

R.P. Gogate College of Arts & Science and R.V. Jogalekar College of Commerce, Ratnagiri (Autonomous)

Master of Science (M.Sc.) Microbiology

M.Sc. Part -2 [Sem III & IV]

Course Structure

Under Choice Based Credit System (CBCS)

To be implemented from Academic Year- 2024-2025

Name of Program	M.Sc.
Level	PG
No of Semesters	04
Year of Implementation	2024-25
Program Specific	1] Learner shall know the advanced tools and techniques in
Outcomes (PSO)	Microbiology.
	2] Learner shall get insights and in depth knowledge of applied
	Microbiology which includes bioremediation, diagnostics,
	therapeutics and novel uses of microorganisms.
	3] Learner shall gain the knowledge of industrial and food
	microbiology techniques.
	4] Learner shall know the advancement in the field of animal and agricultural biotechnology.
	5] Learner shall able to run industry based assays in the fields related
	to cell biology, food microbiology, pharmaceutical microbiology
	61 Learners shall become aware about IPR and bioethics
	7] Learner shall able to carry out simple research projects and apply
	knowledge of biostatistics for research purpose.
Relevance of PSOs to	Microbiology is the study of microorganisms. At the postgraduate
the local, regional.	level this discipline needs a more advanced and updated knowledge
national, and global	of microbiology. Therefore the said curriculum is designed in such a
developmental needs	way that learner should get the knowledge of advanced techniques in
-	microbiology. At local to global level research and innovation is the
	key to success. These research abilities will be inculcated by simple
	research projects. Globally the demand of skilled microbiologist is
	increasing so the keen knowledge of industrial, food and
	pharmaceutical microbiology techniques is essential. The Covid 19
	pandemic has established the global threat of communicable
	diseases. In such situation control strategy should not limit at local
	level. The vaccines produced by animal cell culture technique has
	remarkable role in fight against such global problem. The current
	curriculum provides the knowledge of such animal cell culture
	techniques. The pharmaceutical industries needs a skilled
	microbiologist accompanied with the knowledge of industrial
	product assays. The said curriculum provides in depth knowledge
	about such assay methods.
	Summarizing, Post graduates of MSc. Microbiology program will be
	informed citizens who can understand and evaluate impact of new
	research and innovation in Life sciences and will be able to pursue
	wide range of careers including biological and life science research
	in higher educational institutions as well as careers in public health,
	clinical research, food, pharmaceutical and biotechnological
	industries.

The performance of the learners shall be evaluated into two parts. The learner's performance shall be assessed by Internal Assessment with 40% marks in the first part and by conducting the Semester End Examinations with 60% marks in the second part. The allocation of marks for the Internal Assessment and Semester End Examinations are as shown below-

Sr.No.	Particulars	4 credit subjects Marks	2 credit subjects Marks
01	One Class Test / Online Examination to be conducted in the given semester [Duration: 40 Minutes] [Duration: 20 Minutes] Question Paper Pattern for Periodical Class Test Maximum Marks: 20 (4 Credit Subjects) Duration: 40 Minutes Match the Column / Fill in the Blanks / Multiple Choice Questions/ True or False / Answer in One or Two Lines (Concept based Questions) (1 Marks each X 5 Que. = 05 Marks Descriptive Questions – 5 marks each X 3 Que. = 15 Marks Maximum Marks: 10 (2 Credit Subjects) Duration: 20 Minutes Descriptive Questions – 5 marks each X 2 Que. = 10 Marks	20	10
02	Assignments	10	05
03	Active participation in routine class instructional deliveries and overall conduct as a responsible learner, mannerism and articulation and exhibit of leadership qualities in organizing related academic activities	10	05
	Total	40	20

A) Internal Assessment: 40 % (40 Marks)

B) Semester End Examination: 60% of 100 (60 Marks) or 60% of 50 (30 Marks)

For 4 credit course – 60 Marks

The	examination	shall	be of	2	hours	duration.	

Question No	Unit	Type of Question	Marks Distribution
Q1	Ι	Short Note (12)	6 marks each X 2 Que. [out of 4] = 12 Marks
Q2	II	Short Note (12)	6 marks each X 2 Que. [out of 4] = 12 Marks
Q3	III	Short Note (12)	6 marks each X 2 Que. [out of 4] = 12 Marks
Q4	IV	Short Note (12)	6 marks each X 2 Que. [out of 4] = 12 Marks
Q5	I, II, III, IV	Objective (12)	Match the Column / Fill in the Blanks / Multiple Choice Questions/ True or False / Answer in One or Two Lines (Concept based Questions) (1 Marks each X 12 Que. = 12 Marks)

For 2 credit course – 30 Marks

The examination shall be of 1 hour

Question No	Unit	Type of Question	Marks Distribution
Q1	Ι	Short Note (12)	6 marks each X 2 Que. [out of 4] = 12 Marks
Q2	II	Short Note (12)	6 marks each X 2 Que. [out of 4] = 12 Marks
Q3	I and II	Objective (06)	Match the Column / Fill in the Blanks / Multiple Choice Questions/ True or False / Answer in One or Two Lines (Concept based Questions) (1 Marks each X 6 Que. = 6 Marks)

Standard of Passing

The learner to pass a course shall have to obtain a minimum of 40% marks in aggregate for each course where the course consists of Internal Assessment & Semester End Examination. The learner shall obtain minimum of 40% marks (i.e. 16 out of 40 or 8 out of 20) in the Internal Assessment and 40% marks in Semester End Examination (i.e. 24 out of 60 or 12 out of 30) separately, to pass the course and minimum of Letter Grade "P" in the project component, wherever applicable to pass a particular semester. A learner will be said to have passed the course if the learner passes the Internal Assessment & Semester End Examination together.

Performance Grading: Letter Grades and Grade Points

Semester GPA/ Program CGPA Semester/Program	% of Marks	Alpha-Sign/ Letter Grade Result
9.00-10.00	90.0 -100	O (Outstanding)
$8.00 \le 9.00$	$80.0 \le 90.0$	A+ (Excellent)
$7.00 \le 8.00$	$70.0 \le 80.0$	A (Very Good)
6.00 ≤ 7.00	$60.0 \le 70.0$	B+ (Good)
5.50 ≤ 6.00	$55.0 \le 60.0$	B (Above Average)
5.00 ≤ 5.50	50.0 ≤ 55.0	C (Average)
$4.00 \le 5.00$	$40.0 \le 50.0$	P (Pass)
Below 4.00	Below 40	F (Fail)
Ab (Absent)	-	Absent

Master of Science (M.Sc.) Programme Under Choice Based Credit System (CBCS) Course Structure

M.Sc. II [Microbiology]

(To be implemented from Academic Year 2024-25)

No. of Courses	Semester III		Credits	No. of Courses	Semester IV		Credits
	Major Mandatory	y	•		Major Mandatory		
PSMB301	Tools And Technique Microbiology	es In	4	PSMB401	Industrial And Food Microbiology		4
PSMB302	Pharmaceutical And Cosmetic Microbiolo	gy	4	PSMB402	Applied Microbiolog	<u>y</u>	4
PSMB303	Practical's of PSMB and PSMB302	301	4	PSMB403	Practical's of PSME and PSMB402	3401	4
PSMB304	IPR and Bioethics		2				
Major Electives					Major Electives		
PSMB305	Cell Biology	2		PSMB404	Advances in biotechnology	2	
PSMB306	Practical's of PSMB305	2		PSMB405	Practical's of PSMB404	2	
	OR				OR		4
PSMB307	Animal and Agricultural Biotechnology	2	4	PSMB406	Mycology and Protozoology	2	4
PSMB308	Practical's of PSMB307	2		PSMB407	Practical's of PSMB406	2	
PSMB309	Research Project		4	PSMB408	Research Project		6
Total Credits 2			22		Total Credits		22

