, addressing issues and challenges at all levels, from local
national, and global	environmental concerns to global health and trade standards. Its
developmental needs	applications are critical for the well-being of communities and
	nations and the advancement of science and technology.
	Analytical techniques are used to confirm product safety and
	authenticity. It is used for national security in areas like forensics
	and defense, providing tools for crime scene investigations,
	explosives detection, and border control. Analytical chemistry
	ensures the safety of food, pharmaceuticals, and consumer
	products. National regulatoryagencies use analytical methods to
	enforce quality and safety standards. Apply the skill stood
	specialized research in the core and applied areas of chemical
	sciences. Become professionally skilled for higher studies in
	research institutions and to work in industries. Students will be
	able to integrate chemical concepts and ideas learned in lecture
	courses with skills learned in laboratories to formulate
	hypotheses, propose and perform experiments, collect data,
	compile and interpret results and draw reasonable and logical
	conclusions. Be proficient in the use of both classical and
	modern tools (e.g., instrumentation,
	techniques, software) for analysis of chemical systems.

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 6 | Page

Syllabus for Masters of Science in Analytical Chemistry for the year 2024-25

Nomenclature of the Course	Quality in Analytical Chemistry				
Class	M.Sc.				
Semester	III				
Course Code	PSACH301				
No. of Credits	04				
Nature	Theory				
Туре	Major: Mandatory-I				
Course Outcomes:					
	npling and various methods used to prepare and				
store samples.					
samples.	out of all the methods available for the analysis of				
_	lifferent methods employed to improve the signal-				
to noise ratio.	interent methods employed to improve the signal				
CO4: Evaluate the uncertainty in	volved in a measurement.				
-	ind different chromatographic techniques including				
1 I	exchange and size exclusion chromatography to				
carryout sample separation					
	es and instrumentation of ion chromatography, ion –				
exchange and size exclusion					
	d principle, instrumentation and applications involved				
_	matography, Affinity Chromatography and Optimum				
pressure liquid chromatog					
	of stationary phases, organic modifiers and additives in				
Supercritical fluid Chroma	tography (SFC).				
Curriculum:					
Unit Unit Title	Sub titles (Learning Points)				
No.	Sub titles (Learning Fonts)				
	1 Sampling: Definition, types of samples, sampling plan,				
-	ality of sample, Sub sampling, Sampling of raw materials,				
	termediates and finished products.				
	mple preparations – dissolution technology and				
	composition, storage of Sample. Pre-treatment of samples: il, food and cosmetics. (8L)				
	2 Selection of the Method: sources of methods, factors to				
	nsider when selecting method, performance criteria for				
	ethods used, reasons for Incorrect analytical results, method				
	lidation, and quality by design (PAT). (7L)				
	1 Measurement of uncertainty: Definition and evaluation of				

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 7 | Page

	Analytical	uncertainty, putting uncertainty to use, interpretation of results
	Chemistry-II	and improving the quality of results. (4L)
		2.2 Signal to noise: Signal to noise ratio, sources of noise in
		instrumental analysis. Signal to noise enhancement, hardware
		devices for noise reduction, and software methods for noise
		reduction. (6L)
		2.3 Pharmaceutical Legislation: introduction to drug acts,
		drug rules (schedules),
		concept of regulatory affairs in pharmaceuticals, review of GLP
		and GMP and their regulations for analytical labs, roles and
		responsibilities of personnel, appropriate design and placement
		of laboratory equipment, requirements for
		maintenance and Calibration. (5L)
III	Chromatographic	3.1 Ion exchange chromatography: Ion exchange equilibria,
	Techniques –I	breakthrough capacity, inorganic ion exchangers, synthetic ion
		exchangers, chelating resins and their applications for
		separation of inorganic and organic compounds. (8L)
		3.2 Ion chromatography: Principle, instrumentation with
		special reference to separation and suppressor columns,
		applications. (2L)
		3.3 Exclusion chromatography: Theory, instrumentation and
		applications of gel permeation chromatography, retention
		behavior, inorganic molecular sieves, determination of
		molecular weight of polymers, (5L)
IV	Chromatographic	4.1 Supercritical fluid Chromatography: Theory, concept of
	Techniques –II	critical state of matter and supercritical state, types of
		supercritical fluids, instrumentation, applications to
		environmental, food, pharmaceuticals and polymeric analysis.
		(8L)
		4.2 Affinity Chromatography: principle, instrumentation and
		applications. (4L)
		4.3 Optimum pressure liquid chromatography (OPLC). (3L)

 Quality in the analytical chemistry laboratory, E Prichard, John Wiley and sons N.Y1997.

- 2. Quality assurance in analytical Chemistry, W Funk, V Dammann, G. Donnevert VCH Weinheim 1995.
- Amit S. Patil*et. al.*, Quality by Design (QbD) : A new concept for development of Qualitypharmaceuticals, International Journal of Pharmaceutical Quality Assurance; 4(2); 13-19.

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 8 | Page

- Lalit Singh and Vijay Sharma, Quality by Design (QbD) Approach inPharmaceuticals: Status, Challenges and Next Steps, Drug Delivery Letters, 2015, 5,2-8. Quality in the analytical chemistry laboratory, EPrichard, John Wile yandsons N. Y. 1997.
- 5. Fundamentals of Analytical Chemistry, D. A. Skoog and D.M.West, Saonders, College publication.
- 6. Chemical methods of separation, JADean, VanNostrandReinhold, 1969
- 7. Solvent extraction and ion exchange, J Marcus and A. S. Kertes Wiley INC 1969.
- 8. Analytical Chemistry, G. D. Christain, Wiley.
- 9. Extraction Chromatography T. Braun, G. Ghersene, ElsevierPublications1978.
- 10. Supercritical Fluid Extraction, LarryTaylorWileypublishersN.Y.1996.
- 11. Ion exchange separation in analyticalchemistryOSamuelsonJohnWiley2ⁿded1963
- 12. Ion exchange chromatography Ed H. F Walton Howden, HutchensonandRossing1976.
- 13. Chromatographic and electrophoresis techniques I Smith Menemann Interscience 1960.

Teaching Plan:

Unit No.	Unit Title	Teaching Methods	No. of Lectures (in hrs)
Ι	Quality In Analytical Chemistry - I	Lecture, PPT	15
II	Quality In Analytical Chemistry - II	Lecture, PPT	15
III	Chromatographic Techniques-I	Lecture, PPT	15
IV	Chromatographic Techniques-I	Lecture, PPT	15

Evaluation Pattern:

A. Continuous Internal Evaluation: Maximum Marks: 40

Method	Marks
One Periodical Class Test / Written objectives / Assignments/ Short	30
answer Questions / Seminar to be conducted in the given semester	
Active participation in routine class instructional deliveries and overall	10
conduct as a responsible learner, mannerism and articulation and exhibit of	
leadership qualities in organizing related academic activities	

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 9 | Page

B) Semester End Examination: Maximum Marks: 60

Question No. and Sub questions (If any) (E.g. Q. 1 a)	Unit and sub unit (with number and title)	Type of Question (Essay / short note / Objective / Diagram, etc.)	Marks
Q.1	Unit I	Descriptive. short note etc.	12
Q.2	Unit II	Descriptive. short note etc.	12
Q.3	Unit III	Descriptive. short note etc.	12
Q.4	Unit IV	Descriptive. short note etc.	12
Q.5	All Units	short note / objective, etc.	12

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 10 |

Nomenclature of the Course	Advanced instrumental techniques-I
Class	M.ScII
Semester	III
Course Code	PSACH302
No. of Credits	04
Nature	Theory
Туре	Major: Mandatory

At the end of the Course, the Learner will be able to:

- CO1: Make use of the surface analytical techniques (such as SIMS, PIXE) for Obtaining information about the surfaces while characterizing the samples.
- CO2: Learn the basic principle, instrumentation and applications of Rutherford Backscattering.

CO3: Understand the Mossbauer spectroscopy by learning the principle and recording of spectrum including Doppler Effect, chemical shift etc. Understand the basic principles, Instrumentation and applications of ESR and AES.

CO4: Select a suitable method of voltammetry for the analysis of a particular sample.

CO5: Explain anodic, cathodic and adsorptive stripping methods in voltammetry.

CO6: Develop a working knowledge of various methods used in polarography.

CO7: Apply the principle underlying Spectro electrochemistry & the use of optically transparent electrodes to carry out the analysis of samples.

CO8: Make use of the phenomenon of chemiluminescence for varied applications.

CO9: Elaborate on the concept of Chiro-optical methods such as ORD & CD.

Curricu	Curriculum:					
Unit No.	Unit Title	Sub titles (Learning Points)				
Ι	Spectral Methods I	 1.1 Surface Analytical Techniques: Preparation of the surface, difficulties involved in the surface analysis. (1L) 1.2 Principle, instrumentation and applications of the following: a. Secondary Ion mass spectroscopy. (4L) b. Particle-Induced X-Ray Emission(5L) c. Low-Energy Ion Scattering and Rutherford Back scattering. (5L) 				
II	Spectral Methods– II	 Principle, Instrumentation, and Applications of 2.1 Electron Spin Resonance Spectroscopy (ESR)(5L) 2.2 Mossbauer's Spectroscopy. (5L) 2.3 Atomic Emission Spectroscopy- based on plasma and electrical discharge sources (5L) 				
III	Electro analytical Methods	Advanced Electro analytical Techniques: - 3.1 Current Sampled (TAST) Polarography, Normal and Differential Pulse Polarography. (3L) 3.2 Potential Sweep methods- Linear Sweep				

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 11 |

		 Voltammetry and Cyclic voltammetry. (3L) 3.3 Potential Step method-Chronoamperomertry (2L) 3.4 Controlled potential technique- Chronopotentiometry. (2L) 3.5 Stripping Voltammetry- anodic, cathodic, and adsorption. (2L) 3.6 Chemically and electrolytically modified electrodes and ultra-micro electrodes in voltammetry. (3L)
IV	Miscellaneous Techniques	 Principle, Instrumentation and Applications of: 4.1 Chemiluminesescence techniques (3L) 4.2 Chirooptical Methods: ORD, CD (5L) 4.3 Photoacousticspectroscopy(3L) 4.4 Spectroelectrochemistry (4L)

