

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 1 | Page

Name of Programme	B. Sc. Biotechnology
Level	UG
No. of Semesters	06
Year of Implementation	2023-24
Programme Specific	At the end of the Programme, Learner will be able -
Outcomes (PSO)	1. To impart hands on skills in preparation of buffers and
	solutions.
	2. To impart skills in handling the cultures of micro – organisms.
	3. To impart the knowledge of molecular biology techniques.
	4. To impart the skills of Science communication.
	5. To impart knowledge of society and make students aware
	about the Problems in society.
	6. To understand basic principles of research methodology and
	identify a research problem.
	7. To gain critical thinking and analytical skills to understand
	new diagnostic methods.
	8. To design strategies for successful implementation of ideas.
Relevance of PSOs to	Biotechnology is important at Global, National, Regional and
the local, regional,	local level. The significance of Biotechnology identified at all
national, and global	these levels and it is relevant to everyday life. The curriculum
developmental needs	design of B. Sc. Biotechnology programme helps in
	understanding various concepts in detail. This programme
	includes new emerging technologies and their applications. This
	also involves the actual working and mechanism required in industries. The application part is taken care of so that the learner
	shall be able to connect the phenomena around him with the
	curriculum. This programme also imparts the research values
	among the learners. The hard and softs skills acquired during the
	completion of this programme shall make him employable.
	completion of this programme shan make min employable.

The performance of the learners shall be evaluated into two parts. The learner's performance shall be assessed by Internal Assessment with 40 % marks in the first part and by conducting the Semester End Examinations of 60 % marks in the second part.

Standard of Passing

The learner to pass a course shall have to obtain a minimum of 40% marks in aggregate for each course where the course consists of Internal Assessment & Semester End Examination. The learner shall obtain minimum of 40% marks (i. e. 8 out of 20) in the Internal Assessment and 40% marks in Semester End Examination (i. e. 12 out of 30) separately, to pass the course and minimum of Letter Grade "P" in the project component, wherever applicable to pass a particular semester. A learner will be said to have passed the course if the learner passes the Internal Assessment and Semester End Examination together.

Semester GPA/ Program CGPA Semester/Program	% of Marks	Alpha-Sign / Letter Grade Result
9.00-10.00	90.0 -100	0 (Outstanding)
8.00 ≤ 9.00	80.0 ≤ 90.0	A+ (Excellent)
$7.00 \le 8.00$	$70.0 \le 80.0$	A (Very Good)
$6.00 \le 7.00$	$60.0 \le 70.0$	B+ (Good)
$5.50 \le 6.00$	$55.0 \le 60.0$	B (Above Average)
5.00 ≤ 5.50	50.0 ≤ 55.0	C (Average)
$4.00 \le 5.00$	$40.0 \le 50.0$	P (Pass)
Below 4.00	Below 40	F (Fail)
Ab (Absent)	-	Absent

Performance Grading:

Letter Grades and Grade Points

Bachelor of Science (B.Sc.) in Biotechnology Programme Under Choice Based Credit System (CBCS) Course Structure

F. Y. Biotechnology

(To be implemented from Academic Year 2023-24)

Course Code	Semester I	Credits	Course Code	Semester II	Credits
	Discipline Specific Course (DSC)			Discipline Specific Course (DSC)	
	Major			Major	
USBT101	Fundamentals of Biotechnology	02	USBT201	Cell Biology and Microbiology	02
USBT102	Introduction to Microbiology	02	USBT202	Biochemistry – Concept of Biomolecules	02
USBT103	Biotechnology Practical I	02	USBT203	Biotechnology Practical II	02
	Minor			Minor	
USBT104	Basic Chemistry – I	02	USBT204	Basic Chemistry - III	02
USBT105	Basic Chemistry – II	1 + 1	USBT205	Basic Chemistry - IV	02
			USBT206	Basic Chemistry Practical	02
	Indian Knowledge System(IK	S)			
USBT106	Traditional Biotechnology	02			
	Skill Enhancement Course (S	SEC)		Skill Enhancement Course (SEC)
USBT107	Biostatistics	02	USBT207	Bio-analytical Techniques	1 + 1
	Ability Enhancement Course (AEC)			Ability Enhancement Course	(AEC)
USBT108	English: Communication Skills – I	02	USBT208	English: Communication Skills – II	02
	Value Education Course (VEC	,		Value Education Course (VE	
USBT109	Environmental Education - I	02	USBT209	Environmental Education - II	02

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 4 | Page SMART Criteria for Course Outcomes:

Specific: Each course outcome is specific, outlining the knowledge and skills students are expected to acquire in relation to the specific topics covered.

Measurable: Each outcome can be measured through assessments, tests, or projects to determine the level of understanding and proficiency achieved by the students.

Achievable: The outcomes are achievable within the duration of the course, considering the number of lectures allocated to each topic.

Relevant: The outcomes are relevant to the subject of financial services and capital market, addressing important concepts, types, and mechanisms involved.

Time-bound: The outcomes are expected to be achieved by the end of the course, providing a clear timeline for assessment and evaluation.

Name of the Course	Fundamentals of Biotechnology
Course Code	USBT101
Class	F. Y. B. Sc.
Semester	Ι
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective (Major I)

Course Outcomes:

By the end of the course, the student will be able to:

- CO1 Be able to relate to applications and benefits of Biotechnology in the fields of agriculture, livestock, human health and environment.
- CO2 Discuss the basics of fermentation.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
I	Applications of Biotechnology	Applications of biotechnology: - Agriculture: GM fruits- GM papaya, GM tomato, Insect resistant transgenic plants – Bt cotton, Bt brinjal, Modifications in nutrient quality – starch, oilseed protein, golden rice Livestock: Growth, disease resistance, product quality, pharmaceuticals and	15
		nutritional supplements, industrial applications	
		Human welfare: Cloned genes for production of - Insulin; recombinant vaccine for Hepatitis B virus. Molecular farming, Edible vaccines and their advantages Environment- Pollution abatement through GMOs Bioethics Case study:	
		Genetically modified microbes	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 6 | Page

		for bioremediation of oil spills in	
		marine environment	
TT			1.7
II	Fermentation	Introduction to fermentation	15
	technology	processes:	
		Microbial biomass, Microbial	
		enzymes, Microbial metabolites,	
		recombinant products,	
		transformation processes.	
		Development of fermentation	
		Industry	
		Component parts of fermentation	
		process Screening:	
		Definition, Primary screening and	
		its methods, Secondary screening	
		and its methods	
		Fermenter design:	
		Definition of a fermenter, aerated	
		stirred tank batch fermenter-Typical	
		design, Construction materials used,	
		aeration and agitation	
		Basic introduction to process	
		parameters:	
		Temperature control, Foam	
		production and control pH	
		measurement and control, CO_2 and	
		O_2 control	
		Fermentation medium:	
		Basic requirements of industrial	
		media, Criteria for use of raw	
		materials in media, Examples of raw	
		materials used, Growth factors,	
		Water, Carbohydrate sources, Protein sources	
		Product: A typical process of	
		Ethanol production and	
		Antibiotic production and	
		Anumouc production	

- 1. Dubey, R. C. (1993). A textbook of Biotechnology. S. Chand Publishing.
- 2. Dubey, R. C. (2014). Advanced biotechnology. S. Chand Publishing.
- 3. Singh, B. D., & Singh, B. D. (2007). Biotechnology expanding horizons. Kalyani publishers.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 7 | Page

- 4. Stanbury, P. F., Whitaker, A., & Hall, S. J. (2013). Principles of fermentation technology. Elsevier.
- 5. Casida, L. E. (1968). Industrial microbiology. Industrial microbiology.
- Okafor, N., & Okeke, B. C. (2017). Modern industrial microbiology and biotechnology. CRC Press.