Syllabus for M.Sc. II Microbiology Semester III

From the year 2024-25

No. of Courses	Semester III		Credits		
	Major Mandatory				
PSMB301	Tools And Techniques In Microbiology		4		
PSMB302	Pharmaceutical And Cosmetic Microbiology		4		
PSMB303	Practical's of PSMB301 and PSMB302		4		
PSMB304	IPR and Bioethics		2		
	Major Electives				
PSMB305	Cell Biology	2			
PSMB306	Practical's of PSMB305	2			
	OR		4		
PSMB307	Animal and Agricultural Biotechnology	2			
PSMB308	Practical's of PSMB307	2			
	· · · · ·				
PSMB309	Research Project		4		
	Total Credits		22		

Name of the Course	Tools and Techniques in Microbiology			
Course Code	PSMB301			
Class	M.Sc. II			
Semester	III			
No of Credits	04			
Nature	Theory			
Туре	Major: Mandatory			
Highlight revision specific to	Developing expertise in sample preparation techniques for			
employability/	phytopharmaceutical analysis, microscopy, chromatography and			
entrepreneurship/ skill	spectroscopy enhances your employability in various industries			
development	such as pharmaceuticals, research, and quality control.			
	Proficiency in fluorescence microscopy is beneficial for careers in			
	cell biology, neuroscience, and diagnostics. Expertise in advanced			
	analytical techniques like Mass Spectrometry, NMR			
	Spectroscopy is sought after in pharmaceuticals, biotechnology,			
	and environmental monitoring. Understanding microbial analysis			
	and genomics is valuable in fields like microbiology,			
	biotechnology, and medical research. Skill development includes			
	precision, attention to detail, and adherence to safety protocols			
	during lab & research work. Entrepreneurs can offer microbial			
	identification services or develop novel DNA extraction kits.			
	They also can establish microscopy training workshops or			
	consulting services for image analysis.			

PSMB301 - Tools and Techniques In Microbiology Modules at a Glance

Sr. No.	Modules	No. of Lectures		
Ι	Biological sample preparation and Modified analytical techniques	15		
II	Advanced Microscopy Techniques	15		
III	Spectroscopic and Chromatography Techniques: Principle, working and applications	15		
IV	Identification methods in microbiology	15		
	Total			

R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri

Course Outcomes:

At the end of the course students will

- 1) Be able to understand mechanism of imaging by advance microscopy enabling them to have a complete view of mechanism and application of advance microscopy
- 2) Be able to learn instrumentation which will help them in their professional career.
- 3) Be able to gain analytical and interpretative skills which is critical for working in the laboratory
- 4) Be able to understand concept of genome sequencing, analysis and its applications

Curriculum:

PSMB301 - Tools and Techniques in Microbiology					
Unit	it Title Learning Points		No of Lectures		
Ι	Biological sample preparation and Modified analytical techniques	 1.1 Sample preparation: An analytical perspective 1.2 General sample preparation for analysis of Phyto pharmaceuticals 1.3 Preparation of sample and staining for SEM, TEM, Atomic force Microscopy, Confocal Microscopy. 1.4 Preparation of sample and general principle of chromatography and spectroscopic techniques 1.5 Combination procedures for analysis with relevant examples/case studies : a) TLC and HPLC b) HPTLC and MS c) TLC and FTIR d) TLC and Raman spectroscopy 	15 (1)		

		2.1 Principle and working of		
		a. TEM & SEM		
		b. Confocal Microscopy		
		c. AFM		
	Advanced	2.2 Principle & Working of		
II	Microscopy	a Fluorescence Microscopy	15 (1)	
	Techniques	h High Resolution Elucrescent Microscope		
		Concept Understanding of Eluorescence recovery after		
		photobleaching (FDDA) and Forster		
		Pasonance Energy Transfer (EDET)		
	Spactroscopia and	2.1 Mass Spectroscopy : ESLMS and MALDIMS		
	Spectroscopic and	2.2 NMD spectroscopy : ESI-NIS and MALDINIS		
		3.2 NMR spectroscopy	1 7 (1)	
111	Techniques:		15(1)	
	Principle, working	3.4 Ion exchange chromatography		
	and applications	3.5 Gel filtration chromatography		
		4.1 Introduction of microbial systematic Phylogeny:		
		Overview of phylogeny and Phylogenetic trees		
		4.2 i) Culture dependent analysis of microbial		
		communities: Laser Tweezer Flow cytometry		
		ii) For classification & identification through		
		Phenotypic analysis using VITEK, API 20, FAME.		
		4.3 Culture independent methods		
		i) Methods for DNA / RNA extraction		
		ii) Gene sequence analysis		
		1. Amplification of 16S rRNA gene for		
	Identification	prokaryotes and SSU, LSU, ITS.		
IV	methods in	2. Multi-locus sequence typing	15(1)	
	microbiology	3. Genome fingerprinting (Multi gene and	~ /	
		whole genome)– Ribotyping		
		First generation Sanger sequencing and		
		sequence analysis using different tools		
		(Chromas – Pro SegMan)		
		• Shotgun – genomic library		
		• Second generation – Amplicon sequencing		
		Illumina		
		• Third and fourth generation Heliscope and Ion		
		torrent Oxford nanopore		
		iv) Environmental genomics An introduction to meta-		
		genomics, meta trancriptomes and Meta-proteomics		

Learning Resources recommended:

- 1) Sample Preparation Techniques in Analytical Chemistry by S. Mitra (01-06)
- 2) Herbal Drug Technology by S S Agarwal and M Paridhavi
- 3) Scanning Electron Microscopy by V Kazmiruk
- 4) Handbook of TEM by Ayache J., Beaunier L., Boomendil J., Ehret G.
- 5) Atomic force Microscopy by Nunu C.Santos.
- 6) Methods in molecular biology- Confocal Microscopy by Paddock
- 7) Advanced Techniues in Biological electron microscopy, James K Koehler
- 8) Handbook from Anchrome laboratory
- 9) Thin layer chromatography- a modern practical approach by Peter E. Wall
- 10) Biotechniques by N. Arumugan, V kumaresan
- 11)A Textbook of Biophysics by R N Roy
- 12) Study of Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) by Hongbao Ma , Kuan-Jiunn Shieh , Tracy X. Qiao
- 13) A beginner's Guide to SEM by Anwer Ul Hamid
- 14) Modern Biophysical Chemistry, Detection and Analysis of Biomolecules by Peter Jomo Walla , Second, Updated and Expanded Edition (2014)
- Applied NMR Spectroscopy for Chemists and Life Scientists by Oliver Zerbe and Simon Jurt, (2014)
- 16)Techniques and Instrumentation in Analytical Chemistry Volume 18, 1997
- 17) High-Performance Thin-Layer Chromatography (HPTLC) by Man Mohan Srivastava. 2011Springer-Verlag Berlin Heidelberg
- Protein Purification: Principles, High Resolution Methods, and Applications by Jan Christer Janson. 2011. Third Edition John Wiley & Sons, Inc., Hoboken, New Jersey
- 19) Brock Biology of microorganisms 14th ed.
- 20) Molecular cloning : a lab manual, Green and Sambrook vol. 1 4th ed.
- 21) https://www.olympus-lifescience.com/en/microscoperesource/primer/techniques/confocal/ confocalintro/
- 22) http://www.ammrf.org.au/myscope/pdfs/tem.pdf
- 23) https://www.olympus lifescience.com/en/microscoperesource/primer/techniques/confocal/ applications/fretintro/