- 1. Analytical Chemistry, G. D. Christian,4th Ed. John Wiley, New York (1986)
- 2. Fundamentals of Analytical Chemistry, D. A. Skoog and D. M. West and F. J. Holler Holt- Saunders 6th Edition (1992)
- 3. Principles of Instrumental Analysis, D. A. Skoog, F. J. Holler and J.A. Niemann,5thEdition (1998)
- 4. Instrumental Methods of Analysis, H. H. Willard, L. L. Merritt, Jr. J. A. Dean and F. A. SettleJr6thEd CBS (1986)
- 5. Instrumental Methods of Analysis, H. H. Willard, L. L. Merritt Jr, J. A. Dean and F.A. Settle Jr 7th Ed CBS (1986)
- 6. Introduction to Instrumental Analysis, R.D. Braun, Mc Graw Hill (1987)
- 7. Electrochemical Methods, A. J. Bard and L.R. Faulkner, John Wiley, New York, (1980)
- 8. Electro analytical Chemistry, J. J. Lingane,2nd Ed Interscience, New York (1958)
- 9. Modern Polarographic Methods in Analytical Chemistry, A. M. Bond, Marcel Dekker, New York, 1980.
- 10. Electro analytical Chemistry, Ed A. J. Bard and Marcel Dekker, New York, (A series of volumes)
- 11. Techniques and mechanism of electro chemistry, P. A. Christian and A. Hamnett, Blachie Academic and Professional (1994)
- 12. Wilson and Wilson's Comprehensive Analytical Chemistry, Ed. G. Svehla. (A series of Volumes)
- 13. Treatiseon Analytical Chemistry, Eds. I. M. Kolth off and Others, Inter science Pub. (A series of volumes).
- 14. Standard Methods of Chemical Analysis, Eds.F. J. Welcher, Robert E. Krieger Publishing Company, (A series of volumes)
- 15. Polarographic Methods in Analytical Chemistry, M. G. Arora, Anmol Publications Pvt Ltd
- 16. Surface Analysis–The Principal Techniques, 2nd Edition Edited by John C. Vickerman and Ian S. Gilmore 2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-01763-0

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 12 |

Teachin			1
Unit No.	Unit Title	Teaching Methods	No. of Lectures (in hrs)
1	Spectra Methods I	Lecture, PPT	15
2	Spectral Methods– II	Lecture, PPT	15
3	Electro analytical Methods	Lecture, PPT	15
4	Miscellaneous Techniques	Lecture, PPT	15

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 40

Method	Marks
One Periodical Class Test / Written objectives / Assignments/ Short	30
answer Questions / Seminar to be conducted in the given semester	
Active participation in routine class instructional deliveries and overall	10
conduct as a responsible learner, mannerism and articulation and exhibit	
of leadership qualities in organizing related academic activities	

B) Semester End Examination: Maximum Marks: 60

Question No. and Sub questions (If any) (E.g. Q. 1 a)	Unit and sub unit (with number and title)	Type of Question (Essay / short note / Objective / Diagram, etc.)	Marks
Q.1	Unit I	Descriptive. short note etc.	12
Q.2	Unit II	Descriptive. short note etc.	12
Q.3	Unit III	Descriptive. short note etc.	12
Q.4	Unit IV	Descriptive. short note etc.	12
Q.5	All Units	short note / objective, etc.	12

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 13 |

Nomenclature	e of the	Bio analytical Chemistry and Food Analysis			
Course	c of the	Dio unarytical chomistry and rood rinaryons			
Class		M.ScII			
Semester		III			
Course Code		PSACH303			
No. of Credits	5	04			
Nature		Theory			
Туре		Major: Mandatory			
Course Outco					
•		on of abnormal levels of glucose, creatinine, uric acid in			
-		podies and bilirubin in urine.			
	1.0	and nutritional significance of vitamins & biological			
	olecules.	utical (microhiological techniques) learned for the			
	-	ytical (microbiological techniques) learned for the			
=		ins and biological macromolecules which in turn will tion and diagnosis of diseases			
-		tion and diagnosis of diseases. of operation of immune system and Immunological			
-		of operation of minute system and minutological			
assays.	e Biological va	lues of carbohydrates, proteins, essential amino acids			
and lipic	-	nues of earbonyurates, proteins, essentiar annuo acius			
-		od preservation techniques that are widely practiced in			
		ty control measure.			
	_	o confirm the presence and amount of various			
-	-	Different types of food samples for further label claim			
studies.	I III	J. T.			
CO8: To study	about analyzi	ng everyday items like milk, oil and fats as well as			
spices.	J.				
-	e the various fo	od packaging and food processing methods.			
Curriculum:					
Unit No.	Unit Title	Sub titles (Learning Points)			
	io analytical	Body Fluids			
	chemistry	1.1.1 Composition of body fluids and detection of abnormal			
	j	levels of glucose, creatinine, uric acid in blood, protein,			
		ketone bodies and bilirubinin urine leading to diagnosis of			
		diseases. (5L)			
		1.1.2 Physiological and nutritional significance of vitamins (water soluble and fat soluble) and minerals. (5L)			
		1.1.3 Analytical techniques (including microbiological			
		techniques) for vitamins. (5L)			
II Im	munological	2.1 General processes of immune response, antigen-			
	0	antibody reactions, precipitation reactions, radio, enzyme and			

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 14 |

	Methods	Fluoro-immuno assays. (8L)
		2.2 Human Nutrition: Biological values and estimation of
		enzymes, carbohydrates, proteins, Essential amino acids and
		lipids. (7L)
III	Food Analysis-I	 3.1 Fuel value of food and importance of food nutrients. (2L) 3.2 Food Additives–General idea about Food processing and preservation, Chemical preservatives, fortifying agents, emulsifiers, texturizing agents, flavours, colours, artificial sweeteners, enzymes. Analysis of food products for flavoring agents and colour. (5L) 3.3 Food Contaminants– Trace metals and pesticide residues, contaminants from industrial wastes (polychlorinated polyphenols, dioxins), toxicants formed during food processing (aromatic hydrocarbons, nitrosamines), veterinary drug
		residues and melamine contaminants. (8L)
IV	Food Analysis –II	 4.1.1 Food packaging – Introduction, types of packing materials, properties and industrial requirements. (2L) 4.1.2 Processing and Quality requirements of Milk and milk products (cheese, butter and ice cream), vegetables and fruits, meat and meat products. (6L) 4.2 Analysis of Milk – Fat content, proteins, acidity, bacteriological quality and milk adulterants. (2L) 4.3 Analysis of Oils and Fats – acid value, sap value, iodine value. Determination of rancidity and antioxidants. (2L) 4.4 Analysis of spices (cloves, cinnamon, pepper, mustard) Determination of volatile oils and fixed oils. (3L)

1. General, organic and biological chemistry, H. Stephen Stoker, Cengage Learning.

2. Advanced dairy chemistry, vol. 3, P. F. Fox, P. L. H. McSweeney, Springer.

3. Physiological fluid dynamics vol. 3, Nanjanagud Venkatanarayana Sastry Chandrasekhara Swamy, Narosa Pub. House, 1992.

4. Molecular Biological and Immunological Techniques and Applications for food, edited by Bert Popping, Carmen Diaz-Amigo, Katrin Hoenicke, John Wiley & sons.

5. Food Analysis: Theory and practice, Yeshajahu Pomeranz, Clifton E. Meloan, Springer.

6. Principles of package development, Gribbin et al.

7. Modern packaging Encyclopedia and planning guide, MacgraWreyco.

8. Food Analysis, Edited by S. Suzanne Nielsen, Springer.

9. Analytical Biochemistry, D. J. Homes and H. Peck, Longman (1983).

10. Bioanalytical Chemistry, S. R. Mikkelesen and E. Corton, John Wiley and sons 2004. Analysis of food and beverages, George Charalanbous, Academic press 1978.

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 15 |

Teaching Plan:				
Unit No.	Unit Title	Teaching Methods	No. of Lectures (in hrs)	
1	Bio analytical chemistry	Lecture, PPT	15	
2	Immunological Methods	Lecture, PPT	15	
3	Food Analysis-I	Lecture, PPT	15	
4	Food Analysis –II	Lecture, PPT	15	

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 40

Method	Marks
One Periodical Class Test / Written objectives / Assignments/ Short	30
answer Questions / Seminar to be conducted in the given semester	
Active participation in routine class instructional deliveries and overall	10
conduct as a responsible learner, mannerism and articulation and exhibit of	
leadership qualities in organizing	
related academic activities	

B) Semester End Examination: Maximum Marks: 60

Question No. and Sub questions (If any) (E.g. Q. 1 a)	Unit and sub unit (with number and title)	Type of Question (Essay / short note / Objective / Diagram, etc.)	Marks
Q.1	Unit I	Descriptive. short note etc.	12
Q.2	Unit II	Descriptive. short note etc.	12
Q.3	Unit III	Descriptive. short note etc.	12
Q.4	Unit IV	Descriptive. short note etc.	12
Q.5	All Units	short note / objective, etc.	12

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 16 |

Nomenclature of the	Analytical Chemistry Practical
Course	Group A + Group B
Class	M.Sc.
Semester	III
Course Code	PSACH304
No. of Credits	02
Nature	Practical
Туре	Major: Mandatory

At the end of the Course, the Learner will be able to

- CO1: Determine the pK_{In} value of an indicator spectrophotometrically.
- CO2: Estimate the amount of copper and bismuth in a mixture of sample by photometric titration.
- CO3: Determine the amount of strong acid, weak acid and salt in the given mixture conductometrically.
- CO4: Estimate amount of carbonate and bicarbonate in the given sample mixture using pH metry.
- CO5: Determine % of copper by extractive photometry using diethyldithiocarbamate.

CO6: Estimate the % purity of given drugs by non-aqueous titration.

CO7: Determine the percentage purity of methylene blue indicator.

CO8: Find the amount of cholesterol and uric acid in the given sample of blood serum.

CO9: Estimate the amount of fluoride in a toothpaste.

CO10: Find the amount of silica by molybdenum blue method.