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test	15
Overall performance	05

Question No.	Unit	Marks
1	Ι	A) Long Answer Question. (Any 01) 06 MB) Do as directed. (Any 04) 04 M
2	II	A) Long Answer Question. (Any 01) 06 MB) Do as directed. (Any 04) 04 M
3	Both Units	Short Notes (Any 02) 10 M

Name of the Course	Introduction of Microbiology
Course Code	USBT102
Class	F. Y. B. Sc.
Semester	Ι
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective (Major II)

Course Outcomes:

CO1 – To understand the role of sterilization and disinfection in the field of Microbiology.

CO2 – To develop skills towards use of microscopy and staining techniques.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
I	Sterilization and Isolation techniques	Introduction:Definition and concept ofSterilization and Disinfection.Types and Applications:Dry Heat, Steam under pressureGases, Radiation and FiltrationChemical Agents and their Modeof Action:Aldehydes, Halogens, QuaternaryAmmonium Compounds, Phenoland Phenolic Compounds, HeavyMetals, Alcohol, Dyes, andDetergents.Disinfectant:Ideal Disinfectant.Examples ofDisinfectantNutrition, Cultivation andMaintenance of microorganisms:Nutritional categories ofmicroorganisms, Design and Typesof Culture Media, methods ofisolation.	15

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 9 | Page

П	Microscopy and stains	Simple and Compound Microscope: General principles of optics; various parts and their functions - objectives – numerical aperture, resolving power, depth of focus, working distance, aberrations; oculars; condensers. Dark Field Microscope; Phase Contrast Microscope and Fluorescent Microscope, TEM, SEM Applications of microscopes Stains and Staining Solutions- Definition of Dye and Chromogen; acidic and basic dyes; functions and types of chromophore and auxochrome groups. Theories to explain staining. Definition and function of stain; mordant, intensifiers and fixative. Natural and Synthetic Dyes.	15
		Natural and Synthetic Dyes. Simple Staining, Differential Staining – Gram staining and Acid Fast Staining with specific examples	

- 1. Prescott, L. M. (2002). Microbiology 5th Edition.
- 2. Pelczar, Microbiology. (1993). India: McGraw-Hill Education.
- 3. Ananthanarayan, R., Paniker, C. J. (2006). Ananthanarayan and Paniker's Textbook of Microbiology. India: Orient Longman.
- 4. Salle, A. J., & Salle, A. J. (1954). Fundamental principles of bacteriology McGraw-Hill.
- 5. Frobisher M. Fundamentals of Microbiology (9th Ed)

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test	15
Overall performance	05

Question No.	Unit	Marks
1	I	A) Long Answer Question. (Any 01) 06 MB) Do as directed. (Any 04) 04 M
2	II	A) Long Answer Question. (Any 01) 06 MB) Do as directed. (Any 04) 04 M
3	Both Units	Short Notes (Any 02) 10 M

Name of the Course	Biotechnology Practical I
Course Code	USBT103
Class	F. Y. B. Sc.
Semester	Ι
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 – To impart knowledge and hands on experience of the various practicals related to fundamentals of Biotechnology and introduction to Microbiology.

Curriculum:

Title	Learning Points	No. of Lectures
Regular	1. Analyze a case-study and write a report on any one recent	60
Practicals	application of Biotechnology (Not older than past 5 years)	
	2. Study of Microscopes – Compound Microscope (Including	
	Handling and storage), Dark Field Microscope, Phase	
	Contrast Microscope, Fluorescent Microscope. (Including	
	ray diagrams)	
	3. Monochrome staining using any suitable material.	
	(Bacteria/Plant/Animal tissue)4. Differential staining – Gram staining, Acid fast staining,	
	Romanowsky staining.	
	5. Special staining – cell wall, capsule.	
	6. Special staining – Spores, negative staining.	
	7. Fungal staining – wet mount (Lactophenol cotton blue/Methylene Blue)	
	8. Preparation of media- Nutrient broth and Agar, MacConkey Agar, Sabouraud's Agar	
	9. Sterilization of Laboratory Glassware and Media using Autoclave and Hot air oven	
	10. Isolation techniques: T-streak, polygon method	
	11. Colony Characteristics of Microorganisms.	
	12. Use of Bergey's manual to help identify any one isolate	
	13. Isolation of Yeasts from natural environment.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 12 | Page

 14. Study of morphology and colony characteristics of yeasts 15. Isolation and enumeration of microorganisms – Serial dilution, surface spread method 	
16. Isolation and enumeration of microorganisms – Serial dilution, pour plate method	
17. Screening of antibiotic producers from soil by Crowded plate method.	
18. Screening of antibiotic producers from soil by Wilkins Overlay method.	
19. Study of mitosis from suitable plant material/ Permanent slides/Photographs	
20. Study of meiosis from suitable plant material/ Permanent slides/Photographs	

- 1. Dubey, R. C. (2014). Advanced biotechnology. S. Chand Publishing.
- 2. Singh, B. D., & Singh, B. D. (2007). Biotechnology expanding horizons. Kalyani publishers.
- 3. Okafor, N., & Okeke, B. C. (2017). Modern industrial microbiology and biotechnology. CRC Press.
- 4. Prescott, L. M. (2002). Microbiology 5th Edition.
- 5. Pelczar, Microbiology. (1993). India: McGraw-Hill Education.
- 6. Ananthanarayan, R., Paniker, C. J. (2006). Ananthanarayan and Paniker's Textbook of Microbiology. India: Orient Longman

Evaluation Pattern

	No of	Duration	Total Marks	CIE	Total
	Experiments				
Biotechnology	2	03 hrs	30 M (01	20 M	50
Practical I	experiments		Paper)	(05 M for	
	of 1.5 hrs		(01 Major and	Journal, 10 M	
	duration		01 Minor	for viva, 05 M	
			Experiment)	for overall	
	(01 Paper)			performance)	

Name of the Course	Basic Chemistry – I
Course Code	USBT104
Class	F. Y. B. Sc.
Semester	Ι
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective (Minor I)

Course Outcomes:

CO1 – To develop an understanding of chemical bonds.

CO2 - To be able to differentiate between chiral and achiral molecules and different enantiomers.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Nomenclature and chemical bonds	ClassificationandSystematicNomenclatureoforganiccompounds (few examples)	15
		Chemical Bonds:	
		Types and transition between the main types of bonding.	
		Ionic Bond:	
		Nature of Ionic Bond, factors	
		influencing the formation of Ionic	
		Bond. Structure of NaCl and CsCl.	
		Covalent Bond:	
		Nature of Covalent Bond, Types of	
		covalent bond (Polar and	
		Coordinate covalent bonds).	
		Structure of CH ₄ , NH ₃ , H ₂ O, Shapes	
		of BeCl ₂ , BF ₃ .	
		Hydrogen Bond: Theory of Hydrogen Bonding and	
		Theory of Hydrogen Bonding and	
		Types of Hydrogen Bonding (with examples of RCOOH, ROH,	
		Salicylaldehyde, Amides and	
		Polyamides).	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 14 | Page

Π	Stereochemistry	Isomerism:	15
		Types of Isomerism:	
		Constitutional Isomerism (Chain,	
		Position and Functional) and	
		Stereoisomerism, Chirality.	
		Geometric Isomerism and Optical	
		Isomerism:	
		Enantiomers, Diastereomers, and	
		Racemic mixtures Cis-Trans,	
		Threo, Erythro and Meso isomers.	
		Diastereomerism (Cis - Trans	
		Isomerism) in Alkenes and	
		Cycloalkanes (3 and 4 membered	
		ring)	
		Conformation:	
		Conformations of Ethane.	
		Difference between Configuration	
		and Conformation.	
		Configuration:	
		Asymmetric Carbon Atom,	
		Stereogenic/ Chiral Centers,	
		Chirality Representation of	
		Configuration by —Flying Wedge	
		Formula	
		Projection formulae:	
		Fischer, Newman and Sawhorse.	
		The Interconversion of the	
		Formulae.	