Teaching Plan

Unit No.	Unit Title	Teaching Methods	No. of Lectures
Ι	Biological sample preparation and Modified analytical techniques	Chalk & Board, ICT	15
II	Advanced Microscopy Techniques	Chalk & Board, ICT	15
III	Spectroscopic and Chromatography Techniques: Principle, working and applications	Chalk & Board, ICT	15
IV	Identification methods in microbiology	Chalk & Board, ICT	15

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class test	20
Assignment	15
Class performance	05
Total	40

B. Semester End Evaluation (Paper Pattern)

Question No	Unit	Type of Questions (Marks)
Q1	Ι	Short Note (12)
Q2	II	Short Note (12)
Q3	III	Short Note (12)
Q4	IV	Short Note (12)
Q5	I, II, III, IV	Objective (12)
Total		60

Name of the Course	Pharmaceutical And Cosmetic Microbiology
Course Code	PSMB302
Class	M.Sc. II
Semester	III
No of Credits	04
Nature	Theory
Туре	Major: Mandatory
Highlight revision specific to employability/ entrepreneurship/ skill development	Strong understanding of microbiology in pharmaceuticals enhances employability in quality control, research, and regulatory roles. Proficiency in Good Manufacturing Practices (GMP) is vital for roles involving compliance and quality assurance. Expertise in assessing water systems and endotoxin/pyrogen testing is crucial for product safety. Knowledge of cleaning, disinfection, and clean room practices is valuable for maintaining aseptic environments. Skill development includes risk assessment, audit procedures, and knowledge of relevant ISO standards. It also involves knowledge of cosmetic formulation, preservation techniques, and microbial testing protocols along with in-depth understanding of GMP principles, audit procedures, and quality management systems. Entrepreneurs can offer consulting services for water, pharmaceutical & cosmetic product analysis.

PSMB302 - Pharmaceutical and Cosmetic Microbiology Modules at a Glance

Sr. No.	Modules	No. of Lectures
Ι	Introduction to Pharmaceutical Microbiology	15
II	Pharmaceutical Analysis & Regulation	15
III	Cosmetic Microbiology	15
IV	Audit, Validation & documentation	15
	Total	60

R. P. Gogate College of Arts & Science and
(Autonomous) RatnagiriR. V. Jogalekar College of Commerce,
13 | Page

Course Outcomes:

At the end of the course learners will be

- 1. Be able to understand the different process and work culture in the Pharmaceutical & Cosmetic Industry
- 2. Equipped with in-depth knowledge w. r. t. regulations and audit procedures carried out in an industry
- 3. Equipped with risk assessment tools and process understanding to make them skilled and competent as per job requirement.

Curriculum:

PSMB302 - Pharmaceutical And Cosmetic Microbiology			
			No of
Unit	Title	Learning Points	Lectur
			es
		1.1 Role of Microbiology for pharmaceuticals industries	
		1.2 GMP and Regulations	
	Introduction to	1.3 Laboratory management and design	
т	Pharmaceutical	1.4 Microbiological culture media & Microbiology	15(1)
1	Microbiology	laboratory techniques	13(1)
		1.5 Bio burden determination	
		1.6 Specified and objectionable microorganisms	
		1.7 Guidelines for preparing a laboratory information file	
		2.1 Assessment of pharmaceutical water systems and	
		Endotoxin and pyrogen testing	
		2.2 Sterilization and sterility assurance. Use of Biological	
		indicators for measuring sterilization	
	Pharmaceutical	2.3 Cleaning and disinfection Use of Antibiotics and	
п	Analysis &	preservatives ,Clean rooms and environmental monitoring	15(1)
11	Regulation	2.4 Rapid microbiological methods	13(1)
		2.5 Risk assessment and microbiology	
		2.6 Good practices for pharmaceutical quality control	
		laboratories	
		2.7 Good manufacturing practices for pharmaceutical	
		Products.	

III	Cosmetic Microbiology	 3.1 History of cosmetic Microbiology ,Preservation of cosmetics 3.2 Antimicrobial preservative efficacy & microbial content testing 3.3 Microbiology Laboratory methods in support of sterility Assurance System 3.4 Bio burden testing & Environmental monitoring 3.5 Sampling: Principles and Practice 	15 (1)
IV	Audit, Validation & documentation	 4.1 Microbiological hazard analysis & audit Validation 4.2 IS and ISO standards: 9001/14001. 4.3 Introduction to Validation and documentation 4.4 Auditing sterilization processes and facilities 	15 (1)

Learning Resources recommended:

- 1. Pharmaceutical Microbiology by Tim Sandle
- 2. WHO Guidelines for preparing a laboratory information file
- 3. WHO Good practices for pharmaceutical microbiology laboratories
- 4. WHO-GMP for pharmaceutical products
- 5. Cosmetic Microbiology: A practical Approach, 2nd edition. Philip A Geiss. Taylor& Francis group
- 6. Handbook of Microbiological Quality Control for Pharmaceuticals and Medical Devices, Rosamund M. Baird, Stephen P. Denyer, Norman Hodges

Teaching Plan

Unit No.	Unit Title	Teaching Methods	No. of Lectures
Ι	Introduction to Pharmaceutical Microbiology	Chalk & Board, ICT	15
II	Pharmaceutical Analysis & Regulation	Chalk & Board, ICT	15
III	Cosmetic Microbiology	Chalk & Board, ICT	15
IV	Audit, Validation & documentation	Chalk & Board, ICT	15

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class test	20
Assignment	15
Class performance	05
Total	40

B. Semester End Evaluation (Paper Pattern)

Question No	Unit	Type of Question (Marks)
Q1	Ι	Short Note (12)
Q2	II	Short Note (12)
Q3	III	Short Note (12)
Q4	IV	Short Note (12)
Q5	I, II, III, IV	Objective (12)
Total		60

Name of the Course	Practical's of PSMB301 and PSMB302
Course Code	PSMB303
Class	M.Sc. II
Semester	III
No of Credits	04
Nature	Practical
Туре	Major: Mandatory
Highlight revision specific to	Developing expertise in sample preparation techniques for
employability/	phytopharmaceutical analysis, microscopy, chromatography
entrepreneurship/ skill	and spectroscopy enhances your employability in various
development	industries such as pharmaceuticals, research, and quality
	control. Proficiency in fluorescence microscopy is beneficial
	for careers in cell biology, neuroscience, and diagnostics.
	Expertise in advanced analytical techniques like Mass
	Spectrometry, NMR Spectroscopy is sought after in
	pharmaceuticals, biotechnology, and environmental
	monitoring. Understanding microbial analysis and genomics
	is valuable in fields like microbiology, biotechnology, and
	medical research. Skill development includes precision,
	attention to detail, and adherence to safety protocols during
	lab & research work. Entrepreneurs can offer microbial
	identification services or develop novel DNA extraction kits.
	They also can establish microscopy training workshops or
	consulting services for image analysis.
	The strong understanding of microbiology in pharmaceuticals
	regulatory roles Expertise in assessing water systems and
	endotoxin/pyrogen testing is crucial for product safety.
	Knowledge of cleaning, disinfection, and clean room
	practices is valuable for maintaining aseptic environments.
	Skill development includes risk assessment, audit procedures,
	and knowledge of relevant ISO standards. It also involves
	knowledge of cosmetic formulation, preservation techniques,
	and microbial testing protocols along with in-depth
	understanding of GMP principles, audit procedures, and
	quality management systems. Entrepreneurs can offer
	consulting services for water, pharmaceutical & cosmetic
	product analysis.