Curriculum:			
Unit Title	Sub titles (Learning Points)		
Group A (30hrs) Instrumental	 Determination of the pK_{In} value of an indicator. Determination of copper and bismuth in mixture by photometrictitration. Estimation of strong acid, weak acid and salt in the given mixture conductometrically. Analysis of mixture of carbonate and bicarbonate (present in ppm range) using pH metry Determination of copper by extractive photometry using diethyldithiocarbamate 		
	Unit Title Group A (30hrs) Instrumental		

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 17 |

Group B	 Estimation of drugs by non-aqueous titration: Pyridoxine
(30hrs)	hydrochloride, Sulphamethoxazole. Determination of percentage purity of methylene blue
Non-	indicator. Estimation of cholesterol and Uric acid in the given sample of
Instrumental	blood serum
Insti uniciitai	 Estimation of fluoride in a tooth paste. Determination of silica by molybdenum blue method

- 1. Quantitative Inorganic Analysis including Elementary Instrumental Analysis by; A.I. Vogels, 3rd Ed. ELBS (1964)
- 2. Vogel's textbook of quantitative chemical analysis, Mendham, Denny, Barnes, Thomas, Pearson education, Sixth Ed.
- 3. Standard methods of chemical analysis; F.J. Welcher, 1975.
- 4. Standard methods of chemical analysis: Instrumental methods of Analysis; F.J. Welcher, vol. 3, 1966.
- 5. "Standard methods of Chemical Analysis"; W.W. Scott, Vol. I, Van Nostrand Company, Inc., 1939.
- 6. "Spectrophotometric Determination of Traces of Metals"; E.B. Sandell and H. Onishi, Part II, 4th Ed., A Wiley Interscience Publication, New York.1978

Teaching Plan:

Unit No.	Unit Title	Teaching Methods	No. of Lectures (in hrs)
Ι	Group A	Lecture, Demo, experiment	60
II	Group B	Lecture, Demo, experiment	

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks:20

Method	Marks
Assessment during practical's (Interaction / Performance) skill, Accuracy,	10
precision of measurement, Record of observation, calculations, result and conclusion.	
Timely submission of journal	05
Overall performance (attendance, punctuality, interaction during practical session throughout semester)	05

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 18 |

Sr. No.	Name of course	Method	Duration	Marks
1.	Group A	Experiment performance as per the practical slip	Three hours and half hours	25
2.	Group B	Experiment performance as per the practical slip	Three hours and half hours	25
3	Journal+ Viva			5+5
		Total		60

B) Semester End Examination: Maximum Marks: 30

Practical examination will be of 60 marks at the end of semester which will be converted to 30 Marks.

CIE	Semester End	Total Marks
20	30	50

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 19 |

Nomenclature of the Course	Environmental Chemistry
Class	M.ScII
Semester	III
Course Code	PSACH305
No. of Credits	02
Nature	Theory
Туре	Major Electives

At the end of the Course, the Learner will be able to:

- CO1: To understand the classification of sources of pollution and their permissible limit.
- CO2: Employ the sampling techniques to collect samples of these air pollutants.
- CO3: Outline the role of pollution control boards in monitoring and controlling pollution.
- CO4: Evaluate the quality of potable water based on the guidelines laid down by the regulatory bodies.

CO5: To understand methods to maintain the quality of water.

Curricu	lum:	
Unit No.	Unit Title	Sub titles (Learning Points)
Ι	Air Pollution	 1.1 Sources, classification, pollutants and permissible limits. (2L) 1.2 Sampling methods for air, flew gas, Industrial Exhaust, stag samples etc. (2L) 1.3 Importance of automobile exhaust control and its limits. (2L) 1.4 Sampling and analysis of: Particulate matter, aerosols, ammonia and organic vapors. (3L) 1.5 Carbon credit and global issues related to air pollution. (3L) 1.6 Greenhouse gases and their substitutes. (1L) 1.7 Environmental Legislation: role of pollution control boards, article 48A and 51A, Motor Vehicle Act and method of analysis with respect to PUC. (2L)
Π	Water Pollution	 2.1 water pollution and sources (1L) 2.2 Water Pollutants for potable water reservoirs, quality of potable water from Natural sources(2L). 2.3 Water: quality and requirements of potable water, direct and indirect (6L) 2.4 Bore well water quality and analytical parameters. Quality of bottled mineral water. Process of purification of bore well water to bottled mineral water. (2L) 2.5 Regulatory requirements for packaged drinking water (4L).

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 20 |

- 1. Environmental Chemistry, A.K. De, 2nd ED. Wiley (1989).
- 2. Environmental Pollution Analysis, S. M. Khopkar, John Wiely (1993).
- 3. Air Pollution Sampling and Analysis, Sharad Gokhale, IIT Guwahati, May 2009.
- 4. Environmental Pollution Analysis, S.M. Khopkar, New Age International publication (2011).
- 5. Water and Water Pollution (handbook) Ed., Seonard'l Ciacere, Vol I to IV, Marcel Dekker inc. N. York (1972).
- 6. Water Pollution, Arvind Kumar, and APH publishing (2004).
- 7. Introduction to Potable Water Treatment Processes, Simon Parsons, Bruce Jefferson, Paperback publication.
- 8. Guidelines for drinking-water quality, Third edition, (incorporating first and second addenda).WHO report.

Teaching Plan:			
Unit No.	Unit Title	Teaching Methods	No. of Lectures (in hrs)
1	Air Pollution	Lecture, PPT	15
2	Water Pollution	Lecture, PPT	15

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 20

Method	Marks
One Periodical Class Test / Written objectives / Assignments/ Short	15
answer Questions / Seminar to be conducted in the given	
semester	
Active participation in routine class instructional deliveries and overall	
conduct as a responsible learner, mannerism and articulation and exhibit of	
leadership qualities in organizing	
related academic activities	

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 21 |

B) Semester End Examination: Maximum Marks: 30

Question No. and Sub questions (If any) (E.g. Q. 1 a)	Unit and sub unit (with number and title)	Type of Question (Essay / short note / Objective / Diagram, etc.)	Marks
Q. 1	Unit I	Descriptive, short note	10
Q. 2	Unit II	Descriptive, short note	10
Q. 3	All units	short note, objective, etc.	10

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 22 |

Nomenclature of the	Analytical Chemistry Practical Group C + Group D
Course	
Class	M.Sc. II
Semester	III
Course Code	PSACH306
No. of Credits	02
Nature	Practical
Туре	Major: Elective

CO1: Estimate total reducing sugars before and after inversion in honey by redox titration.

CO2: Determine the % of lactose in milk sample.

CO3: Determine the % of caffeine in tea sample.

CO4: Estimate the amount of Vitamin C in lemon Juice/squash.

CO5: Study of alcoholic beverages (Beer) for alcohol content by distillation followed by specific gravity method, acidity by titration, total residue by evaporation.

CO6: Determine the metal ions in given Pyrolusite ore.

CO7: Determine the metal ions in given Magnesium alloy.

CO8: Determine the composition of Bauxite ore.

CO9: Determine the chemical properties of water sample such as total hardness and salinity.

Unit	Unit Title	Sub titles (Learning Points)
No.		
Ι & ΙΙ	Group C (30hrs) Non–Instrumental	 Total reducing sugars before and after inversion in honey using: (a) Cole's Ferricyanide (b) Lane - Eynon method. Analysis of lactose in milk 3. Estimation of Caffeinein tea. Estimation of Vitamin C in lemon Juice/squash by Dichlorophenol-indophenol method. Iodine value of oil / fat Analysis of alcoholic beverages (Beer) for alcohol content by distillation followed by specific gravity method, acidity by titration, total residue by evaporation

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 23 |

Group D	1. To analyze Pyrolusite for: Fe by colorimetry and / or
(30hrs)	Mn by volumetry.
Instrumental	2. To analyze Magnelium for Mg by complexometry.3. Analysis of Bauxite for Ti by colorimetry / Al by gravimetry / Fe (volumetry)
Non–Instrumental	 Analysis of water sample: Total hardness and salinity. Analysis of water sample: Acidity and sulphate (Benzidine method)

- 1. Quantitative Inorganic Analysis including Elementary Instrumental Analysis by; A.I. Vogels, 3rd Ed. ELBS (1964).
- 2. Vogel's textbook of quantitative chemical analysis, Mendham, Denny, Barnes, Thomas, Pearson education, Sixth Ed.
- 3. Standard methods of chemical analysis; F.J. Welcher, 1975.
- 4. Standard methods of chemical analysis: Instrumental methods of Analysis; F.J. Welcher, vol. 3, 1966.
- 5. "Standard methods of Chemical Analysis"; W.W. Scott, Vol. I, Van Nostrand Company, Inc., 1939.
- 6. "Spectrophotometric Determination of Traces of Metals"; E.B. Sandell and H.Onishi, Part II, 4th Ed., A Wiley Inter Science Publication, New York, 1978.

Teachin	Teaching Plan:		
Unit	Unit Title	Teaching Methods	No. of
No.			Lectures
			(in hrs.)
Ι	Group C	Lecture, Demo, experiment	60
II	Group D	Lecture, Demo, experiment	

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 24 |

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 20

Method	Marks	
One Periodical Class Test / Written objectives / Assignments/ Short	15	
answer Questions / Seminar to be conducted in the given semester		
Active participation in routine class instructional deliveries and overall conduct as		
a responsible learner, mannerism and articulation and exhibit of leadership		
qualities in organizing related academic activities.		

B) Semester End Examination: Maximum Marks: 30

Sr. No.	Name of course	Method	Duration	Marks
1.	Group C	Experiment performance as per the practical slip	Three and half hours	25
2.	Group D	Experiment performance as per the practical slip	Three and half hours	25
	Journal+ Viva	•		5+5
	Total			60

Practical examination will be of 60 marks at the end of semester which will be converted to 30Marks.

CIE	Semester End	Total Marks
20	30	50

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 25 |

Nomenclature of the	Industrially Important Materials
Course	
Class	M.ScII
Semester	III
Course Code	PSACH307
No. of Credits	02
Nature	Theory
Туре	Major Electives

At the end of the Course, the Learner will be able to:

- CO1 Make use of the methodologies learned to carry out the analysis of each and every component present in paints.
- CO2: Outline the importance of additives in plastic.
- CO3: Estimate the amount of metallic impurities in plastics.
- CO4: Recommend methods for the biodegradation of insecticides and pesticides.
- CO5: Judge the quality of the detergents by making use of the various methods which are used in industries for carrying out their analysis.