- 1. Bahl, B. S., & Bahl, A. (2017). A textbook of organic chemistry. S. Chand Publishing.
- 2. Lee, J. D. (2008). Concise inorganic chemistry. John Wiley & Sons.
- 3. Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (2013). Fundamentals of analytical chemistry. Cengage learning.
- 4. Vogel, A. I., & Jeffery, G. H. (1989). Vogel's textbook of quantitative chemical analysis. Wiley.
- 5. Mosher, M. (1992). Organic Chemistry. (Morrison, Robert Thornton; Boyd, Robert Neilson).

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 15 | Page

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test	15
Overall performance	05

Question No.	Unit	Marks
1	Ι	A) Long Answer Question. (Any 01) 06 MB) Do as directed. (Any 04) 04 M
2	II	A) Long Answer Question. (Any 01) 06 MB) Do as directed. (Any 04) 04 M
3	Both Units	Short Notes (Any 02) 10 M

Name of the Course	Basic Chemistry – II
Course Code	USBT105
Class	F. Y. B. Sc.
Semester	Ι
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective (Minor II)

Course Outcomes:

- CO1 To develop skills towards use of titrimetric and gravimetric analysis.
- CO2 To impart knowledge and hands on experience of the various practicals related to titrimetric and Gravimetry.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Titrimetric and	Titrimetric Analysis:	15
	Gravimetry	Titration, Titrant, Titrand, End Point,	
		Equivalence Point, Titration Error, Indicator,	
		Primary and Secondary Standards,	
		Characteristics and examples.	
		Types of Titrations – Acid –Base, Redox.	
		Precipitation, Complexometric Titration.	
		Acid – Base Titration - Strong Acid Vs Strong	
		Base. Theoretical aspects of Titration Curve	
		and End Point Evaluation.	
		Theory of Acid –Base Indicators, Choice and	
		Suitability of Indicators.	
		Gravimetric Analysis:	
		Solubility and Precipitation, Factors affecting	
		Solubility, Nucleation, Particle Size, Crystal	
		Growth, Colloidal State, Ageing/Digestion of	
		Precipitate.	
		Co-Precipitation and Post-Precipitation.	
		Washing, Drying and Ignition of Precipitate.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 17 | Page

Π	Regular Practicals	1. Preparation of Normal, Molar, Molal, Percent solution	45
		 Determination of strength of HCl in commercial sample 	
		3. To standardize commercial sample of NaOH using potassium hydrogen phthalate	
		(KHP).	
		4. To standardize commercial sample of HCl using borax.	
		5. Determination of Acetic acid in Vinegar by Titrimetric Method.	
		6. Determination of the amount of Mg (II) present in the given solution complexometrically.	
		7. Determination of the amount of Fe (II) present in the given solution titrimetrically.	
		8. Determination of amount of NaHCO ₃ +	
		titrimetrically.	
		9. Study transfer of electrons (Titration of sodium thiosulphate with potassium diabrameta)	
		dichromate) 10. Determination of the volume strength of	
		hydrogen peroxide solution by titration with standardized potassium permanganate solution	
		11. Determination of amount of K oxalate	
		and oxalic acid in the given solution titrimetrically	
		12. Determination of percent composition of BaSO ₄ and NH ₄ Cl in the given mixture Gravimetrically.	
		13. Characterization of organic compounds containing only C, H, O elements (no element test) – compounds belonging to the classes – Carboxylic acid, phenol, aldehyde/ketone, ester, alcohol, hydrocarbon.	
		14. Characterization of organic compounds containing only C, H, O, N, S, Halogen elements (element tests to be done) –	
		Compounds belonging to the classes – Amine, Amide, Nitro compounds, Thiamide,	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 18 | Page

Haloalkane, Haloarene.					
	Qualitative pounds.	analysis	of	Inorganic	

- 1. Bahl, B. S., & Bahl, A. (2017). A textbook of organic chemistry. S. Chand Publishing.
- 2. Vogel, A. I., & Jeffery, G. H. (1989). Vogel's textbook of quantitative chemical analysis. Wiley.
- 3. Patel H. N., Turakhia S. P., Puniyani S. R. (2018). F. Y. B. Sc. College Practical Chemistry for Biotechnology, Himalaya Publishing House.

Evaluation Pattern

	No of	Duration	Total Marks	CIE	Total
	Experiments				
Basic	2	03 hrs	30 M (01	20 M	50
Chemistry –	experiments		Paper)	(15 M for	
II	of 1.5 hrs		(02 Major	Class Test, 05	
	duration		Experiments)	M for Journal)	
			_		
	(01 Paper)				

Name of the Course	Traditional Biotechnology
Course Code	USBT106
Class	F. Y. B. Sc.
Semester	Ι
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective (IKS)

Course Outcomes:

- CO1 To impart the knowledge and history of traditional Biotechnology.
- CO2 To explore the research institutes related to Biotechnology in India.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	History of Biotechnology	What is Biotechnology?	15
	Biotechnology	History and Introduction to Biotechnology;	
		Scope and importance of biotechnology;	
		Role of microorganisms in fermentation	
		World of Biotechnology-	
		Pharmaceutical Biotechnology, Plant	
		Biotechnology, Industrial Biotechnology,	
		Marine Biotechnology, Animal	
		Biotechnology, Medical Biotechnology,	
		Environmental Biotechnology.	
		Potential of Biotechnology-	
		Achievement of biotechnology; Prevention	
		of misuse of biotechnology.	
II	Biotechnology in	Biotechnology Institutions in India (Public	15
	India	and Private Sector); Public Perception of	
		Biotechnology.	
		Biotechnology in India –	
		ICGEB, Needs for future development,	
		Global scenario, Potential and achievements	
		of Biotechnology.	
		Bio-business in India, booming biotech	
		market, success story of biotech market,	
		policy initiatives and global trends;	
		Biotechnology research in India.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 20 | Page

Case study: Serum Institute of India and	
its products	
Case study: Any five Biotechnology	
institutions in India and its products.	

- 1. A Textbook of Biotechnology by R. C. Dubey, S. Chand Publishing.
- 2. Advanced Biotechnology by R. C. Dubey, S. Chand Publishing

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test	15
Overall performance	05

Question No.	Unit	Marks
1	Ι	A) Long Answer Question. (Any 01) 06 M
		B) Do as directed. (Any 04) 04 M
2	II	A) Long Answer Question. (Any 01) 06 M
		B) Do as directed. (Any 04) 04 M
3	Both Units	Short Notes (Any 02) 10 M

Name of the Course	Skill Enhancement Course - Biostatistics
Course Code	USBT107
Class	F. Y. B. Sc.
Semester	Ι
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective (SEC)

Course Outcomes:

By the end of the course, the learner will be able to:

CO1 - Gain insights about the use of statistics in the field of Biotechnology.

CO2 – Apply the various statistical tools for analysis of biological data.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
I	Data visualization, sampling strategies and Descriptive statistics	Introduction to Biostatistics: Definition and Importance of Statistics in Biology Variables, Types of variables (Quantitative and Qualitative) Types of Data and data visualization:	15
		Concept of Data, Sources of data, Types of data (Quantitative and Qualitative), Representation of Data and Graphs (Bar Diagrams, Pie Charts and Frequency distribution, Histogram, Polygon and Curve)	
		Sampling strategies: Population and Sample, Significance of using samples, Sample size, Random variation, Sampling techniques (Simple random sampling, Systematic sampling, Stratified sampling) Decomining statistics	
		Descriptive statistics: Measures of central tendency:	
		Mean, Mode, Median (Ungrouped	
		& Grouped data)	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 22 | Page

		Measures of dispersion:	
		Range, Variance, Standard deviation	
		(Ungrouped & Grouped data),	
		Coefficient of variation	
		Normal/Gaussian distribution,	
		Standard normal deviate,	
		Sampling variation, Standard	
		error of mean	
II	Parametric and Non –	Theory and Problems based on –	15
	parametric tests	Coefficient of Correlation and	
		Regression analysis; Steps in testing	
		statistical hypothesis	
		Parametric tests: Z test, Single	
		mean and two means, t-Test – Single	
		mean, paired and unpaired.	
		Non-parametric test: Chi-square	
		test.	