PSMB303 - Practical's of PSMB301 and PSMB302 Modules at a Glance

Sr. No.	Modules	No. of Lectures	
т	Practicals of PSMB301	60	
1	(Tools and Techniques in Microbiology Practicals)	60	
II	Practicals of PSMB302	(0)	
	(Pharmaceutical And Cosmetic Microbiology Practicals)	60	
	Total	120	

Course Outcomes:

At the end of the course learners will be

- 1. Generate a phylogenetic tree
- 2. Perform extraction and separation of pigments and phyto-chemicals
- 3. Perform DNA extraction and agarose electrophoresis
- 4. Know the different process and work culture in the Pharmaceutical & Cosmetic Industry.
- 5. Perform variety of tests carried out in pharmaceutical and cosmetic industry
- 6. Understand in-depth knowledge w. r. t. regulations and audit procedures carried out in an industry

PSMB303 - Practical's of PSMB301 and PSMB302			
Title	Learning Points	No of Lectures	
Practicals of PSMB301 (Tools and Techniques in Microbiology Practicals)	 PRACTICALS Extraction and Qualitative detection of different phytochemicals using chemical methods. Extraction and separation of different pigments using TLC Spectrum analysis of pigments using UV spectrophotometer. Generation of phylogenetic tree. Extraction of DNA from soil and checking its purity using agarose electrophoresis and UV260/280 ratio SELF STUDY Determination of purity of extracted DNA using Qubit Study the working of TEM, SEM, Fluorescence and Confocal microscopy /Nuclear magnetic resonance spectrocopy and evaulation of simple 1H NMR spectra of select organic compounds / Determination of Molar Mass of Simple Compounds Using Mass Spectroscopy using virtual lab Assignment on "Application of advanced electron microscopy"./ protocol for culture submission to NCBI database Use of VITEK (Demonstration) 	60 (2)	
	PRACTICALS		
Practicals of PSMB302 (Pharmaceutical And Cosmetic Microbiology Practicals)	 Preservative efficacy test as per ISO 11930 Bio burden test Quality control of microbial content of cosmetics MIC of an antibiotic by tube method using Indian pharmacopeia protocol SELF-STUDY : Market survey of 5 cosmetic products and the Common cosmetic preservatives used HACCP of College canteen or home kitchen wrt a food preparation. 	60 (2)	

Learning Resources recommended:

Practicals of PSMB301

- 1. Handbook from Anchrome laboratory
- 2. Molecular cloning : a lab manual, Green and Sambrook vol. 1 4th edn
- 3. Techniques and Instrumentation in Analytical Chemistry Volume 18, 1997
- 4. Handbook of TEM by Ayache J., Beaunier L., Boomendil J., Ehret G.
- 5. <u>https://www.olympusifescience.com/en/microscoperesource/primer/techniques/confocal/</u> confocalintro/
- 6. http://www.ammrf.org.au/myscope/pdfs/tem.pdf
- 7. <u>https://www.olympusifescience.com/en/microscoperesource/primer/techniques/confocal/</u> applications/fretintro/
- 8. <u>https://www.microscopyu.com/techniques/fluorescence/introduction-to-fluorescence</u>microscopy

Practicals of PSMB302

- 1. WHO Guidelines for preparing a laboratory information file
- 2. WHO Good practices for pharmaceutical microbiology laboratories
- 3. WHO-GMP for pharmaceutical products
- 4. Cosmetic Microbiology: A practical Approach, 2nd edition. Philip Taylor & Francis

Teaching Plan

Sr. No.	Practical Title	Teaching Methods	No. of Lectures
Ι	Tools and Techniques in Microbiology Practicals	Practical & Demonstration	60
ΙΙ	Pharmaceutical And Cosmetic Microbiology Practicals	Practical & Demonstration	60

Evaluation Pattern –

Dractical	Exte	ernal	Internal			
Course	Major techniques	Minor Techniques	Journal	Viva	Spots / Quiz/ Lab	Total
PSMB303	40 Marks	20 Marks	10 Marks	10 Marks	20 Marks	100 Marks

Name of the Course	IPR and Bioethics		
Course Code	PSMB304		
Class	M.Sc. II		
Semester	III		
No of Credits	02		
Nature	Theory		
Туре	Major: Mandatory		
Highlight revision specific to	Understanding intellectual property rights (IPR) is crucial for		
employability/	career opportunities in biotechnology companies and research		
entrepreneurship/ skill	institutions. Proficiency in biotech patents is essential for research		
development	protection and technology transfer roles. Proficiency in ethical		
	guidelines is vital for careers involving human subject's research		
	and clinical trials. Proficiency in nanotechnology applications in		
	biotech fields enhances employability in materials science,		
	medicine, and agriculture. Entrepreneurs can establish IPR		
	consulting services to help biotech startups protect their		
	innovations. Skill development includes knowledge of patent laws,		
	patent filing procedures, and patent infringement issues.		

PSMB304 - IPR and Bioethics

Modules at a Glance

Sr. No.	Modules	No. of Lectures
Ι	IPR and Biodiversity Law	15
II	Bioethics	15
	Total	30

Course Outcomes:

At the end of the course students will:

- 1. Understand the protection of intellectual property in the context of life sciences
- 2. Reflect on the need and implications of patents in Biotechnology
- 3. Understand the biodiversity law
- 4. Learn the bioethical guidelines and their considerations in biotechnological advancements.