Curriculum:		
Unit	Unit TitleSub titles (Learning Points)	
No.		
Ι	Plastics and Polymers	 3.1 Classification of plastic, determination of additives, molecular weight distribution, analysis of plastic and polymers based on styrene, vinyl chloride, Ethylene, acrylic and cellulosic plastics. (5L) 3.2 Metallic impurities in plastic and their determination, (2L) 3.3 Impact of plastic on environment as pollutant. (2L) 3.4 Paints and pigments: Types of paints pigments, determination of volatile and non - volatile components, (significance and method of determination), separation and analysis of pigments, binders and thinners. (3L) 3.5 Role of Organo silicones in paints and their impact on environment. (3L)
II	Industrial Materials	 4.1 Pesticides: definition, classification of insecticides pesticides. Biodegradation of insecticides and pesticides (5L). 4.2 Soaps and Detergents: classification and composition, qualitative analysis, quantitative analysis of detergents-alkalinity, active ingredients and oxygen releasing capacity. Biodegradable detergents (5L) 4.3 Petrochemical products: crude oils, fuels, and calorific values, fractional distillation process and fractions,

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 26 |

properties of fuel, composition of fuel, flashpoint, fire
point, Corrosion test, carbon residue and impact on
environment. (5L)

- 1. Fundamental Concepts of Environmental Chemistry, Second Edition G. S. Sodhi , Alpha Science, 2005
- 2. Environmental law in India, Mohammad Naseem, Wolters Kluwer.
- 3. Environmental Protection, Law and Policy in India Kailash Thakur google books (1997).
- 4. Green chemistry An Introductory text, Mzike Lancaster, Royal Society of Chemistry (2002)
- 5. Pesticide Analysis Ed K. G. Das, Dekker (1981)
- 6. Analytical, Agricultural Chemistry S. L Chpra J.S KanwarKalyani publication
- 7. Soil and plant Analysis C.S Piper, Hans Publication

Teaching Plan:

reachn	Teaching Tian.			
Unit	Unit Title	Teaching Methods	No. of	
No.			Lectures	
			(in hrs)	
1	Plastics and Polymers	Lecture, PPT	15	
2	Industrial Materials	Lecture, PPT	15	

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 20

Method	Marks	
One Periodical Class Test / Written objectives / Assignments/ Short	15	
answer Questions / Seminar to be conducted in the given semester		
Active participation in routine class instructional deliveries and overall		
conduct as a responsible learner, mannerism and articulation and exhibit of		
leadership qualities in organizing related academic activities		

B) Semester End Examination: Maximum Marks: 30

Question No. and Sub questions (If any) (E.g. Q. 1 a)	Unit and sub unit (with number and title)	Type of Question (Essay / short note / Objective / Diagram, etc.)	Marks
Q. 1	Unit I	Descriptive, short note	10
Q. 2	Unit II	Descriptive, short note	10
Q. 3	All units	short note, objective, etc.	10

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 27 |

Analytical Chemistry Practical Group C + Group D
M.Sc. II
III
PSACH308
02
Practical
Major: Elective

CO1: Estimate total reducing sugars before and after inversion in honey by redox titration.

- CO2: Determine the % of lactose in milk sample.
- CO3: Determine the % of Caffeine in tea sample.
- CO4: Estimate the amount of Vitamin C in lemon Juice/squash.
- CO5: Study of alcoholic beverages (Beer) for alcohol content by distillation followed by specific gravity method, acidity by titration, total residue by evaporation.
- CO6: Determine the metal ions in given Pyrolusite ore.
- CO7: Determine the metal ions in given Magnesium alloy.
- CO8: Determine the composition of Bauxite ore.
- CO9: Determine the chemical properties of water sample such as total hardness and salinity.

Curricu	lum:	
Unit	Unit Title	Sub titles (Learning Points)
No.		
I & II	Group C	1. Total reducing sugars before and after inversion in
	(30hrs)	honey using: (a) Cole's Ferricyanide (b) Lane - Eynon
	Non-Instrumental	method.
	•	 Analysis of lactose in milk 3. Estimation of Caffeine in tea Estimation of Vitamin C in lemon Juice/squash by
		Dichlorophenol-indophenol method.
		4. Iodine value of oil / fat
		5. Analysis of alcoholic beverages (Beer) for alcohol content by distillation followed by specific gravity method, acidity by titration, total residue by evaporation
	Group D (30hrs) Instrumental	 To analyze Pyrolusite for: Fe by colorimetry and / or Mn byvolumetry. To analyze Magnelium for Mg by complexometry.
	mstrumentar	3. Analysis of Bauxite for Ti by colorimetry / Al by gravimetry / Fe (volumetry)
	Non–Instrumental	 Analysis of water sample: Total hardness and salinity. Analysis of water sample: Acidity and sulphate(Benzidine method)

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 28 |

- 1. Quantitative Inorganic Analysis including Elementary Instrumental Analysis by; A.I. Vogels,3rd Ed. ELBS (1964)
- 2. Vogel's textbook of quantitative chemical analysis, Mendham, Denny, Barnes, Thomas, Pearson education, Sixth Ed.
- 3. Standard methods of chemical analysis; F. J. Welcher, 1975.
- 4. Standard methods of chemical analysis: Instrumental methods of Analysis; F.J. Welcher, vol. 3, 1966.
- 5. "Standard methods of Chemical Analysis"; W. W. Scott, Vol.I, Van Nostr and Company, Inc., 1939.
- 6. "Spectrophotometric Determination of Traces of Metals"; E.B. Sandell and H. Onishi, Part II,4th Ed., A Wiley Inter Science Publication, New York,1978.

Teaching Plan:UnitUnit TitleTeaching MethodsNo. ofNo.Image: Colspan="3">LecturesIGroup CLecture, Demo, experiment60IIGroup DLecture, Demo, experiment60

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 29 |

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 20

Method	Marks
One Periodical Class Test / Written objectives / Assignments/ Short	15
answer Questions / Seminar to be conducted in the given semester	
Active participation in routine class instructional deliveries and overall conduct as a responsible learner, mannerism and articulation and exhibit of leadership qualities organizing related academic activities.	

B) Semester End Examination: Maximum Marks: 30

Sr. No.	Name of course	Method	Duration	Marks
1.	Group C	Experiment performance as per the practical slip	Three and half hours	25
2.	Group D	Experiment performance as per the practical slip	Three and half hours	25
	Journal+ Viva	•		5+5
	Total			60

Practical examination will be of 60 marks at the end of semester which will be converted o 30 Marks.

CIE	Semester End	Total Marks
20	30	50

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 30 |

Nomenclature of the Course	Research Project (RP)
Class	M.Sc. II
Semester	III
Course Code	PSACH309
No. of Credits	04
Nature	Research Project
Туре	Major: Mandatory

On successful completion of this course, learners will be able to:

- CO1: Understand the ethics and research methodology.
- CO2: Identify the research problem and formulate objectives.
- CO3: Understanding the current research on particular topic analyzing recent literature, identifying gaps or area for further study and finding new insights
- CO4: Critically evaluate literature with respect to research problem / objectives and formulate it.
- CO5: Demonstrate the ability to develop a comprehensive research proposal, including clear

research questions, appropriate methodologies, and feasible timelines

- CO6: Enhance their written and oral communication skills through the creation and presentation of a well-structured research proposal.
- CO7: Gain practical experience in budget planning and resource allocation for research projects, including identifying potential funding sources and justifying expenses.

Curricul	um:	
Unit	Unit Title	Sub titles (Learning Points)
No.		
Ι	Project-I	Identifying problem for project work, literature survey,
	(120hrs)	deciding methodology, practical implementation of the project, data analysis and conclusions, preparing project report (a dissertation).

References:

- 1. Research Papers
- 2. Internet
- 3. Books and journals

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 31 |

Teaching Plan:			
Unit	Unit Title	Teaching	No. of
No.		Methods	Lectures
Ι	Identifying problem for project work, literature	Discussion,	120
	survey	literature review.	
	Deciding methodology and practical	Discussion,	
	implementation of the project (if any).	Experimental	
		work.	
	Data analysis (if any) and conclusions, preparing	Presentation and	
	project report (a dissertation).	discussion.	

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 40

Method	Marks
Identifying problem for project work, literature survey	25
Presentation skill	15

B) Semester End Examination: Maximum Marks: 60

Sr. No	Criteria	Marks
1	Theoretical methodology/Working condition of project	15
2	Significance of the study/Society application and Inclusion of recent references	10
3	Depth of knowledge in the subject	10
4	Synopsis	10
5	Research Proposal Viva	15

Project guidelines:

- 1. Every learner will have to complete one project within academic year.
- 2. Learners can take one long project or two short projects.
- 3. However, for one long project learners have to submit two separate project reports / dissertation consisting of the problem definition, literature survey and current status, objectives, methodology and some preliminary experimental work in Semester III for 4 credits and actual experimental work, results and analysis in semester IV with six credits.
- 4. The experimental project, related to advanced topic in chemistry/ interdisciplinary topic. industrial project, training in a research institute, training of handling a sophisticated equipment etc.
- 5. Maximum three learners can do a joint project. Each one of them will submit a separate project report with details.

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 32 |

- 6. In case a learner takes training in a research institute/training of handling sophisticate equipment, he/she should mention in a report what training he/she has got, which instruments he/she handled and their principle and operation etc.
- 7. Each project will be of 100 marks with 40% by continuous evaluation and 60% by semester end evaluation.
- 8. The project report should be file bound/spiral bound/hard bound.

Format of Project Report:

a) Title Page:

Mentioning the title of the report, name of the learner, program, institution, and the project.

b) Declaration:

A statement by the learner declaring that the report is the original work and acknowledging any assistance or references used.

c) Acknowledgments:

Recognizing individuals or organizations that provided support, guidance, or resources during the training/project.

d) Table of Contents:

Providing a clear outline of the report's sections and page numbers.

e) Abstract:

A bird's eye view of learner's entire presentation has to be precisely offered under this category. A brief overview of the project, its objectives and key findings should be mentioned.

f) Introduction:

Background information about the project and its significance. Objectives and scope of the project.

g) Literature Review:

Overview of relevant literature and studies related to the chosen field and development issues.

h) Methodology:

Description of: Planning of experimental procedure as per the need of the project. Designing and implementation of the project as per the objectives through theoretical, experimental or computational methods.

i) References & Appendices:

List of all sources cited in the project report. Additional supporting materials.

The project report shall be prepared as per the broad guidelines given below:

- Font type: Times New Roman.
- Font size: 12-For content, 14-for Title.
- Line Space: 1.5-for content and 1-for in table work, justified format.
- Page Size: A4.
- Margin: in Left-1.5, Up-Down-Right-1.
- The Project Report shall be hard bounded

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 33 |

Title of the Project

A Synopsis Submitted

То

R. P. Gogate college of Arts and Science and

R.V. Jogalekar College of Commerce College (Autonomous), Ratnagiri

Under

University of Mumbai

For partial completion of the degree

Of

Master in Science

(Analytical Chemistry)

Under the Faculty of Science

By

Name of Student

Under the Guidance of

Name of the Guiding Teacher

R. P. Gogate college of Arts and Science and

R.V. Jogalekar College of Commerce College (Autonomous) Ratnagiri

Month and Year

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 34 |

On separate page

Index

Sr No	Title	Page No.
01		
02		
03		
04		
05		

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 35 |

DECLARATION BY LEARNER

I the undersigned Miss/Mr. ______ [Name of the learner] here by, declare that work embodied in this project work titled _______forms my own contribution to the research work carried out under the guidance of [Name of the guiding teacher]____is a result of my own research work and has not been previously submitted to any other University for any other Degree/ Diploma to this or any other University.