- 1. Khanal, A. B. (2015). Mahajan's Methods in Biostatistics For Medical Students and Research Workers. India: Jaypee Brothers, Medical Publishers Pvt. Limited.
- 2. Cross, C. L., Daniel, W. W. (2018). Biostatistics: A Foundation for Analysis in the Health Sciences. United Kingdom: Wiley.
- 3. Arora, P. N., Malhan, P. K. (2009). Biostatistics. India: Himalaya Publishing House.

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test	15
Overall performance	05

B. Semester End Evaluation (Paper Pattern)

Question No.	Unit	Marks
1	Ι	A) Long Answer Question. (Any 01) 06 M
		B) Do as directed. (Any 04) 04 M
2	II	A) Long Answer Question. (Any 01) 06 M
		B) Do as directed. (Any 04) 04 M
3	Both Units	Short Notes (Any 02) 10 M

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 23 | Page

Name of the Course	Ability Enhancement Course - English: Communication Skills - I
Course Code	USBT108
Class	F. Y. B. Sc.
Semester	Ι
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

By the end of the course, the learner will be able to:

CO1 - Develop an understanding of communication skills required to excel in real work environment and corporate life.

CO2 - Gain insight into technical and non-technical qualities in career planning.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
I	Academic Skills	Examing FondsEssentials of Grammar: Parts of speech, Articles, Modals, Sentences and their types., Punctuation marksEmployment Communication: Introduction, Resume, Curriculum Vitae, Scannable Resume, Developing an Impressive Resume, Formats of Resume, Job Application or Cover Letter. Email WritingProfessional Presentation: Nature of Oral Presentation, planning aPresentation, Preparing the Presentation, Delivering the Presentation	15
		Job Interviews: Introduction, Importance of Resume, Definition of Interview, Background Information, Types of Interviews, Preparatory Steps for Job Interviews, Interview Skill Tips,	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 24 | Page

			l1
		Changes in the Interview Process, FAQ During Interviews	
		Group Discussion: Introduction,	
		Ambience/Seating Arrangement for Group Discussion, Importance of	
		Group Discussion, Importance of Group Discussions, Difference	
		-	
		between Group Discussion, Panel Discussion and Debate, Traits,	
		Types of Group Discussions, topic	
		based and Case based Group	
		Discussion, Individual Traits	
II	Soft Skills		15
		Introduction to Soft Skills and Hard Skills	
		PersonalityDevelopment:KnowingYourself,Positive	
		Thinking, Johari's Window,	
		Communication Skills, Non-verbal	
		Communication Skins, Tkon-verbar Communication, Physical Fitness	
		Emotional Intelligence : Meaning	
		and Definition, Need for Emotional	
		Intelligence, Intelligence Quotient	
		versus Emotional Intelligence	
		Quotient, Components of	
		Emotional Intelligence,	
		Competencies of Emotional	
		Intelligence, Skills to Develop	
		EmotionalIntelligence	
		Etiquette and Mannerism:	
		Introduction, Professional	
		Etiquette, Technology Etiquette	
		Communication Today:	
		Significance of Communication,	
		GSC's 3M Model of	
		Communication, Vitality of the	
		Communication Process, Virtues of	
		Listening, Fundamentals of Good	
		Listening, Nature of Non-Verbal Communication, Need for	
		Communication, Need for Intercultural Communication,	
		Communicating Digital World	
	1	Communicating Digital world	

- 1. Kumar, Sanjay, and Lata, Pushp. Communication Skills, Second Edition. India, Oxford University Press, 2015.
- 2. Chauhan, G. S., Sharma, S. (2016). Soft Skills: An Integrated Approach to Maximize Personality. India: Wiley.
- 3. Mitra, B. K. (2011). Personality development and soft skills (Vol. 156). Oxford University Press.

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test	15
Overall performance	05

Question No.	Unit	Marks
1	Ι	A) Long Answer Question. (Any 01) 06 M
		B) Do as directed. (Any 04) 04 M
2	II	A) Long Answer Question. (Any 01) 06 M
		B) Do as directed. (Any 04) 04 M
3	Both Units	Short Notes (Any 02) 10 M

Name of the Course	Value Education Course – Environmental Education - I
Course Code	USBT109
Class	F. Y. B. Sc.
Semester	Ι
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

- CO1 To develop an understanding of the structure and functioning of the ecosystems.
- CO2 To gain insights about the concept of pollution, climate change and sustainable development.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Ecology and interactions	Concept of Ecosystems:	15
		Definition and Components-	
		Structure and function of ecosystem	
		aspects of ecosystems	
		Food Chain and Food Web,	
		Ecological Pyramids (Energy,	
		Biomass and Number)	
		Aquatic and Terrestrial Ecosystems,	
		Different Abiotic Factors of	
		ecosystem and adaptations to	
		different abiotic factors	
		Ecological Interactions:	
		Commensalism, Mutualism,	
		Predation and Antibiosis, Parasitism,	
		competition	
		Biodiversity and its conservation:	
		Introduction – definition: genetic,	
		species, ecosystem diversity,	
		biogeographic classification of	
		India, value of biodiversity,	
		biodiversity at global, national and	
		local levels, India as a mega	
		diversity nation, Hotspots of	
		biodiversity, threats to biodiversity,	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 27 | Page

		conservation of biodiversity	
Π	Pollution and climate change	Environmental Pollution: Definition, Cause, effects and control measures of- Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution, nuclear hazards. Role of an individual in prevention of pollution. Pollution case studies. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Sustainable development: Concept, basic principles of sustainable development, post- Brundtland world, roots of sustainability, Indicators, paradigm towards new discipline- sustainability science.	15

- 1. Verma, V. (2010). Botany. India: Ane Books Pvt Ltd.
- 2. Bharucha, E. (2005). Textbook of Environmental Studies for Undergraduate Courses. India: Universities Press (India) Pvt. Limited.
- 3. Verma, P. S. (2004). Cell Biology, Genetics, Molecular Biology: Evolution and Ecology. India: S. Chand Limited.
- 4. Khoiyangbam, R. S. (2015). Introduction to Environmental Sciences. India: Energy and Resources Institute.
- 5. Fulekar, M. H. (2010). Environmental Biotechnology. United Kingdom: CRC Press.
- 6. Scragg, A. H. (2004). Environmental University Press.

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test	15
Overall performance	05

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 28 | Page

Question No.	Unit	Marks
1	Ι	A) Long Answer Question. (Any 01) 06 M
		B) Do as directed. (Any 04) 04 M
2	II	A) Long Answer Question. (Any 01) 06 M
		B) Do as directed. (Any 04) 04 M
3	Both Units	Short Notes (Any 02) 10 M

B. Semester End Evaluation (Paper Pattern)

Name of the Course	Cell Biology and Microbiology
Course Code	USBT201
Class	F. Y. B. Sc.
Semester	Π
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective (Major I)

Course Outcomes:

- CO1 To discuss the ultrastructure, function and location of organelles in prokaryotic and eukaryotic cells.
- CO2 To gain insight into the basics of virology.