R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 21 |

Curriculum:

PSMB304 - IPR and Bioethics			
Unit	Title	Learning Points	No of
			Lectures
		1.1 Need for IPR in Biotechnology	
		1.2 Patents for Biotechnology	
		1.3 Case Studies- Basmati Rice Issue- Turmeric	
I	IPR and Biodiversity	Patent- Agriculture Neem Patent- Chakraborty	15(1)
-	Law	case- Corn genetically engineered with an	10 (1)
		insecticide	
		1.4 Biodiversity law: introduction, Development,	
		International and National Biodiversity laws	
		2.1 The goals of biotechnology, Challenging	
		characteristics of biotechnology	
		2.2 Bioethics and microbiology Ethical issues and	
		Perspectives in the Discipline of Microbiology	
		Ethics Perspectives from India Bioethics,	
		bioweapons and the microbiologist	
		2.3 Ethical guidelines for Biomedical research on	
		Human subjects	
		2.4 Case study –Infectious disease	
		-Effects, Causes and Prevention of infectious	
		diseases through vaccination	
II	Bioethics	-Benefits and risks of vaccination	15 (1)
		-Alternative approaches to vaccination: voluntary,	
		quasi-mandatory and incentivized Schemes,	
		Comparing and assessing vaccination strategies,	
		Children as special cases, Surveillance	
		- HIV and AIDS as notifiable diseases,	
		- Control of infectious diseases,	
		- Issues raised by quarantine and isolation, -Use of	
		vaccines in control of infectious diseases	
		2.5 Public perception of biotechnology: Genetic	
		engineering –safety, social, moral and ethical	
		consideration	

Learning Resources recommended:

Unit 1

- 1. Molecular Biology by M D Morris
- 2. Microbial Biotechnology principles and applications by Lee Yuan Kun
- 3. IPR- Unleading the knowledge economy by Prabuddha Ganguli
- 4. Issues and Dilemmas of Biotechnology by Bernice Schacter
- 5. Biotechnology and IPR Legal and Social Implications by Kshitij Kumar Singh Unit 2
- 1. https://www.researchgate.net/publication/23467644 Bioethics and biotechnology Article in Cytotechnology · May 2007
- 2. Ethical issues in microbiology, *P Desikan, A Chakrabarti, V Muthuswamy. Indian Journal of Medical Microbiology, (2011) 29(4): 327-301
- 3. Ethical Perspectives in the Discipline of Microbiology: Article · December 2015 DOI: 10.18099/ijetv.v1i2.6817Article · December 2015DOI 10.18099/ijetv.v1i2.6817
- 4. Health Ethics in South-East Asia. Health ethics in six sear countries. Volume 1 Edited by Nilam Kasturiaratchi, Redar Lie, Jens Seeberg.
- 5. Ethical guidelines For Biomedical research on Human subjects .National Institute of Tuberculosis and Respiratory Diseases. Based on ICMR, CDSCO, GCP & International Ethical Guidelines.
- 6. Ethics in medical research: General principles with special reference to psychiatry research. Ajit Avasthi, Abhishek Ghosh, Sidharth Sarkar, Sandeep Grover. Indian Journal of Psychiatry 55(1), Jan-Mar 2013
- 7. Case study: Public health ethical issues, Nuffield Council on Bioethics, Chapter 4 page no.51-77.

Teaching Plan Unit No. Unit Title

Unit No.	Unit Title	Teaching Methods	No. of Lectures
Ι	IPR and Biodiversity Law	Chalk & Board, ICT	15
II	Bioethics	Chalk & Board, ICT	15

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class test	10
Assignment	05
Class performance	05
Total	20

B. Semester End Evaluation (Paper Pattern)

Question No	Unit	Type of Question (Marks)
Q1	Ι	Short Note (12)
Q2	II	Short Note (12)
Q3	I, II	Objective (06)
Total	30	

Name of the Course	Cell Biology
Course Code	PSMB305
Class	M.Sc. II
Semester	III
No of Credits	02
Nature	Theory
Туре	Major: Elective
Highlight revision specific to	A strong foundation in cell biology is essential for roles in research,
employability/	biotechnology, and medical fields. Proficiency in understanding
entrepreneurship/ skill	membrane structure is valuable in drug delivery, biophysics, and
development	bioengineering. Understanding cell division mechanisms is crucial in
	cancer research, drug development, and regenerative medicine.
	Mastery of cell and developmental biology concepts is essential in
	regenerative medicine, genetics, and biotechnology. Skill
	development includes understanding model organism development,
	genetic regulation, and morphogenesis as well as encompasses
	knowledge of lipid bilayer, membrane proteins, and their interactions.
	Entrepreneurs can develop novel therapeutics and diagnostics based
	on cell biology insights and can participate in the evolving field of
	regenerative medicine.

PSMB305 - Cell Biology

Modules at a Glance

Sr. No.	Modules	No. of Lectures
Ι	Introduction To Cell Biology	15
II	Cell Division, Cell Cycle, Cell Communication and Signaling	15
	Total	30

Course Outcomes:

At the end of the course learners will be able to

- 1. Understand the structure and compartmentalization of organelles, protein export, protein sorting
- 2. Understand the events of cell cycle and its regulation
- 3. Explain the communications of cells with other cells and to the environment
- 4. Explain the process of development in general

R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 25

Curriculum:

PSMB305 - Cell Biology			
Unit	Title	Learning Points	No of Lectures
Ι	Introduction To Cell Biology	 1.1 Introduction to cell biology- Structural organization and function of intracellular organelles (Cell wall, nucleus, mitochondria, Golgi bodies, lysosomes, endoplasmic reticulum, peroxisomes, plastids, vacuoles, chloroplast 1.2 Membrane structure : Cell membrane structure: Lipid bilayer, membrane proteins, Spectrins, Glycophorin, Multipass membrane proteins Bacteriorhodopsin 1.3 Membrane Transport: Principles of membrane transport, ion channels and electrical properties of membranes. protein transport, post translation transport and co translation transport. 1.4 Intracellular Compartments and protein sorting: Compartmentalization of cells, transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum, transport of proteins into mitochondria and chloroplasts 1.5 Cell Junctions and cell-cell adhesion: Anchoring, adherence junctions, Desmosomes, Gap junctions, cell-cell adhesion, Cadherins, Selectins, N-CAM, The extracellular matrix of animals., Integrins etc. 	15 (1)
П	Cell Division, Cell Cycle, Cell Communication and Signaling	 3.1 Mechanism of cell division: M-phase, Mitosis, Cytokinesis. 3.2 Cell cycle and Programmed cell death: Control system, intracellular control of cell cycle events, Apoptosis, extracellular control of cell growth and apoptosis. 3.3 Cell communication and Signaling: General principles of cell communication (Nitric oxide gas signal and nuclear receptors, Three classes surface receptors), Signaling through G-protein linked cell surface receptors: Tyrosine kinase, Docking sites, Ras, MAP kinase, Pl3 kinase, TGF- β, Signaling pathways by regulated proteolysis. 	15 (1)

Learning Resources recommended:

1. Molecular Biology of the Cell – Alberts, Johnson, Lewis, Raff, Roberts & Walter, 6th edition.

2. Cooper, G.M., Hausman R.E. (2009) The Cell: A Molecular Approach- 6th edition.

3. Molecular Cell Biology. Harvey Lodish; Arnold Berk; Chris A. Kaiser; Monty Krieger;

Anthony Bretscher; HiddePloegh; Angelika Amon; Kelsey C. Martin, 8th edition

4. Karp G. (2008). Cell and Molecular Biology: Concepts and Experiments. John Wiley & Sons.

5. Gilbert, Barresi (2016) Developmental Biology: 11th Edition

Teaching Plan

Unit No.	Unit Title	Teaching Methods	No. of Lectures
Ι	Introduction To Cell Biology Chalk & Board, ICT		15
II	Cell Division, Cell Cycle, Cell Communication and Signaling	Chalk & Board, ICT	15

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class test	10
Assignment	05
Class performance	05
Total	20

B. Semester End Evaluation (Paper Pattern)

Question No	Unit	Type of Question (Marks)
Q1	Ι	Short Note (12)
Q2	II	Short Note (12)
Q3	I, II	Objective (06)
Total	30	