Wherever reference has been made to previous works of others, it has been clearly indicated as such and included in the bibliography.

I, here by further declare that all information of this document has been obtained and presented in accordance with academic rules and ethical conduct.

Name and Signature of the learner

Certified by

Name and signature of the Guiding Teacher

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 36 |

On separate page

Acknowledgment (To be written by learner) (Model structure of the acknowledgement)

To list who all have helped me is difficult because they are so numerous and the depth is so enormous.

I would like to acknowledge the following as being idealistic channels and fresh dimensions in the completion of this project.

I thank the R. P. Gogate College of Arts and Science and R.V. JogalekarCollege of Commerce, Ratnagiri (Autonomous) and University of Mumbai for giving me opportunity to do this project.

I would like to thank my Principal, ______ for providing the necessary facilities required for completion of this project.

I take this opportunity to thank our HOD_____, for hismoral support and guidance

I would like to thank my College Library, for having provided various reference booksand magazines related to my project.

Lastly, I would like to thank each and every person who directly or indirectly helped me in the completion of the project especially my Parents and Peers who supported me throughout my project.

Signature of Lerner

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 37 |

	lature of the	Quality in Analytical Chemistry - II		
Course				
Class		M.ScII		
Semeste	r	IV		
Course		PSACH401		
No. of C	redits	04		
Nature		Theory		
Туре		Major: Mandatory		
Course	Outcomes:			
At the er	nd of the Course	e, the Learner will be able to		
CO1: To	o gain knowledg	ge of solvent extraction and their applications.		
CO2: Se	lect an appropria	ate method for the processing, extraction using different		
tec	chniques and sta	indardization of the herbal materials as per WHO GMP		
gu	idelines.			
CO3: To	understand abo	out the identification, processing and authentication of herbal		
ma	aterials.			
CO4: A	cquire awarenes	s of the principles of green chemistry.		
CO5: To	acquire general	l awareness on green chemistry, green solvents and green		
pri	principles of organic synthesis.			
	incipies of organ	nic synthesis.		
	incipies of organ	ine synthesis.		
Curricu		ine synthesis.		
Curricu Unit				
	lum:			
Unit	lum:	Sub titles (Learning Points) 1.1 Membrane separation processes: operating principles and		
Unit No.	lum: Unit Title	Sub titles (Learning Points) 1.1 Membrane separation processes: operating principles and applications of microfiltration, ultra-filtration, reverse		
Unit No.	lum: Unit Title Separation	Sub titles (Learning Points) 1.1 Membrane separation processes: operating principles and applications of microfiltration, ultra-filtration, reverse osmosis, dialysis and electro-dialysis. (8L)		
Unit No.	lum: Unit Title Separation	Sub titles (Learning Points) 1.1 Membrane separation processes: operating principles and applications of microfiltration, ultra-filtration, reverse osmosis, dialysis and electro-dialysis. (8L) 1.2 Applications of Solvent extraction in Analytical		
Unit No.	lum: Unit Title Separation	Sub titles (Learning Points) 1.1 Membrane separation processes: operating principles and applications of microfiltration, ultra-filtration, reverse osmosis, dialysis and electro-dialysis. (8L) 1.2 Applications of Solvent extraction in Analytical Chemistry recapitulation		
Unit No.	lum: Unit Title Separation	Sub titles (Learning Points) 1.1 Membrane separation processes: operating principles and applications of microfiltration, ultra-filtration, reverse osmosis, dialysis and electro-dialysis. (8L) 1.2 Applications of Solvent extraction in Analytical Chemistry recapitulation of solvent extraction, roles of solvent extraction in analytical		
Unit No.	lum: Unit Title Separation	Sub titles (Learning Points) 1.1 Membrane separation processes: operating principles and applications of microfiltration, ultra-filtration, reverse osmosis, dialysis and electro-dialysis. (8L) 1.2 Applications of Solvent extraction in Analytical Chemistry recapitulation of solvent extraction, roles of solvent extraction in analytical chemistry, solvent extraction in sample preparation and		
Unit No.	lum: Unit Title Separation	Sub titles (Learning Points) 1.1 Membrane separation processes: operating principles and applications of microfiltration, ultra-filtration, reverse osmosis, dialysis and electro-dialysis. (8L) 1.2 Applications of Solvent extraction in Analytical Chemistry recapitulation of solvent extraction, roles of solvent extraction in analytical chemistry, solvent extraction in sample preparation and pretreatment steps, solvent extraction as a means of analytical		
Unit No. I	lum: Unit Title Separation Science	Sub titles (Learning Points) 1.1 Membrane separation processes: operating principles and applications of microfiltration, ultra-filtration, reverse osmosis, dialysis and electro-dialysis. (8L) 1.2 Applications of Solvent extraction in Analytical Chemistry recapitulation of solvent extraction, roles of solvent extraction in analytical chemistry, solvent extraction in sample preparation and pretreatment steps, solvent extraction as a means of analytical determination (7L)		
Unit No.	lum: Unit Title Separation Science Separation,	Sub titles (Learning Points) 1.1 Membrane separation processes: operating principles and applications of microfiltration, ultra-filtration, reverse osmosis, dialysis and electro-dialysis. (8L) 1.2 Applications of Solvent extraction in Analytical Chemistry recapitulation of solvent extraction, roles of solvent extraction in analytical chemistry, solvent extraction in sample preparation and pretreatment steps, solvent extraction as a means of analytical determination (7L) 2.1 Herbs as a raw material: Definition of herb, herbal		
Unit No. I	lum: Unit Title Separation Science	Sub titles (Learning Points)1.1 Membrane separation processes: operating principles and applications of microfiltration, ultra-filtration, reverse osmosis, dialysis and electro-dialysis. (8L) 1.2 Applications of Solvent extraction in Analytical Chemistry recapitulation of solvent extraction, roles of solvent extraction in analytical chemistry, solvent extraction in sample preparation and pretreatment steps, solvent extraction as a means of analytical determination (7L)2.1 Herbs as a raw material: Definition of herb, herbal medicine, herbal Medicinal products, herbal drug preparation.		

n of Herbal based products. of herbal materials, drying and processing of herbal raw materials, drying and processing of herbal raw material. (6L) 2.2 Extraction of herbal materials: Choice of solvent for extraction, methods used for extraction and principle involved in extraction. (3L) 2.3 Standardization of herbal formulation and herbal extracts: Standardization of herbal extract as per WHO cGMP

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 38 |

		guidelines, Physical, Chemical, Spectral and toxilogical
		standardization, qualitative and quantitative estimations. (6L)
III	Green Chemistry	3.1 Principle and concepts of green chemistry: sustainable
		development and green chemistry, atom economy, examples
		of atom economic and atom uneconomic reactions, reducing toxicity (4L)
		3.2 Organic solvents: environmentally benign solutions,
		solvent free systems, supercritical fluids (only introduction)
		Ionic liquids as catalysts and solvents (4L)
		3.3 Emerging Green Technologies: photochemical reactions
		(advantages and challenges), examples. Chemistry using
		microwaves, sonochemistry and electrochemical synthesis.
		(4L)
		3.4 Designing Greener Processes: Inherently Safer Designs
		(ISD), Process
		Intensification (PI) in-process monitoring. (3L)
IV	Advanced	4.1 Electrophoresis: introduction, factors affecting migration
	Techniques	rate, supporting media (gel, paper, cellulose, acetate, starch,
		polyacrylamide, agarose, sephedax and thin layers) (2L)
		4.2 Techniques of Electrophoresis: low and high voltage, sds- page, continuous electrophoresis, capillary electrophoresis,
		zone, gel, isoelectric focusing, isotaechophoresis and miceller
		electro kinetic capillary chromatography, instrumentation,
		detection and applications. (8L)
		4.3 Introduction to Nanotechnology: Analytical techniques in
		nanotechnology, consequences of the nanoscale,
		(nanaoparticles morphology, electronic structure, optical
		properties) one dimensional nano material (nanofilms,
		nanolayers), two dimensional nanomaterials (nanotubes,
		nanowires), three dimensional nanomaterials (nanaoparticles
		and quantum dots). (5L)
L	1	

- 1. Research Methodology: Methods & Techniques by C R Kothari, 2e, Wishwa Publication, New Delhi
- 2. Research Methodology by D K Bhattacharyya, 1 e, Excel Books, New Delhi, 2003
- 3. How to Research by Loraine Blaxter, Christina Hughes and Molcolm Tight, Viva Books Pvt. Ltd., New Delhi
- 4. Chemical methods of separation, J A Dean, Van Nostrand Reinhold, 1969
- 5. Solvent extraction and ion exchange, J Marcus and A. S. Kertes Wiley INC 1969.
- 6. Extraction Chromatography, T. Braun, G. Ghersene, Elsevier Publications 1978.
- 7. Super critical fluid extraction, Larry Taylor Wiley publishers N.Y. 1996
- 8. Ion exchange separation in analytical chemistry, O Samuelson John Wiley 2nd ed 1963
- 9. Ion exchange chromatography, Ed H.F Walton Howden, Hutchenson and Rossing 1976
- 10. Chromatographic and el ectrophoresis techniques, I Smith Menemann Interscience 1960
- 11. Green chemistry and catalyst, R. A. Sheldon, Isabella Arends, Ulf Hanefeld Wiley

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 39 |

VCH verlag GmBH & co.