Curriculum:

Unit	Title	Learning Points	No. of
I	Ultrastructure of prokaryotic and eukaryotic cell	 Ultrastructure of Prokaryotic Cell: Concept of Cell shape, size and arrangement Bacterial structures external to cell wall: Flagella, Pilli, Fimbriae, Capsule, Slime Layer, Sheath Cell Wall (Gram Positive and Negative) Structures internal to cell wall: Cell Membrane, nucleoid, Cytoplasm and cytoplasmic inclusion bodies and vacuoles, Genetic Material spores and cysts Ultrastructure of Eukaryotic Cell: Cell wall; Plasma membrane, Cytoplasmic Matrix, Nucleus –Nuclear Structure, nuclear envelope, nucleoplasmic inclusions, cytoplasmic organelles - cytoplasmic Reticulum; Golgi Apparatus; Mitochondria; Chloroplasts; Ribosomes; Lysosome Endocytosis, Phagocytosis, Autophagy; Peroxisomes. External Cell Coverings: Cilia and Flagella Comparison of Prokaryotic and Eukaryotic Cells 	Lectures 15

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 30 | Page

Π	Virology	Introduction to virology: Historical perspective, General Characteristics of Viruses: Host Range Viral Structure - Nucleic Acid, Capsid and Envelope General Morphology- Helical, Polyhedral, Enveloped, Complex. Taxonomy of Viruses Viral Multiplication: Multiplication of Bacteriophages and Animal Viruses	15
		Isolation, Cultivation, and Identification of Viruses: Growing Bacteriophages and animal viruses in the Laboratory, Viral Identification Case studies- TMV, Influenza COVID-19 (Self learning)	

- 1. Pelczar, Microbiology. (1993). India: McGraw-Hill Education.
- 2. Verma, P. S., & Agarwal, V. K. (2004). Cell Biology, Genetics, Molecular Biology, Evolution and Ecology: Evolution and Ecology. S. Chand Publishing.
- 3. Dubey, R. C. (2014). Advanced biotechnology. S. Chand Publishing
- 4. Cooper, G. M., Hausman, R. E., & Hausman, R. E. (2007). The cell: a molecular approach (Vol. 4). Washington, DC: ASM press.
- 5. Stanier, R. Y. (1987). General Microbiology. Hong Kong: Macmillan.
- 6. Funke, B. R., Case, C. L., Tortora, G. J. (2013). Microbiology: An Introduction. United Kingdom: Pearson.
- 7. Woolverton, C. J., Sherwood, L., Willey, J. (2014). Prescott's Microbiology. India: McGraw-Hill Education

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test	15
Overall performance	05

Question No.	Unit	Marks
1	Ι	A) Long Answer Question. (Any 01) 06 MB) Do as directed. (Any 04) 04 M
2	II	A) Long Answer Question. (Any 01) 06 MB) Do as directed. (Any 04) 04 M
3	Both Units	Short Notes (Any 02) 10 M

Name of the Course	Biochemistry – Concept of Biomolecules
Course Code	USBT202
Class	F. Y. B. Sc.
Semester	II
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective (Major II)

Course Outcomes:

CO1 – To discuss the basics of carbohydrate and lipid biochemistry.

CO2 - To learn about fundamental structures and functions of amino acids and proteins.

Curriculum:

Unit	Title	Learning Points	No. of
			Lectures
Ι	Basics of	Classification of carbohydrates:	15
	carbohydrate and	Monosaccharides:	
	lipid chemistry	Two Families of Monosaccharides. Aldo series and keto	
		series; (Triose - Glyceraldehyde and Dihydroxyacetone,	
		Tetrose- Erythrose and Erythrulose, Pentose- Xylose,	
		Xylulose, Ribose, Ribulose, Hexose- Glucose, Galactose,	
		Mannose, Heptose- sedoheptose and Sedoheptulose	
		(structures to be taught) Concept of Enantiomers,	
		Mutarotation, Anomeric carbon and Epimers of glucose.	
		Disaccharides:	
		Maltose, Lactose, Sucrose, Cellobiose (structures to be	
		taught, biological significance, structure and bond type)	
		Polysaccharides:	
		Homopolysaccharides and Heteropolysaccharides;	
		Structural and Storage Polysaccharides.	
		E.g., of polysaccharides -: starch (amylose and	
		amylopectin), Glycogen, Peptidoglycan, Cellulose, chitin	
		(structure and bond type)	
		Industrial applications of carbohydrates:	
		Fermentation, Pharmaceutical and Food industry.	
		Classification of Fatty acids:	
		Saturated Fatty Acids:	
		C2- C20 (Examples with trivial name, Biochemical names	
		and Structures)	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 33 | Page

		Unsaturated Fatty Acids:	
		Definition of MUFA and PUFA. C16- C20. Palmitic,	
		Oleic, Linoleic, Linolenic, Arachidonic acid (Structures	
		expected)	
		Storage Lipids:	
		Acyl Glycerols (Simple and Mixed)	
		Mono, Di and Triacylglycerols. (Structures expected)	
		Structural lipids:	
		Phosphatidic acid and Membrane Phospholipids E.g.:	
		Phosphatidylethanolamine, Phosphatidylserine,	
		Phosphatidylcholine, Cardiolipin	
II	Proteins and amino	Amino acids:	15
	acids		
		General introduction, Classification and	
		structures, properties (physical & chemical)	
		Amino Acids as drugs. Titration Curve of Amino Acids.	
		Concept of Isoelectric pH, Zwitterion	
		Reactions of Amino Acids:	
		Sorenson's Titration, Ninhydrin Test	
		Proteins:	
		Introduction, definition and functional classification.	
		Classification of Proteins:	
		Simple- Fibrous and Globular Conjugated-	
		Nucleoprotein, Lipoprotein, Glycoprotein,	
		Phosphoprotein, Chromoprotein, Metalloprotein	
		Derived- Primary and Secondary	
		Peptide bond:	
		Features Example of Dipeptide, tripeptide, Nonapeptide	
		e.g., Oxytocin, Vasopressin	
		Amino acid composition of Bovine Cytochrome C and	
		Bovine Chymotrypsinogen	
		Three-dimensional Structure of proteins:	
		Concept of Monomeric, dimeric and multimeric	
		proteins Primary structure - Peptide linkage, Native	
		Secondary structure - Alpha Pleat and Beta fold; Spatial	
		arrangements of adjacent amino acid residues	
		Tertiary structure - Three-Dimensional arrangement	
		Quaternary structure Di and Multimeric proteins E.g.,	
		structure of human Insulin	
		Properties of proteins:	
		Solubility, Molecular weight, Shape, Isoelectric pH,	
		Salting out of proteins for purification	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 34 | Page

	Protein Denaturation and folding:	
	Denaturing agents and properties of denatured proteins	

- 1. Cox, M. M., & Nelson, D. L. (2008). Lehninger principles of biochemistry (Vol. 5). New York: Wh Freeman.
- 2. Conn, E., & Stumpf, P. (2009). Outlines of biochemistry. John Wiley & Sons.
- Satyanarayana U. and Chakrapani U. (2007). Biochemistry. 3rd Edition. Books and Allied (P) Ltd. Mu, P., & Plummer, D. T. (2001). Introduction to practical biochemistry. Tata McGraw-Hill Education.
- 4. Jain, J. L. (2004). Fundamentals of Biochemistry. India: S. Chand Limited.

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test	15
Overall performance	05

Question No.	Unit	Marks
1	Ι	A) Long Answer Question. (Any 01) 06 M
		B) Do as directed. (Any 04) 04 M
2	II	A) Long Answer Question. (Any 01) 06 M
		B) Do as directed. (Any 04) 04 M
3	Both Units	Short Notes (Any 02) 10 M

Name of the Course	Biotechnology Practical II
Course Code	USBT203
Class	F. Y. B. Sc.
Semester	Π
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 – To impart knowledge and hands on experience of the various practicals related to cell biology, microbiology and biochemistry.