Name of the Course	Practicals of PSMB305
Course Code	PSMB306
Class	M.Sc. II
Semester	III
No of Credits	02
Nature	Practical
Туре	Major: Elective
Highlight revision specific to employability/ entrepreneurship/ skill development	A strong foundation in cell biology is essential for roles in research, biotechnology, and medical fields. Proficiency in understanding membrane structure is valuable in drug delivery, biophysics, and bioengineering. Understanding cell division mechanisms is crucial in cancer research, drug development, and regenerative medicine. Mastery of developmental biology concepts is essential in regenerative medicine, genetics, and biotechnology. Skill development includes understanding model organism development, genetic regulation, and morphogenesis as well as encompasses knowledge of lipid bilayers, membrane proteins, and their interactions. Impart skills such as SDS PAGE & cell viability analysis. Entrepreneurs can develop tools for developmental biology research or offer services for model organism analysis

PSMB306 - Practicals of PSMB305 Modules at a Glance

Sr. No.	Modules	No. of Lectures
Ι	Practicals of PSMB305 (Cell Biology Practicals)	60
	Total	60

Course Outcomes: At the end of the course learners will be able to

- 1. Perform SDS PAGE using protein separation
- 2. Perform cell viability assays using different techniques
- 3. Perform isolation of cell organelles

Curriculum:

PSMB306 - Practicals of PSMB305			
Title	Title Learning Points		
Practicals of PSMB305 (Cell Biology Practicals)	 PRACTICALS 1. Disruption of bacterial cells followed by characterization of cellular proteins by SDS PAGE 2. Isolation of lymphocytes and its Viability staining using trypan blue 3. Determination of cell viability of lymphocytes by neutral red uptake assay 4. Comparison of various cell viability techniques 5. Isolation of mitochondria 6. Isolation of chloroplast and checking photophosphorylation 	60 (2)	

Learning Resources recommended:

- 1. Molecular cloning: a lab manual, Green and Sambrook vol. 1 4th ed.
- Cell Viability Assays; Terry L Riss, PhD, Richard A Moravec, BS, Andrew L Niles, MS, Sarah Duellman, PhD, Hélène A Benink, PhD, Tracy J Worzella, MS, and Lisa Minor. (https://www.ncbi.nlm.nih.gov/books/NBK144065/)
- 3. Cell Biology Laboratory Manual by William H. Heidcamp

Teaching Plan

Sr. No.	Practical Title	Teaching Methods	No. of Lectures
Ι	Cell Biology Practicals	Practical & Demonstration	60

Evaluation Pattern –

Dractical	Exte	ernal		Internal		
Course	Major techniques	Minor Techniques	Journal	Viva	Spots / Quiz/ Lab	Total
PSMB306	20 Marks	10 Marks	05 Marks	05 Marks	10 Marks	50 Marks

Name of the Course	Animal and Agriculture Biotechnology		
Course Code	PSMB307		
Class	M.Sc. II		
Semester	III		
No of Credits	02		
Nature	Theory		
Туре	Major: Elective		
Highlight revision specific to	Proficiency in transgenic plant traits and applications is valuable in		
employability/	agricultural innovation and biotech research. Expertise in		
entrepreneurship/ skill sustainable agriculture practices enhances employability in fa			
development agribusiness, and environmental roles. Proficiency in b			
	control methods is crucial in integrated pest management and		
	agricultural sustainability. Skill development includes knowledge of		
	transformation methods, gene delivery techniques, and manipulation		
	of genomes. It also includes understanding nutrient management.		
	Entrepreneurs can establish organic farming ventures or offer		
	consulting on sustainable practices. They can also develop		
	biopesticides or offer pest management consulting to farmers.		

PSMB307 - Animal and Agriculture Biotechnology Modules at a Glance

Sr. No.	Modules	No. of Lectures
Ι	Animal Biotechnology	15
II	Bio-control in Agriculture	15
	Total	30

Course Outcomes: By the end of the course, the learner will be able to: -

- 1. Comprehend the different methods of obtaining Transgenic animals and their applications.
- 2. Assess the importance of Vermicomposting and Biofertilizers in agriculture.
- 3. Understand the role of microbiologist in Organic farming and its scope.
- 4. Critically evaluate the need for the use of Biocontrol agents in the field of agriculture.

Curriculum:

PSMB307 - Animal and Agriculture Biotechnology				
Unit	Title	Learning Points	No of Lectu	
			res	
Ι	Animal Biotechnology	 1.1 Transgenic animals: Transgenic Mice: methodology: The retroviral Vector method, The DNA microinjection method, The engineering embryonic stem cell method, Genetic modification with the Cre-loxP recombination system, RNA interference, Transgenesis with high capacity vectors. 1.2 Uses of transgenic animals: Transgenic disease model, transgenic mice as test system, Conditional regulation of transgene expression, , Cloning live stock by Nuclear transfer, Transgenic livestock: production of pharmaceuticals, Production of Donor organs, Disease resistant livestock, Improving milk quality, Improving animal production traits, Transgenic poultry and transgenic fish 	15 (1)	
Π	Bio-control in Agriculture	 2.1 Biological control of Pests: Biological Control agent, mechanism of biocontrol, biopesticide, bioinsecticide, bioherbicide 2.2 Induced systemic resistance in Biocontrol of Plant diseases: a) Induction of systemic resistance by Pseudomonas, Bacillus, Tricoderma, Fungi and others. b) Mechanism of Induced systemic resistance 2.3 Microbial control strategies: Postharvest diseases of Fruits, Vegetables, Roots and Tubers a) Mode of action of biocontrol agents b) Extensive of use of biocontrol agents c) Enhancing biocontrol efficacy of Microbial Antagonist d) Biotechnological Approach 	15 (1)	

Learning Resources recommended:

- 1. B.R. Glick, J.J. Pasternak and C.L. Patten. Molecular Biotechnology: Principles and Applications of Recombinant DNA. 4th Edition. ASM Press, Washington D.C.
- 2. J.D. Watson, M. Gilman, J. Witkowski and M. Zoller. Recombinant DNA. 2nd Edition. Scientific American Books.
- 3. A.K. Sharma. A handbook of Organic Farming. 2004. Agrobios India.
- 4. A. Singh, A. Parmar and R. C. Kuhad. Bioaugmentation, Biostimulation and Biocontrol. Soil Biology Volume 28. Springer.
- 5. H. M. Gupta. Organic Farming and Sustainable Agriculture. 2005. ABD Publishers, Jaipur, India.

Teaching Plan

Unit No.	Unit Title Teaching Methods		No. of Lectures
Ι	Animal Biotechnology	Chalk & Board, ICT	15
II	Bio-control in Agriculture	Chalk & Board, ICT	15

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class test	10
Assignment	05
Class performance	05
Total	20

B. Semester End Evaluation (Paper Pattern)

Question No	Unit	Type of Question (Marks)	
Q1	Ι	Short Note (12)	
Q2	II	Short Note (12)	
Q3	I, II	Objective (06)	
Total	30		

Name of the Course	Practicals of PSMB307		
Course Code	PSMB308		
Class	M.Sc. II		
Semester	III		
No of Credits	02		
Nature	Practical		
Туре	Major: Elective		
Highlight revision specific to	Proficiency in transgenic plant traits and applications is valuable in		
employability/	agricultural innovation and biotech research. Expertise in		
entrepreneurship/ skill	sustainable agriculture practices enhances employability in farming,		
development	agribusiness, and environmental roles. Proficiency in biological pest		
	control methods is crucial in integrated pest management and		
	agricultural sustainability. Skill development includes knowledge of		
	transformation methods, gene delivery techniques, and manipulation		
	of genomes. Entrepreneurs can establish organic farming ventures		
	or offer consulting on sustainable practices. They can also develop		
	biopesticides or offer pest management consulting to farmers.		