12. Sustainable residential development: planning and design for green neighborhoods. Avi Friedman, McGraw Hill professional

Teachin	Teaching Plan:			
Unit	Unit Title	Teaching Methods	No. of	
No.			Lectures	
			(in hrs)	
Ι	Separation Science	Lecture, PPT	15	
II	Separation, Analysis and	Lecture, PPT	15	
	Standardization of Herbal			
	based			
	Products.			
III	Green Chemistry	Lecture, PPT	15	
IV	Advanced Techniques	Lecture, PPT	15	

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 40

Method	Marks
One Periodical Class Test / Written objectives / Assignments/ Short answer	30
Questions / Seminar to be conducted in the given semester	
Active participation in routine class instructional deliveries and overall	10
conduct as a responsible learner, mannerism and articulation and exhibit of	
leadership qualities in organizing related academic activities	

B) Semester End Examination: Maximum Marks: 60

Question No. and Sub questions (If any) (E.g. Q. 1 a)	Unit and sub unit (with number and title)	Type of Question (Essay / short note / Objective / Diagram, etc.)	Marks
Q.1	Unit I	Descriptive. short note etc.	12
Q.2	Unit II	Descriptive. short note etc.	12
Q.3	Unit III	Descriptive. short note etc.	12
Q.4	Unit IV	Descriptive. short note etc.	12
Q.5	All Units	short note / objective, etc.	12

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 40 |

Nomenclature of the	Advanced instrumental techniques
Course	
Class	M.ScII
Semester	IV
Course Code	PSACH402
No. of Credits	04
Nature	Theory
Туре	Major: Mandatory

Course Outcomes:

At the end of the Course, the Learner will be able to:

- CO1: Explain the basic theory of 1HNMR spectroscopy & Raman Spectroscopy.
- CO2: Describe the working of the different components of NMR spectrophotometer.
- CO3: Apply¹H, ¹³C, ³¹P and ¹⁹F NMR spectroscopy techniques in combination with other spectroscopic data to carry out structure determination.
- CO4: Explain the mechanism of formation and fragmentation of ions in gas phase.
- CO5: Interpret the information contained in the mass spectra.
- CO6: Describe the working of Raman spectrometer and will be able to explain how the spectrum is recorded.
- CO7: Elaborate on the essential principles underlying the applications of thermal methods and radiochemical methods.
- CO8: Enlist the advantages of development of hyphenated techniques and will be able to explain the different types of interfaces that are used to achieve this hyphenation.

Curriculum:		
Unit	Unit Title	Sub titles (Learning Points)
No.		
Ι	Spectral Methods III	NMR Spectroscopy 1.1 Theory and Instrumentation- recapitulation, FT NMR, 2D NMR, - FID signal generation mechanism, Techniques in 2D NMR- homo nuclear correlation spectroscopy (COSY), total correlation spectroscopy (TOCSY), heteronuclear correlation (HETCOR) (9L) 1.2 Radio waves in imaging- principle instrumentation and applications of MRI (3L) 1.3 Application of NMR to other nuclei C ¹³ , P ³¹ and F ¹⁹ spectroscopy (3L)
II	Spectral Methods IV	2.1 Mass spectroscopy: recapitulation, correlation of mass spectra with molecular structure- interpretation of mass spectra, analytical information derived from

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 41 |

		mass spectra- molecular identification, metastable peaks, Fragmentation Reactions (9L)
		2.2 Raman spectroscopy: Principle Theory Instrumentation,
		techniques (SERS and Resonance Raman) and Applications
		of Raman spectroscopy (6L)
III	Radiochemical And Thermal Methods	 3.1 Activation analysis- NAA, radiometric titrations and radio-release methods (7L) 3.2 Thermal analysis Principle Interfacing
		 3.2 Thermal analysis- Principle, Interfacing, instrumentation and Applications of (a) Simultaneous Thermal Analysis- TG-DTA and TG-DSC (b) Evolved gas analysis- TG-MS and TG-FTIR (8L)
IV	Hyphenated Techniques	 4.1 concept of hyphenation, need for hyphenation, possible hyphenations. (2 L) 4.2 Interfacing devices and applications of GC – MS, ICP - MS, GC - IR, Tandem Mass Spectrometry, LC – MS: HPLC-MS, CE-MS. (13L)

- 1. Analytical Chemistry, G. D. Christian, 4th Ed. John Wiley, New York (1986).
- 2. Fundamentals of Analytical Chemistry, D. A. Skoog and D. M. West and F. J. Holler Holt- Saunders 6 th Edition (1998).
- 3. Principles of Instrumental Analysis, D. A. Skoog, F. J. Holler and J. A. Niemann 5th Ed.
- 4. Instrumental methods of Analysis, H. H. Willard, L. L. Merritt Jr, J. A. Dean and F. A.
- 5. Thermal methods of Analysis, P. J. Haines, Blackie Academic & Professional, London (1995).
- 6. Thermal Analysis, 3rd Edition W. W. Wendlandt, John Wiley, N.Y. (1986).
- 7. Principles and Practices of X-ray spectrometric Analysis, 2nd Ed E. P. Bertain, Plenum Press, NY, (1975).
- 8. Nuclear Analytical Chemistry, D. Bane, B. Forkman, B. Persson, Chartwell Bratt Ltd (1984).
- 9. Standard Methods of Chemical Analysis, Eds. F. J. Welcher, Robert E. Krieger Publishing Company, A series of volumes.
- 10. A Complete Introduction to Modern NMR Spectroscopy 1st Edition by Roger S. Macomber.
- 11. Spectrometric Identification of Organic Compounds Hardcover by Robert M. Silverstein Wiley.
- 12. Tandem Techniques (Separation Science Series) 1st Edition by Raymond P. W. Scott John Wiley & Sons Ltd, 1997.
- 13. Encyclopedia of Analytical Science, Editors-in-Chief: Paul Worsfold, Alan Townshend,

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 42 |

and Colin Poole ISBN: 978-0-12-369397-6.

14. Encyclopedia of Analytical Chemistry: Applications, Theory, and Instrumentation. Meyers Robert A Meyers.

15. Introduction to Thermal Analysis Techniques and Applications Edited by Michael E. Brown Principles and Applications of Thermal Analysis Edited by Paul Gabbott.

Teachi	Teaching Plan:			
Unit	Unit Title	Teaching	No. of	
No.		Methods	Lectures	
			(in hrs)	
Ι	Spectral Methods III	Lecture, PPT	15	
II	Spectral Methods IV	Lecture, PPT	15	
III	Radiochemical and Thermal Methods	Lecture, PPT	15	
IV	Hyphenated Techniques	Lecture, PPT	15	

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 40

Method	Marks
One Periodical Class Test / Written objectives / Assignments/ Short answer	30
Questions / Seminar to be conducted in the given semester	
Active participation in routine class instructional deliveries and overall	10
conduct as a responsible learner, mannerism and articulation and exhibit	
of leadership qualities in organizing related academic activities	

B) Semester End Examination: Maximum Marks: 60

Question No. and Sub questions (If any) (E.g. Q. 1 a)	Unit and sub unit (with number and title)	Type of Question (Essay / short note / Objective / Diagram, etc.)	Marks
Q.1	Unit I	Descriptive. short note etc.	12
Q.2	Unit II	Descriptive. short note etc.	12
Q.3	Unit III	Descriptive. short note etc.	12
Q.4	Unit IV	Descriptive. short note etc.	12
Q.5	All Units	short note / objective, etc.	12

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 43 |

Nomenclature of the Course	Analytical Chemistry Practical's (Group A+ Group B+ Group C)
Class	M.ScII
Semester	IV
Course Code	PSACH403
No. of Credits	04
Nature	Practical
Туре	Major: Mandatory

Course Outcomes:

At the end of the Course, the Learner will be able to:

CO1: Determine pK value of H₃PO₄ potentiometrically.

CO2: Estimate the amount of Na⁺ in dairy whitener by flame photometry

CO3: Find the pH of buffer solution by Spectrophotometrically.

CO2: Estimate the amount of Ti^{3+} and V^{5+} by Spectrophotometrically.

CO3: Estimate the amount Glucose by Spectrophotometrically.

CO4: Estimate the % purity of given drugs by non-aqueous titration

CO5: Determine the percentage purity of crystal Violet indicator.

CO6: Estimation of Calcium in Calcium in drug and food samples.

CO7: Determine the of SAP value of oil.

Curricu	Curriculum:				
Unit	Unit Title	Sub titles (Learning Points)			
No.					
Ι	Group A Instrumental	 Determination of pK value of H₃PO₄ potentiometrically Estimation of the amount of Na⁺ in dairy whitener by flame 			
		photometry			
		3. Determination of the pH of buffer solution by Spectrophotometrically.			
		 Determination of the amount of Ti³⁺ and V⁵⁺in a given sample spectrophotometrically by H₂O₂ method. 			
II	Group-B	1. Analysis of drugs by non- aqueous titration: Glycine, Sodium Benzoate			
	Non- Instrumental	2. Analysis of detergents: Active detergent matter, alkalinity and Oxygen releasing capacity.			
	mstrumentar	 Determination of the purity of crystal Violet indicator. Canned food: Limits test for tin/zinc 			
		 5. Estimation of Calcium in Calcium pentathonate/calcium lactate Tablet 			

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 44 |

Group–C Non- Instrumental	
Instrumental	 Analysis of Calcium, Iron and phosphorous in milk Determination of SAP value of oil Estimation of Aldehyde in lemon grass oil / Cinnamon oil Estimation of Glucose by Folin-Wu method
	1. Analysis of water sample : Mn ²⁺ by colorimetric method

- Quantitative Inorganic Analysis including Elementary Instrumental Analysis by; A. I. Vogels, 3rd Ed. ELBS (1964)
- 2. Vogel's textbook of quantitative chemical analysis, Mendham, Denny, Barnes, Thomas, Pearson education, Sixth Ed.
- 3. Standard methods of chemical analysis; F. J. Welcher, 1975.
- Standard methods of chemical analysis: Instrumental methods of Analysis;
 F. J. Welcher, vol. 3, 1966.
- 5. "Standard methods of Chemical Analysis"; W. W. Scott, Vol. I, Van Nostrand Company, Inc., 1939.
- 6. "Spectrophotometric Determination of Traces of Metals"; E. B. S and ell and H. Onishi, Part II,4th Ed, A Wiley Inter Science Publication, New York,1978

Teaching Plan:				
Unit	Unit Title	Teaching Methods	No. of	
No.			Lectures	
			(in hrs)	
Ι	Group A	Lecture, Demo, experiment	60	
II	Group B	Lecture, problem solving	60	
III	Group C	Lecture, Demo, experiment	60	

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 45 |

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 40

Method	Marks
Assessment during practicals (Interaction / Performance) Skill, Accuracy,	30
precision of measurement, Record of observation, calculations, graph, result and conclusion. Timely submission of journal	
Overall performance (attendance, punctuality, interaction during Practical	10
session throughout semester)	

B) Semester End Examination: Maximum Marks: 60

Sr. No.	Name of course	Method	Duration	Marks
1.	Group A	Experiment performance as per the practical slip	Three and half hours	25
2.	Group B	Experiment performance as per the practical slip	Three and half hours	25
3.	Group C	Experiment performance as per the practical slip	Three and half hours	25
	Journal+ Viva	·		5+5+5
Total				90

Practical examination will be of 90 marks at the end of semester which will be converted to 60Marks.