Curriculum:

Title	Learning Points	No. of
		Lectures
Regular	1. Microscopic determination of Microbial flora from Yoghurt and	60
Practicals	Lactic Acid Determination	
	2. Isolation and characterization of organisms causing Food Spoilage (Using Bergey's Manual)	
	3. Isolation and characterization of food fermenting organism from Idli batter (Using Bergey's Manual)	
	4. Sauerkraut production and to analyze quality parameters during production (odour, color, pH, total acidity)	
	5. Determination of food preservative concentration (salt and sugar) using MIC.	
	6. Detection of Food adulterants in food samples	
	7. Fermentation of Sugarcane juice using yeast.	
	8. Estimation of sugars by Cole's ferricyanide method.	
	9. Estimation of Alcohol by dichromate method	
	10. Study of blood groups ABO in humans	
	11. Study of the structure of important	
	a. Animal viruses (rhabdo, influenza, paramyxo, hepatitis and	
	retroviruses) using electron micrographs/diagrams.	
	b. Plant viruses (caulimo, gemini, tobacco ringspot, cucumber	
	mosaic and alpha-alpha mosaic viruses) using electron	
	micrographs/diagrams.	
	c. ϕ X174, T4,3) using electron micrographs/diagrams.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 36 | Page

12. Isolation and enumeration of bacteriophages (PFU) from water/sewage sample using double agar layer technique.13. Motility by hanging drop method/stab culture
14. Study of Growth Curve of E. coli
15. Sterility testing of Vaccine
16. Enumeration by Breed's count
17. Isolation of chromosomal DNA from E. coli and Agarose gel
electrophoresis of the chromosomal DNA
18. Study of Hill's reaction
19. Separation of plant pigments by thin layer chromatography
20. Qualitative detection of plant secondary metabolites using
standard tests - e. g. Tests for tannins, flavonoids, alkaloids,
terpenoids, saponins, steroids.

- 1. Patel H. N., Turakhia S. P., Puniyani S. R. (2018). F. Y. B. Sc. College Practical Chemistry for Biotechnology, Himalaya Publishing House.
- Satyanarayana U. and Chakrapani U. (2007). Biochemistry. 3rd Edition. Books and Allied (P) Ltd. Mu, P., & Plummer, D. T. (2001). Introduction to practical biochemistry. Tata McGraw-Hill Education.
- 3. Conn, E., & Stumpf, P. (2009). Outlines of biochemistry. John Wiley & Sons.

Evaluation Pattern

	No of	Duration	Total Marks	CIE	Total
	Experiments				
Biotechnology	2	03 hrs	30 M (01	20 M	50
Practical II	experiments		Paper)	(05 M for	
	of 1.5 hrs		(01 Major and	Journal, 10 M	
	duration		01 Minor	for viva, 05 M	
			Experiment)	for overall	
	(01 Paper)			performance)	

Name of the Course	Basic Chemistry – III
Course Code	USBT204
Class	F. Y. B. Sc.
Semester	П
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective (Minor I)

Course Outcomes:

CO1 – To develop an understanding of thermodynamics.

CO2 – To learn about reaction kinetics and order of reaction.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Unit I	Title Thermodynamics	Learning PointsThermodynamics:System, Surrounding, BoundariesSign Conventions, State Functions,Internal Energy and Enthalpy:Significance,examples,(Numericals expected.)Laws of Thermodynamics and its	No. of Lectures
		Limitations: Mathematical expression. Qualitative discussion of Carnot Cycle for ideal Gas and Mechanical Efficiency. Laws of Thermodynamics as applied to Biochemical Systems. Concept of Entropy, Entropy for Isobaric, Isochoric and Isothermal Processes.	
Π	Chemical Kinetics	Reaction Kinetics: Rate of Reaction, Rate Constant, Measurement of Reaction Rates Order & Molecularity of Reaction, Integrated Rate Equation of First and Second order reactions (with equal initial concentration of	15

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 38 | Page

reactants). (Numericals expected) Determination of Order of	
Reaction:	
a) Integration Method	
b) Graphical Method	
c) Ostwald's Isolation Method	
d) Half Time Method. (Numericals	
expected)	

- 1. Rao, C. N. R. (1973). University General Chemistry : An Introduction To Chemical Science. India: Macmillan India Limited.
- 2. Chang, R. (2000). Physical Chemistry for the Chemical and Biological Sciences. United Kingdom: University Science Books.
- 3. Lee, J.D., Concise Inorganic Chemistry, 5th ED. (2008). India: Wiley India Pvt. Limited.
- 4. Bajpai, D. N. (2001). Advanced Physical Chemistry. India: S. Chand, Limited.
- 5. Singh, A. K., Singh, N. B., Das, S. S. (2009). Physical Chemistry: Volume II. India: New Age International.

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test	15
Overall performance	05

B. Semester End Evaluation (Paper Pattern)

Question No.	Unit	Marks
1	Ι	A) Long Answer Question. (Any 01) 06 M
		B) Do as directed. (Any 04) 04 M
2	II	A) Long Answer Question. (Any 01) 06 M
		B) Do as directed. (Any 04) 04 M
3	Both Units	Short Notes (Any 02) 10 M

Name of the Course	Basic Chemistry – IV
Course Code	USBT205
Class	F. Y. B. Sc.
Semester	Π
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective (Minor II)

Course Outcomes:

CO1 - To gain insight into the details of oxidation - reduction reactions.

CO2 - To develop an understanding of enzymology.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Oxidation reduction reactions	Principles of Oxidation &	15
		Reduction Reactions:	
		Oxidizing and Reducing Agents	
		Oxidation Number, Rules to assign	
		Oxidation Numbers with examples	
		Ions like Oxalate, Permanganate	
		and Dichromate.	
		Balancing Redox Reactions:	
		Ion Electron Method Oxidation,	
		Reduction, Addition and	
		Substitution & Elimination Reactions.	
П	Enzymos		15
11	Enzymes	Introduction to biocatalysis:	15
		Properties of Enzymes, Substrate,	
		Optimum conditions, Co-substrate,	
		Coenzyme, Cofactors	
		Classification and Nomenclature	
		(one reaction per class)	
		Mechanism of Enzyme Action,	
		Active Sites, Enzyme Specificity.	
		Factors affecting enzyme activity	
		(Effect of pH, Temperature,	
		Substrate Concentration, Enzyme	
		concentration)	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 40 | Page

Enzyme Kinetics:	
Derivation of Michaelis-Menten	
Equation, Lineweaver- Burk plot,	
Concept of km	
Types of Enzyme Inhibitions:	
Irreversible & Reversible	
(Competitive, Uncompetitive, Non-	
Competitive)	
Isoenzymes (LDH, Alkaline	
Phosphatase, Creatine	
Phosphokinase)	
Allosteric Modulators, Co-Factors,	
Zymogens, Enzyme units	
Enzymes as Biomarkers and	
diagnostic tools. (SGPT, SGOT,	
LDH, CPK)	
Industrial Application of	
Enzymes	

- 1. Rao, C. N. R. (1973). University General Chemistry : An Introduction to Chemical Science. India: Macmillan India Limited.
- 2. Chang, R. (2000). Physical Chemistry for the Chemical and Biological Sciences. United Kingdom: University Science Books.
- 3. Cox, M. M., & Nelson, D. L. (2008). Lehninger principles of biochemistry (Vol. 5). New York: Wh Freeman.
- 4. Conn, E., & Stumpf, P. (2009). Outlines of biochemistry. John Wiley & Sons.
- 5. Satyanarayana U. and Chakrapani U. (2007). Biochemistry. 3rd Edition. Books and Allied (P) Ltd.
- 6. Jain, J. L. (2004). Fundamentals of Biochemistry. India: S. Chand Limited.

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test	15
Overall performance	05

B. Semester End Evaluation (Paper Pattern)

Question No.	Unit	Marks
1	Ι	A) Long Answer Question. (Any 01) 06 MB) Do as directed. (Any 04) 04 M
2	II	A) Long Answer Question. (Any 01) 06 MB) Do as directed. (Any 04) 04 M
3	Both Units	Short Notes (Any 02) 10 M

Name of the Course	Basic Chemistry Practical
Course Code	USBT206
Class	F. Y. B. Sc.
Semester	II
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - To impart knowledge and hands on experience of the various practicals related to thermodynamics, chemical kinetics and enzymes.