PSMB308 - Practicals of PSMB307

Modules at a Glance

Sr. No.	Sr. Modules		
Ι	Practicals of PSMB307 (Animal and Agriculture Biotechnology Practicals)	60	
	Total	60	

Course Outcomes: At the end of the course the learner will be able to

- 1. Prepare and analyze vermicompost
- 2. Isolate plant growth promoting bacteria & estimate PGP substances
- 3. Perform qualitative and quantitative analysis of phosphate solubilizers

Curriculum:

PSMB308 - Practicals of PSMB307				
Title	No of Lectures			
Practicals of PSMB307 (Animal and Agriculture Biotechnology Practicals)	 PRACTICALS Preparation of biofertilizer/ biopesticide/bioinsecticide/bioherbicide Determination of effectiveness of various biocontrol agents used in agriculture. Isolation of organisms producing plant growth promoting substances Production and estimation of plant growth promoting substances (any one) Determination of mode of action of biocontrol agents. SELF STUDY Report on a visit to Biofertilizer and biopesticide production plants Assignment on Transgenic lifestock, Transgenic poultry and Transgenic fish. 	60 (2)		

Learning Resources recommended:

- 1. H. M. Gupta. Organic Farming and Sustainable Agriculture. 2005. ABD Publishers, Jaipur, India.
- 2. A.K. Sharma. A handbook of Organic Farming. 2004. Agrobios India.
- 3. https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162013000300011

Teaching Plan

Sr. No.	Practical Title	Teaching Methods	No. of Lectures
Ι	Animal and Agriculture Biotechnology Practicals	Practical & Demonstration	60

Evaluation Pattern –

Practical Course	External		Internal			
	Major technique	Minor Technique	Journal	Viva	Spots / Quiz/ Lab	Total
PSMB308	20 Marks	10 Marks	05 Marks	05 Marks	10 Marks	50 Marks

R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 34 | Page

Name of the Course	Research Project
Course Code	PSMB309
Class	M.Sc. II
Semester	III
No of Credits	04
Nature	Research Project
Туре	Major: Mandatory
Highlight revision specific to	Engaging in a research project can develop a wide range of
employability/	skills that are highly valuable in terms of employability,
entrepreneurship/ skill	entrepreneurship, and skill development. Research projects
development	require you to critically evaluate information, synthesize
	findings, and draw logical conclusions. This skill is
	invaluable for problem-solving in both employment and
	entrepreneurial contexts. Conducting research involves
	analyzing data, identifying patterns, and interpreting results.
	These analytical skills are crucial for making informed
	decisions in various professional settings. Depending on the
	nature of the research project, individuals may need to
	acquire technical skills related to data analysis, research
	methodologies, or specific tools/software. These technical
	proficiencies enhance employability and provide a
	competitive edge in the job market or entrepreneurial
	landscape.

Inclusion of project work in the course curriculum of the M.Sc. programme is one of the ambitious aspects in the programme structure. The main objective of inclusion of project work is to inculcate the element of research work challenging the potential of learner as regards to his/her eager to enquire and ability to interpret particular aspect of the study in his/her own words. It is expected that the guiding teacher should undertake the counselling sessions and make the awareness among the learners about the methodology of formulation, preparation and evaluation pattern of the project work.

Course Outcomes

- 1. Students will be able to identify the research problem and formulate objectives
- 2. Students will be able to critically evaluate existing literature in their field of study to identify gaps, inconsistencies, and areas for further investigation.
- 3. Students will demonstrate the ability to develop a comprehensive research proposal, including clear research questions, appropriate methodologies, and feasible timelines.
- 4. Students will enhance their written and oral communication skills through the creation and presentation of a well-structured research proposal.
- 5. Students will gain practical experience in budget planning and resource allocation for research projects, including identifying potential funding sources and justifying expenses.
- 6. Students will learn project management techniques and strategies to effectively plan, execute, and monitor research projects, ensuring timely completion and adherence to budget constraints.

Guidelines for preparation of Research Proposal

- 1. Research Proposal can be undertaken on any Major subject.
- 2. The Research Proposal should be prepared under the guidance of the Project Guide.
- 3. The Research Proposal shall contain the chapters as follows: Chapter I: Introduction Chapter II: Aim and Objectives Chapter III: Literature Review Chapter IV: Materials and Methods Chapter V: Expected Results Chapter VI: Budget and Time Schedule of activities Chapter VII: Facilities available Chapter VIII: References Chapter IX: CV of applicant
- 4. Research Proposal should be prepared by the student individually.
- 5. The Research Proposal shall consist of 40 to 60 Pages.
- 6. All students should prepare a PowerPoint presentation of research proposal which they have to present during the practical and/or internal examination.
- 7. All P.G. Teachers under the Faculty of Science are eligible to work as Project Guide.
- 8. The Responsibility of guiding the projects will be shared by all P.G.Teachers in proportion.
- 9. Proposal viva shall be conducted by the panel of examiners.

Assessment of the research proposal:

Total Marks: 100

1. Research Proposal: 60 Marks

Student should prepare and submit printed (one sided), spiral bound research proposal of around 40 to 60 pages (Marks distribution – Chapter I and II – 12 Marks, Chapter III – 12 Marks, Chapter IV and V – 12 Marks, Chapter VI and VII – 12 Marks, and Chapter VIII and IX – 12 Marks)

2. Research Proposal Presentation: 30 Marks

Student should prepare a PowerPoint presentation based on the research proposal, which he or she has to present during the practical and/or internal examination. (Marks distribution – Presentation (Slides) preparation – 15 Marks and Presentation skill and delivery – 15 Marks)

3. Research Proposal Viva: 10 Marks

Credits: 4

Syllabus for M.Sc. II Microbiology Semester IV

From the year 2024-25

No. of Courses	Semester IV	Credits	
	Major Mandatory		
PSMB401	Industrial And Food Microbiology		4
PSMB402	Applied Microbiology		4
PSMB403	Practical's of PSMB401 and PSMB402		4
	Major Electives		
PSMB404	Advances in biotechnology	2	
PSMB405	Practical's of PSMB404	2	
	OR		4
PSMB406	Mycology and Protozoology	2	
PSMB407	Practical's of PSMB406 2		
	1		
PSMB408	8 Research Project		
	Total Credits		22

Name of the Course	Industrial and Food Microbiology		
Course Code	PSMB401		
Class	M.Sc. II		
Semester	IV		
No of Credits	04		
Nature	Theory		
Туре	Major: Mandatory		
Highlight revision specific to	Understanding starter cultures enhances employability in food		
employability/	industry roles, such as food technologist or quality control specialist.		
entrepreneurship/ skill	Proficiency in fermented food production is valuable in food		
development	technology and culinary industries. Proficiency in advanced detection		
	methods enhances employability in food safety and quality assurance.		
	Expertise in microbial metabolite production is valuable in		
	biotechnology and pharmaceutical industries. Skill development		
	involves implementing quality control measures, adhering to		
	standards, and risk assessment. Apart from this mastering sampling		
	technique, understanding detection principles, and data interpretation		
	is also covered. Course also encompasses knowledge of fermentation		
	techniques, controlling microbial growth, and optimizing flavor		
	profiles. Entrepreneurs can establish testing labs specializing in rapid		
	and sensitive microorganism detection & can offer quality assurance		
	consulting services to food companies.		