CIE	Semester End	Total Marks
40	60	100

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 46 |

Nomenclature of the	Selected Topics in Analytical Chemistry
Course	
Class	M.ScII
Semester	IV
Course Code	PSCHA403
No. of Credits	04
Nature	Theory
Туре	Major Electives

Course Outcomes:

At the end of the Course, the Learner will be able to

- CO1: Elaborate on the various physical, chemical and biological processes which are used to remove the contaminants from wastewater
- CO2: Discuss the different methods of recovery of metals from effluent treatment such as Electrodialysis, Electrodeposition and Ion Exchange etc.
- CO3: Discuss the significance of recycling and reuse of solid wastes.
- CO4: Assess the relationships between environmental guidelines, human activities and quality of impacted soil, water and air.
- CO5: To understand a method for analyzing different elements present in ores and alloys.
- CO6: Develop an understanding of zone refining and vacuum fusion and extraction techniques.
- CO7: Enlist properties of an ideal fuel. Determine the calorific value of fuels using the methodologies learned.

Curriculum:				
Unit				
No.				
Ι	Effluent Treatment	 1.1 Effluent treatment plant general construction and process flow charts(3L) 1.2 Treatment and disposal of Sewage. (3L) 1.3. Effluent parameters for metallurgical industry. (2L) 1.4 Permissible limits for metal (example Cr, As, Pb, Cd etc.) traces in the effluent. (2L) 1.5 Recovery of metals from effluent, modern methods – Electrodialysis, Electrodeposition and Ion Exchange etc.(3L) 		
		1.6 Recycle and reuse of process and treated (effluent) water(2L)		
II	Solid Waste Management	 2.1 Solid waste management: objectives, concept of recycle, reuse and recovery (3L) 2.2 Methods of solid waste disposal. (2L) 2.3 Treatment and disposal of sludge / dry cake (3L) 		

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 47 |

		2.4 Managing non-decomposable solid wastes(2L)2.5 Bio- medical waste: Introduction, Classification and methods of disposal (5L)
III	Other Types Of Pollution	 3.1 Soil pollution and Soil Analysis: sources of soil pollution and their control, sampling of soil, determination of water holding capacity, determination total nitrogen, ammonia and nitrates, fertility of soil and effect of pollution on it, synthetic fertilizers and their long-term effect on soil quality. (6L) 3.2 Noise Pollution: sources, effects, methods of measurements and control measures. (2L) 3.3 Thermal Pollution: definition, source, impact, control measures, working of cooling towers and cooling ponds, involved economy. (3L) 3.4 Radioactive pollutants: source, exposure hazards, precautions in handling and safety, long term effects. (2L) 3.5Environmental Audits: concept of audit, authorities, evaluation methodology, benefits and certification (2L)
IV	Metallurgy	 4.1 Ores and minerals: Dressing of ores, pollution due to metallurgical processes (ore dressing, calcination, smelting) (3L) 4.2 Chemical analysis of ores for principal constituents: Galena, Pyrolusite, Bauxite, Hematite, Monazite (4L) 4.3 Alloys: definition, analysis of Cupronickel, Magnelium, Steel And Stainless Steel, Bronze, Gun metal. (4L) 4.4 Techniques of purification: Zone refining, analysis of high purity Materials like silicon, vacuum fusion and extraction techniques. (4L)

- 1. Environmental Pollution Analysis, S. M. khopkar, New Age International publication (2011).
- 2. Water and water pollution (hand book) Ed., Seonard'l Ciacere, Vol I to IV, Marcel Dekker inc. N.Y. (1972)
- 3. Water pollution, Arvind kumar, APH publishing (2004)
- 4. Introduction to Potable Water Treatment Processes Simon Parsons, Bruce Jefferson, Paperback publication.
- 5. Solid waste management, K Sasikumar and Sanoop Gopi Krishna PHI publication (2009)
- 6. Solid waste management, Surendrakumar Northen Book Center (2009)
- 7. Soil pollution, S.G. Misra and Dinesh Mani, APH Publishing Corporation, (2009).
- 8. Soil Pollution: origin, monitoring and remediation, AbrahimMirsal, Springer (2010).
- 9. Noise Pollution, Donald F Anthrop, Lexington Books, (1973)

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 48 |

- 10. Noise Effects Handbook: A Desk Reference to Health and Welfare Effects of Noise (1981) Available at NCL laboratories e- Library.
- 11. Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality Edited by Nicolas Mazzeo, InTech Publications (2011).
- 12. Environmental Protection Against Radioactive Pollution: N. Birsen, Kairat K. Kadyrzhanov, Springer publication, (2003).
- 13. Handbook of chemical technology and pollution control 3 rd Edn Martin Hocking AP Publication (2005).
- 14. Fundamental Concepts of Environmental Chemistry, Second Edition G. S. Sodhi, Alpha Science, 2005
- 15. Chemical analysis of metals; Sampling and analysis of metal bearing ores: America Society for Testing and Materials 1980 Technology & Engineering
- Manual of Procedures for Chemical and Instrumental Analysis of Ores, Minerals, and Ore Dressing Products. Government of India Ministry of Steel & Mines, Indian Bureauof Mines, 1979.
- 17. Alloying: understanding the basics, edited by Joseph R. Davis, ASM International (2001).
- 18. Zone refining and allied techniques, Norman L. Parr, G. Newnes Technology & Engineering (1960).

Teaching Plan:				
Unit	Unit Title	Teaching Methods	No. of	
No.			Lectures	
Ι	Effluent Treatment	Lecture, PPT	15	
II	Solid Waste	Lecture, PPT	15	
	Management			
III	Other types of	Lecture, PPT	15	
	pollution			
IV	Metallurgy	Lecture, PPT	15	

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 49 |

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 40

Method	Marks
One Periodical Class Test / Written objectives / Assignments/ Short answer	30
Questions / Seminar to be conducted in the given semester	
Active participation in routine class instructional deliveries and overall	10
conduct as a responsible learner, mannerism and articulation and exhibit of	
leadership qualities in organizing related academic activities	

B) Semester End Examination: Maximum Marks: 60

Question No. and Sub questions (If any) (E.g. Q. 1 a)	Unit and sub unit (with number and title)	Type of Question (Essay / short note / Objective / Diagram, etc.)	Marks
Q.1	Unit I	Descriptive. short note etc.	12
Q.2	Unit II	Descriptive. short note etc.	12
Q.3	Unit III	Descriptive. short note etc.	12
Q.4	Unit IV	Descriptive. short note etc.	12
Q.5	All Units	short note / objective, etc.	12

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 50 |

Nomenclature of the	Pharmaceutical and organic analysis
Course	
Class	M.ScII
Semester	IV
Course Code	PSACH405
No. of Credits	04
Nature	Theory
Туре	Major Electives

At the end of the Course, the Learner will be able to:

- CO1: Categorize the different types of drugs and dosage forms.
- CO2: Outline the role of FDA in pharmaceutical industry.
- CO3: Make use of the different methods learned to estimate the amount of drug present in sample.
- CO4: Apply the concept of impurity profiling, stability studies, limit test, bioavailability and bioequivalence while insuring the uniformity in the standard of quality, efficacy and safety of pharmaceutical products.
- CO5: Elaborate the role of analytical chemistry in forensic science.
- CO6: Identify and Estimate amount of toxins found at crime scene.
- CO7: Evaluate the quality of cosmetic product by carrying out the analysis using the methods learned

Curriculum:

Curricu	Curriculum:			
Unit	Unit Title	Sub titles (Learning Points)		
No.				
Ι	Pharmaceutical Analysis	 1.1 General idea regarding the Pharmaceutical Industry, definition and classification of drugs, introduction to pharmaceutical formulations, Classification of dosage forms. Role of FDA in pharmaceutical industries. (7L) 1.2 Sources of impurities in pharmaceutical products and raw materials. (4L) 1.3 Standardization of finished products and their characteristics, official Methods of quality control. (4L) 		
II	Drugs	 2.1 Analysis of compounds based on functional groups, instrumental methods for analysis of drugs, assays involving chromatographic separations, proximate assays, assays of enzyme containing substances, Biological and microbiological assays and tests. (8L) 2.2 Limit tests, solubility tests, disintegration tests, stability studies, Impurity profile of drugs, bioequivalence and bioavailability studies. 		

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 51 |

r				
		Polymers in pharmaceuticals and novel drug delivery		
		systems. (7L)		
III	Forensic Science	3.1 Analytical Chemistry in Forensic Science: General idea.		
		(2L)		
		3.2 Forensic Analysis: Blood, DNA profiling, Hair analysis,		
		Alcohol in		
		body fluids, systematic drug identification. (5L)		
		3.3 Analytical Toxicology: Isolation, identification and		
		determination of:		
		3.3.1 Narcotics: Heroin, morphine and cocaine.		
		3.3.2 Stimulants: Amphetamines and caffeine.		
		3.3.3 Depressants: Benzodiazepines, Barbiturates and		
		Mandrax.		
		3.3.4 Hallucinogens: LSD and Cannabis.		
		3.3.5 Metabolites of drugs in blood and urine of addicts.		
		3.3.6 Viscera, stomach wash, vomit and postmortem blood for		
		poisons like - Cyanide, arsenic, mercury, insecticides and		
		pesticides. (8L)		
IV	Cosmetic Analysis	4.1 Cosmetics: Introduction. Evaluation of cosmetic		
		materials, raw		
		Materials and additives. Formulation, standards and methods		
		ofanalysis. (2L)		
		4.2 Deodorants and antiperspirants: Al, Zn, Boric acid,		
		chlorides, sulphates, hexachlorophene, methanamine,		
		phenolsulphonates and urea. (3L)		
		4.3 Face powder: Fats, fatty acids, boric acid, barium		
		sulphate, Ca, Mg, Ti, Fe, oxides of Ti, Fe and Al (total).(3L)		

- 1. Analytical Biochemistry, David J Holmes and Hazel Peck, Longman, 1983.
- 2. Bioanalytical Chemistry, Susan R Mikkelesen and Eduardo Cotton, John Wiley and Sons, 2004.
- 3. Analysis of food and beverages, George Charalanbous, Academic Press, 1978.
- 4. Harry's Cosmetology, 7th Ed, Longman Scientific Co.
- 5. Formulation and Function of Cosmetics, Joseph Stefan Jellinek, Wiley Interscience, 1971.
- 6. Cosmetic Technology, Edward Sagarin, Interscience Publishers, 1957.
- 7. Modern Cosmetics, Edgar George Thommsen, Francis Chilson, Drug and Cosmetic Industry, 1947.
- 8. Encyclopedia of Industrial Chemical Analysis, Foster Dee Snell et al, Interscience Publishers, 1967.
- 9. Government of India Publications of Food, Drug and Cosmetic Act and Rules.
- 10. The Handbook of Drug Laws, ML Mehra, University Book Agency, Ahmedabad, 1997.
- 11. Chemical Analysis of Drugs, Takeru Higuchi, Interscience Publishers, 1995.
- 12. Textbook of Pharmaceutical Analysis, Kenneth Antonio Connors, Wiley, 2001.
- 13. Food Processing and Preservation, B Sivasankar, Prentice-Hall of India Private Limited, 2007.
- 14. Food Additives, RMP Pandey and SK Upadhyay, INTECH, Open Science/Open Minds.