Curriculum:

Title	Learning Points	No. of Lectures
Regular	1. Preparation of Acetate buffer pH 4.6, Carbonate buffer pH	60
Practicals	6.8, Tris buffer pH 8.3	
	2. Qualitative tests for carbohydrates; Molisch test, Benedict's	
	test, Iodine test, Osazone formation	
	3. Estimation of carbohydrates by Lane-Eynon method	
	4. Qualitative tests for lipids.	
	5. Qualitative analysis of amino acids and proteins	
	6. Salowski's test for cholesterol	
	7. To determine enthalpy of dissolution of salt like KNO ₃	
	8. Determine the rate constant for hydrolysis of ester using HCl	
	as a catalyst	
	9. Determine the rate constant for the saponification reaction	
	between ethyl acetate and NaOH by back titration method	
	10. Study the kinetics of reaction between Thiosulphate ion and	
	HCl	
	11. Study reaction between potassium Persulphate and	
	Potassium Iodide kinetically and hence to determine order of	
	reaction	
	12. Study the reaction between NaHSO ₃ and KMnO ₄ and	
	balancing the reaction in acidic, alkaline and neutral medium	
	13. Qualitative Assay of enzyme urease, amylase,	
	dehydrogenase, catalase and protease from	
	Plant/Animal/Microbial source.	
	14. Enzyme Kinetics: Study of the effect of pH on activity of	
	Amylase	
	15. Enzyme Kinetics: Study of the effect of temperature on	
		l

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 43 | Page

activity of Amylase	
16. Study of Effect of Substrate Concentration on amylase	
enzyme activity and determination of Vmax and Km	
17. Study of Effect of inhibitors on amylase enzyme activity	
18. Estimation of Protein by Biuret method	
19. Estimation of Protein by Folin – Lowry method.	
20. Quantitative estimation of sugars by DNSA method	

- 1. Rao, C. N. R. (1973). University General Chemistry : An Introduction To Chemical Science. India: Macmillan India Limited.
- 2. Chang, R. (2000). Physical Chemistry for the Chemical and Biological Sciences. United Kingdom: University Science Books.
- 3. Lee, J.D., Concise Inorganic Chemistry, 5th ED. (2008). India: Wiley India Pvt. Limited.
- 4. Bajpai, D. N. (2001). Advanced Physical Chemistry. India: S. Chand, Limited.
- 5. Singh, A. K., Singh, N. B., Das, S. S. (2009). Physical Chemistry: Volume II. India: New Age International.

	No of	Duration	Total Marks	CIE	Total
	Experiments				
Basic	2	03 hrs	30 M (01	20 M	50
Chemistry	experiments		Paper)	(10 M for	
Practical	of 1.5 hrs		(01 Major and	Journal, 05 M	
	duration		01 Minor	for viva, 05 M	
			Experiment)	for overall	
	(01 Paper)			performance)	

Name of the Course	Skill Enhancement Course - Bio-analytical Techniques
Course Code	USBT207
Class	F. Y. B. Sc.
Semester	Π
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcome:

- CO1 To develop skills towards the principle, working and applications of different analytical techniques.
- CO2 To impart knowledge and hands on experience of the various practicals related to bioanalytical techniques.

Curriculum:

Title	Learning Points	No. of
		Lectures
Methods of separation and analytical techniques	Methods of Separation:Precipitation, Filtration, Distillation and Solvent ExtractionAnalytical TechniquesChromatography:Definition, Principles, Chromatographic performance parameters, TypesPaper Chromatography, Thin Layer Chromatography, Column Chromatography (Principle and Applications)Spectroscopy - Colorimetry: Properties of electromagnetic radiation, interaction with matter, lasers Colorimetric assays - Principle, Beer - Lambert's Law, Measurement of Extinction, Derivation of E = kcl, Limitations of Beer-Lambert's Law, Filter 	Lectures 15
	electrophoresis, Types of support media used, Types	
	Methods of separation and analytical	Methods of separation and analytical techniquesMethods of Separation: Precipitation, Filtration, Distillation and Solvent Extraction Analytical Techniques Chromatography: Definition, Principles, Chromatographic performance parameters, Types

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 45 | Page

IIRegular and Demonstration1. Determination of absorption maxima of CuSO ₄ / K ₂ Cr ₂ O ₇ 45Practicals1. Determination of Beer – Lambert's law 3. Separation of amino acids by Paper Chromatography 4. Electrophoresis of proteins by native PAGE 5. Electrophoresis of proteins by SDS PAGE 6. Paper electrophoresis of amino acids 7. Western Blotting – Demonstration 8. Separation of components from a mixture using Affinity chromatography (Kit may be used for demonstration) 9. Separation of components from a mixture using ion exchange chromatography (Kit may be used for demonstration) 10. Separation of components from a mixture using size exclusion chromatography (Kit may be used			of electrophoresis (Agarose gel electrophoresis, PAGE)	
for demonstration)	Π	Demonstration	 PAGE) 1. Determination of absorption maxima of CuSO₄/ K₂Cr₂O₇ 2. Verification of Beer – Lambert's law 3. Separation of amino acids by Paper Chromatography 4. Electrophoresis of proteins by native PAGE 5. Electrophoresis of proteins by SDS PAGE 6. Paper electrophoresis of amino acids 7. Western Blotting – Demonstration 8. Separation of components from a mixture using Affinity chromatography (Kit may be used for demonstration) 9. Separation of components from a mixture using ion exchange chromatography (Kit may be used for demonstration) 10. Separation of components from a mixture using size exclusion chromatography (Kit may be used 	45

- 1. Skoog, D. A., West, D. M., Holler, F. J., Crouch, S. R. (2014). Fundamentals of Analytical Chemistry. India: Brooks/Cole, Cengage Learning.
- 2. Principles and Techniques of Biochemistry and Molecular Biology, 7th Edition, Keith Wilson and John Walker, Cambridge University Press.

Evaluation Pattern

	No of	Duration	Total Marks	CIE	Total
	Experiments				
Bio-	2	03 hrs	30 M (01	20 M	50
analytical	experiments		Paper)	(15 M for	
Techniques	of 1.5 hrs		(02 Major	Class Test, 05	
	duration		Experiments)	M for Journal)	
	(01 Paper)				

Name of the Course	Ability Enhancement Course – English: Communication Skills - II
Course Code	USBT208
Class	F. Y. B. Sc.
Semester	II
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

By the end of the course, the learner will be able to:

- CO1 Learn about Leadership, ethical values, capacity building, team building, decision making.
- CO2 Learn about the understanding of stress and management of stress.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
I	Professional Skills	Creativity at Workplace: Introduction, Current Workplaces, Creativity, Motivation, Nurturing Hobbies at Work, The Six Thinking Hat Method Ethical Values: Ethics and Society, Theories of Ethics, Correlation between Values and behavior, Nurturing Ethics, Importance of Work Ethics, Problems in the Absence of Work Ethics Capacity Building: Need and Importance of Capacity Building Elements of Capacity Building Zones of Learning Ideas for Learning Strategies for Capacity Building Leadership and Team Building: Leader and Leadership, Leadership Traits, Culture and Leadership, Leadership Styles and Trends, Team Building, Types of Teams	15

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 47 | Page

		Desigion Making and Nagatistian	
		Decision Making and Negotiation : Introduction to Decision Making,	
		U	
		Steps for Decision Making,	
		Decision Making Techniques,	
		Negotiation Fundamentals,	
		Negotiation Styles, Major	
		Negotiation Concept	
II	Understanding and	Understanding Stress and Conflict	15
	Managing stress and		
	conflict in	Causes of stress and conflict in	
	Contemporary society	individuals and society; Agents of	
		socialization and the role played by	
		them in developing the individual;	
		Significance of values, ethics and	
		prejudices in developing the	
		individual; Stereotyping and	
		prejudice as significant factors in	
		causing conflicts in society.	
		Aggression and violence as the	
		public expression of conflict	
		public expression of conflict	
		Managing Stress and Conflict in	
		Society	
		Types of conflicts and use of coping	
		mechanisms for managing individual	
		stress; Maslow's theory of self-	
		actualization; Different methods of	
		responding to conflicts in society;	
		Conflict-resolution and efforts	
		towards building peace and harmony	
		in society	