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 52 |

15. Food Science, B Srilakshmi, New Age International (P) Ltd. Publishers, 2003.

- 16. Food Contaminants: Sources and Surveillance, Edited by C Creaser, R Purchase, Elsevier, 1991.
- 17. The Chemical Analysis of Food and Food Products, Morris B Jacobs
- 18. FSSAI (Food Safety and Standards Authority of India) Manuals of Methods of Analysis of Foods (Oils and Fats, Milk and Milk Products, Food Additives), Ministry of Health and Family Welfare, Government of India.
- 19. Fundamentals of Urine and Body Fluid Analysis, Nancy A Brunzel, Elsevier Health Sciences, 2013.
- 20. Lab Manual on Blood Analysis and Medical Diagnostics, Dr Gayatri Prakash, S Chand and Company Ltd, New Delhi.
- 21. Manual of Medical Laboratory Techniques, S Rama Krishnan and K N Sulochana, Jaypee Brothers Medical Publishers (P) Ltd, 2012. 22) Indian Pharmacopeia, Volume I and II.
- 22. Forensic Chemistry, Suzanne Bell, Pearson Prentice Hall Publication, 2006.
- 23. Forensic Chemistry, David E Newton, Infobase Publishing, 2007.
- 24. Encyclopedia of Analytical Chemistry, Volume 3, Academic Press, 1995.
- 25. AOAC Volume I and II.

Teaching Plan:

Traching Than.			
Unit	Unit Title	Teaching Methods	No. of
No.			Lectures
			(in hrs)
Ι	Pharmaceutical Analysis	Lecture, PPT	15
II	Drugs	Lecture, PPT	15
III	Forensic Science	Lecture, PPT	15
IV	Cosmetic Analysis	Lecture, PPT	15

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 40

Method	Marks
One Periodical Class Test / Written objectives / Assignments/ Short answer Questions / Seminar to be conducted in the given semester	30
Active participation in routine class instructional deliveries and overall	10
conduct as a responsible learner, mannerism and articulation and exhibit of	
leadership qualities in organizing related academic activities	

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 53 |

B) Semester End Examination: Maximum Marks: 60

Question No. and Sub questions (If any) (E.g. Q. 1 a)	Unit and sub unit (with number and title)	Type of Question (Essay / short note / Objective / Diagram, etc.)	Marks
Q.1	Unit I	Descriptive. short note etc.	12
Q.2	Unit II	Descriptive. short note etc.	12
Q.3	Unit III	Descriptive. short note etc.	12
Q.4	Unit IV	Descriptive. short note etc.	12
Q.5	All Units	short note / objective, etc.	12

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 54 |

Nomenclature of the	Research Project
Course	
Class	M.ScII
Semester	IV
Course Code	PSACH406
No. of Credits	06
Nature	Project
Туре	Mandatory

Course Outcomes:

On successful completion of this course learners will be able to:

CO1: Identify the research problem and formulate objectives.

CO2: Understanding the current research on particular topic analyzing recent literature, identifying gaps or area for further study and finding new insights.

CO3: Choose appropriate methodology with proper tools and techniques.

CO4: Analyze and interpret the data collected from the performed experiments.

CO5: Make decision or find out conclusions on the basis of data analysis

CO6: Recall and list key research paradigms and methodologies in the subject.

CO7: Explain the principles of statistical analysis and their application in subject of research.

CO8: To develop skills such as problem solving approach, critical thinking, analytical reasoning, encourage team work, improve communication skills.

Curricu	10111.		
Unit	Unit Title	Sub titles (Learning Points)	
No.			
Ι	Research Project	After identifying problem for project work,	
	(180hrs) actual experimental work which invol-		
Analysis (qualitative and quantitati			
		separations, purification, characterization, etc	
		and preparing project report (a dissertation).	

References:

1. Previous Project Literature.

2. Internet.

3. Research Publications.

4. Project related references

Teachin	g Plan:	
TT •4		TT •4

Unit	Unit Title	Teaching Methods	No. of Lectures
	Deciding methodology and practical implementation of the Project	Discussion, Experimental work	

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 55 |

II	Data analysis (if any) and	Presentation and discussion	180 hrs
	conclusions, preparing project		
	report (a dissertation).		

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 60

Sr. No	Method	Marks
1	Lab performance	40
2	Presentation	20

B) Semester End Examination: Maximum Marks: 90

Sr. No	Criteria	Marks
1	Experimental/Theoretical methodology/Working condition of project	25
2	Significance of the study/Societal application and inclusion of recent	15
	References	
3	Depth of knowledge in the subject / Results and discussions	15
4	Project Report	15
5	Presentation	20

Project guidelines:

- 1. Every learner will have to complete one project within academic year.
- 2. Learners can take one long project or two short projects.
- 3.However, for one long project learners have to submit two separate project reports / dissertation consisting of the problem definition, literature survey and current status, objectives, methodology and some preliminary experimental work in Semester III for 4 credits and actual experimental work, results and analysis in semester IV with six credits.
- 4. The experimental project, related to advanced topic in chemistry/ interdisciplinary topic. industrial project, training in a research institute, training of handling a sophisticated equipment etc.
- 5.Maximum three learners can do a joint project. Each one of them will submit a separate project report with details.
- 6. In case a learner takes training in a research institute/training of handling sophisticate equipment, he/she should mention in a report what training he/she has got, which instruments he/she handled and their principle and operation etc.
- 7.Each project will be of 100 marks with 40% by continuous evaluation and 60% by semester end evaluation.
- 8. The project report should be file bound/spiral bound/hard bound.

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 56 |

Format of Project Report:

a) Title Page:

Mentioning the title of the report, name of the learner, program, institution, and the project.

b) Certificate of Completion:

A certificate issued by guide confirming the successful completion of the project.

c) Declaration:

A statement by the learner declaring that the report is the original work and acknowledging any assistance or references used.

d) Acknowledgments:

Recognizing individuals or organizations that provided support, guidance, or resources during the training/project.

e) Table of Contents:

Providing a clear outline of the report's sections and page numbers.

f) Abstract:

A bird's eye view of learner's entire presentation has to be precisely offered under this category. A brief overview of the project, its objectives and key findings should be mentioned.

g) Introduction:

Background information about the project and its significance. Objectives and scope of the project.

h) Literature Review:

Overview of relevant literature and studies related to the chosen field and development issues.

i) Methodology:

Description of: Planning of experimental procedure as per the need of the project. Designing and implementation of the project as per the objectives through theoretical, experimental or computational methods.

j) Observations and data analysis:

Details of Testing, debugging, troubleshooting as per the need. Data collection and analysis.

k) Conclusion:

Summary of the key findings and outcomes of the project.

l) References & Appendices:

List of all sources cited in the project report. Additional supporting materials.

The project report shall be prepared as per the broad guidelines given below:

- Font type: Times New Roman,
- Font size: 12-For content, 14-for Title
- Line Space: 1.5-for content and 1-for in table work, Justified format
- Page Size: A4
- Margin: in Left-1.5, Up-Down-Right-1
- The Project Report shall be hard bounded.

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 57 |

Title of the Project

A Project Submitted

То

R. P. Gogate college of Arts and Science and

R.V. Jogalekar College of Commerce College (Autonomous), Ratnagiri

Under

University of Mumbai

For partial completion of the degree

Of

Master in Science

(Analytical Chemistry)

Under the Faculty of Science

By

Name of Student

Under the Guidance of

Name of the Guiding Teacher

R. P. Gogate college of Arts and Science and

R.V. Jogalekar College of Commerce College (Autonomous) Ratnagiri

Month and Year

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 58 |

On separate page

Index

Sr No	Title	Page No.
01		
02		
03		
04		
05		

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 59 |

DECLARATION BY LEARNER

I the undersigned Miss/Mr. ______ [Name of the learner] here by, declare that work embodied in this project work titled ________forms my own contribution to the research work carried out under the guidance of [Name of the guiding teacher]_______is a result of my own research work and has not been previously submitted to any other University for any other Degree/ Diploma to this or any other University.

Wherever reference has been made to previous works of others, it has been clearly indicated as such and included in the bibliography.

I, here by further declare that all information of this document has been obtained and presented in accordance with academic rules and ethical conduct.

Name and Signature of the learner

Certified by

Name and signature of the Guiding Teacher

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 60 |

On separate page

Acknowledgment (To be written by learner) (Model structure of the acknowledgement)

To list who all have helped me is difficult because they are so numerous and the depth is so enormous.

I would like to acknowledge the following as being idealistic channels and fresh dimensions in the completion of this project.

I thank the R.P Gogate College of Arts and Science and R.V. Jogalekar College of Commerce, Ratnagiri (Autonomous) and University of Mumbai for giving me opportunity to do this project.

I would like to thank my Principal,______for providing thenecessary facilities required for completion of this project.

I take this opportunity to thank our HOD_____, for his moral support and guidance

I would also like to express my sincere gratitude towards my project guide for valuable guidance.

I would like to thank my College Library, for having provided various reference books and magazines related to my project.

Lastly, I would like to thank each and every person who directly or indirectly helped me in the completion of the project especially my Parents and Peers who supported me throughout my project.

Signature of Guide

Signature of Learner

Date: 30/06/2029 Place: Ratnagiri

Chairperson BOS HOD

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 61 |

R. P. Gogate College of Arts & Science and

R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 61 |