- 1. Kumar, Sanjay, and Lata, Pushp. Communication Skills, Second Edition. India, Oxford University Press, 2015.
- 2. Chauhan, G. S., Sharma, S. (2016). Soft Skills: An Integrated Approach to Maximize Personality. India: Wiley.
- 3. Mitra, B. K. (2011). Personality development and soft skills (Vol. 156). Oxford University Press.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 48 | Page

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test	15
Overall performance	05

B. Semester End Evaluation (Paper Pattern)

Question No.	Unit	Marks
1	I	A) Long Answer Question. (Any 01) 06 MB) Do as directed. (Any 04) 04 M
2	II	A) Long Answer Question. (Any 01) 06 MB) Do as directed. (Any 04) 04 M
3	Both Units	Short Notes (Any 02) 10 M

Name of the Course	Value Education Course – Environmental Education – II
Course Code	USBT209
Class	F. Y. B. Sc.
Semester	Π
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1-To understand the relevance of renewable energy sources and conservation of biodiversity.

CO2 – To study the applications of different life forms in environmental remediation.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Unit I	Title Renewable sources of energy	Introduction: Renewable and Non-renewable resources. The need for a sustainable lifestyle. Energy resources: Types of energy Nonrenewable energy - Oil, coal and its environmental impacts. Renewable energy: Hydroelectric power, Solar energy, Biomass energy, Biogas, Wind power and Geothermal energy. Biogas technology: Biogas plant & types, biodigester. Biogas- composition, production and factors affecting production and uses. Biofuels: Ethanol production, Microbial	No. of Lectures 15
		hydrogen production, Biodiesel,	
		Petrocrops.	
II	Global environmental	Green House Effect:	15
	problems and issues;	Factors responsible for Green House	
	Bioremediation	Effect; Green House gases.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 50 | Page

Global warming: Ozone depletion;	
Kyoto protocol; UV radiation; Acid	
rain	
Concept of bioremediation.	
Microorganisms in Bioremediation.	
Mycoremediation and	
phytoremediation.	
Bioremediation technologies.	
Measuring bioremediation in the	
field. Bioaugmentation and	
biostimulation. Monitoring the	
efficacy of bioremediation.	

1. Bharucha, E. (2005). Textbook of Environmental Studies for Undergraduate Courses. India: Universities Press (India) Pvt. Limited.

2. Verma, P. S. (2004). Cell Biology, Genetics, Molecular Biology: Evolution and Ecology. India: S. Chand Limited.

3. Khoiyangbam, R. S. (2015). Introduction to Environmental Sciences. India: Energy and Resources Institute.

4. Fulekar, M. H. (2010). Environmental Biotechnology. United Kingdom: CRC Press.

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test	15
Overall performance	05

B. Semester End Evaluation (Paper Pattern)

Question No.	Unit	Marks
1	Ι	A) Long Answer Question. (Any 01) 06 M
		B) Do as directed. (Any 04) 04 M
2	II	A) Long Answer Question. (Any 01) 06 M
		B) Do as directed. (Any 04) 04 M
3	Both Units	Short Notes (Any 02) 10 M

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 51 | Page

Name of the Course	Introduction to Bioinformatics
Course Code	USOEBT202
Class	F. Y. B. Sc.
Semester	Π
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective (Open Elective)

Course Outcomes:

By the end of the course, the student will be able to:

- CO1 To develop an understanding of introduction to computers and biological databases.
- CO2 To develop an understanding of BLAST and sequence alignment.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Introduction to	Computer Basics : Basic Computer	15
	computers and	Operations: I/O Units; Computer	
	Biological databases	Memory; Processor; Binary	
		Arithmetic; Logic Circuit;	
		Architecture; Operating Systems and	
		application softwares.	
		Biological Databases :	
		Classification of Databases - Raw	
		and Processed Databases; Primary	
		(NCBI), Secondary (PIR) and	
		Tertiary or Composite (KEGG)	
		Databases; Structure and Sequence	
		Databases.	
		Specialized Databases - Protein	
		Pattern Databases; Protein Structure	
		and Classification Databases	
		(CATH/SCOP).	
		Genome Information Resources:	
		DNA Sequence Databases	
		Specialized Genomic Resources.	
		Protein Databases based on	
		Composition, Motifs and Patterns.	
		Protein Structure Visualization	
		Software.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 52 | Page

II	BLAST and Sequence	BLAST and Sequence Alignment:	15
	alignment	BLAST and its Types; Retrieving	
		Sequence using BLAST. Pairwise	
		Alignment: Identity and Similarity;	
		Global and Local Alignment;	
		Pairwise Database Searching.	
		Multiple Sequence Alignment: Goal	
		of Multiple Sequence Alignment;	
		Computational Complexity; Manual	
		Methods; Simultaneous Methods;	
		Progressive Methods; Databases of	
		Multiple Alignment; Secondary	
		Database Searching; Analysis	
		Packages; MSA.	

- 1. Sinha, P. K., Sinha, P. (2004). Computer Fundamentals. India: BPB Publications.
- 2. Goel, A. (2010). Computer Fundamentals. India: Pearson Education.
- 3. Wempen, F. (2014). Computing Fundamentals: Introduction to Computers. Germany: Wiley.
- 4. Bioinformatics by S. C. Rastogi
- 5. Bioinformatics by Attawood

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test	15
Overall performance	05

B. Semester End Evaluation (Paper Pattern)

Question No.	Unit	Marks
1	Ι	A) Long Answer Question. (Any 01) 06 M
		B) Do as directed. (Any 04) 04 M
2	II	A) Long Answer Question. (Any 01) 06 M
		B) Do as directed. (Any 04) 04 M
3	Both Units	Short Notes (Any 02) 10 M

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 53 | Page

Name of the Course	Introduction to Food Science	
Course Code	USOEBT102	
Class	F. Y. B. Sc.	
Semester	II	
No. of Credits	02	
Nature	ture Theory/ Practical/ Project/ other (please specify)	
Туре	Core/ Elective (Open Elective)	

Course Outcomes:

CO1 – To develop an understanding of the applications of Biotechnology in the food industry.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Introduction to Food Biotechnology	Introductiontofoodbiotechnology:History of microorganisms in foodscienceand keydevelopments,Applicationsofbiotechnologyinfermented food productsIntroduction to Unit Operationsand Processes:BasicBasicunitoperations,foodprocessing & packaging (canning &bottling),Production of cultures	15
Π	Food Fermentations and Preservation	Fermented food products: Bread, Vinegar, Sauerkraut, Single Cell Protein (SCP), Probiotics Food spoilage, food deterioration, food contamination and Food Adulteration Methods of food preservation Indicators of Food Microbial Quality & Safety: HACCP, FSSAI & FDA	15

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 54 | Page

- 1. Frazier, W. C., & Westhoff, D. C. (1983). Food microbiology 5th Ed.
- 2. Lee, B. H. (2014). Fundamentals of food biotechnology. John Wiley & Sons.
- 3. Jay, J. M., Loessner, M. J., & Golden, D. A. (2008). Modern food microbiology. Springer Science & Business Media.

Evaluation Pattern

A. Internal Evaluation

Method	Marks	
Class Test	15	
Overall performance	05	

B. Semester End Evaluation (Paper Pattern)

Question No.	Unit	Marks
1	Ι	A) Long Answer Question. (Any 01) 06 M B) Do as directed. (Any 04) 04 M
2	II	A) Long Answer Question. (Any 01) 06 M B) Do as directed. (Any 04) 04 M
3	Both Units	Short Notes (Any 02) 10 M

(Rashmi A. Bhave)

The Chairperson, BoS

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 55 | Page