PSMB401 - Industrial and Food Microbiology Modules at a Glance

Unit No.	Modules	No. of Lectures
Ι	Applications of Microbial technology in food processing	15
II	Food Preservation & Food safety	15
III	Strain improvement: Modern methods	15
IV	Fermentations of Microbial products for commercial use	15
	Total	60

R. P. Gogate College of Arts & Science and
(Autonomous) RatnagiriR. V. Jogalekar College of Commerce,
39 | Page

Course Outcomes:

At the end of the course the learner will be able

- 1. To develop employable skills concurrently with an understanding of various fermentation processes.
- 2. Understand the basic knowledge of food fermentation, along with advanced methods of food preservation, food analysis and food safety.
- 3. To develop the skill for production & assessment of probiotic microbes
- 4. To acquire knowledge about probiotics and prebiotics and their applications
- 5. To understand the high throughput screening techniques used for fermentation.

Curriculum:

PSMB401 - Industrial and Food Microbiology					
Unit	Unit Title Learning Points				
Ι	Applications of Microbial technology in food processing	 1.1 Starter culture of bacteria , yeast & mold used in food fermentation 1.2 Fermented Foods :- 1.2.1 General methods of fermented food production 1.2.2 Fermented cereals :- Bread production 1.2.3 Fermented vegetables: - Sauerkraut production. 1.2.4 Production of microbial flavoring compounds :- Vanilla flavor 1.3 Prebiotic & Probiotic 1.3.1 Probiotics 1.3.2 Screening of Potential Probiotics 1.3.3 Industrial Aspects of Probiotic Production 	15 (1)		

		2.1 Advanced methods of food preservation	
		Microwave Processing, Ohmic Heating, High-Pressure	
		Processing, Pulsed Electric Fields, Pulsed Light	
		Technology Magnetic Fields, Ultrasound, Pulsed X-	
		Rays, Ozone, Antimicrobial Edible Films	
	Food	2.2 Advanced methods of detection of microorganisms	
II	Preservation &	in food Sampling plans and sample preparation,	15(1)
	Food safety	physical methods, chemical methods.	
		2.3 Controlling quality of food Control at Source,	
		Codes of Good Manufacturing Practice, The Hazard	
		Analysis and Critical Control Point (HACCP) Concept	
		Quality Systems: BS 5750 and ISO 9000 Series	
		Risk Analysis	
	Strain improvement:	3.1 Screening methods and high throughput screening	
		3.2 Return of natural products	
		3.3 Broadening the base of the discovery process and	
		increasing the gene expression	
		3.4 Post genomics era- the influence of genomics,	
III		transcriptomics and fluxomics on the improvement of	15(1)
	Modern	primary metabolite producers	
	methods	3.5 Use of recombination systems for the improvement	
		of secondary metabolite production. A) The application	
		of parasexual cycle B) Protoplast fusion C)	
		Recombinant DNA technology.	
		4.1 Microbial production of Rosmeric acid & Caffeic	
	E	acid	
	of Microbial products for commercial use	4.2 Production of bacterial polysaccharide &	
IV		Commercially produced Polysaccharides	15 (1)
		4.3 Microbial Production of Riboflavin	
		4.4 Microbial Production of Antibiotic :-	
		Cephalosporin, Tetracycline	

Learning Resources recommended:

- 1. Bibek Ray and Arun Bhunia (2008) Fundamental Food Microbiology. 4th Ed. CRC Press.
- 2. Petra Foerst, Chalat Santivarangkna 2016 Advances in Probiotic Technology, CRC Press A Science Publishers Book
- 3. Prescott and Dunn's ''Industrial Microbiology''.1982 4th Edition, McMillan Publishers
- 4. Okafor Nkuda 2007 "Modern Industrial Microbiology and Biotechnology", Science Publications Enfield, NH, USA.

R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 41

- 5. Wilfried Schwab, Bernd Markus Lange, Bernd Markus Lange "Biotechnology of natural products" Springer International Publishing,
- 6. Peppler, H. J. and Perlman, D. (1979), "Microbial Technology''. Vol 1 &2, Academic Press
- 7. Stanbury P. F., Whitaker A. &HaII--S. J., 1997, "Principles of Fermentation Technology", 2nd Edition, Aditya Books Pvt. Ltd, New Delhi.
- 8. Osman Erkmen, T. Faruk Bozoglu, Food Microbiology Principles into Practice Volume I and II, John Wiley (2016)
- 9. Adams and Moss, Food Microbiology, 3rd edition, RSC Publishing (2008)
- 10. Robert E.C., Wildman 2nd Ed. "Handbook of Neutraceuticals & Functional Foods "CRC Press A SCIENCE PUBLISHERS BOOK
- 11. Ronald Ross Watson, Victor R. Preedy 1st Edition 2010 "Bioactive Foods in Promoting Health: Probiotics and Prebiotics" Academic Press is an imprint of Elsevier

Teaching Plan

Unit No.	Unit Title	Teaching Methods	No. of Lectures
Ι	Applications of Microbial technology in food processing	Chalk & Board, ICT	15
II	Food Preservation & Food safety	Chalk & Board, ICT	15
III	Strain improvement: Modern methods	Chalk & Board, ICT	15
IV	Fermentations of Microbial products for commercial use	Chalk & Board, ICT	15

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class test	20
Assignment	15
Class performance	05
Total	40

B. Semester End Evaluation (Paper Pattern)

Question No	Unit	Type of Question (Marks)
Q1	Ι	Short Note (12)
Q2	II	Short Note (12)
Q3	III	Short Note (12)
Q4	IV	Short Note (12)
Q5	I, II, III, IV	Objective (12)
Total		60

R. P. Gogate College of Arts & Science and
(Autonomous) RatnagiriR. V. Jogalekar College of Commerce,
42 | Page

Name of the Course	Applied Microbiology
Course Code	PSMB402
Class	M.Sc. II
Semester	IV
No of Credits	04
Nature	Theory
Туре	Major: Mandatory
Highlight revision specific	Understanding bioremediation strategies enhances employability in
to employability/	environmental science, waste management, and consulting roles.
entrepreneurship/ skill	Proficiency in ecosystem-specific bioremediation techniques is
development	valuable in addressing pollution across diverse environments.
	Understanding enzyme applications enhances employability in food
	technology, pharmaceuticals, and industrial sectors. Expertise in
	biotech applications in medicine is sought after in pharmaceutical
	research and healthcare. Skill development involves designing in situ
	bioremediation strategies, monitoring microbial activity, and
	assessing ecological impact. Besides this it includes optimizing
	biosensor technologies, understanding microbial contributions to
	climate change, and developing sustainable bioproducts.
	Entrepreneurs can offer services in molecular diagnostics, vaccine
	development, or biopharmaceutical production. They can develop
	enzyme-based products for food processing, cosmetics, and industrial
	processes.

PSMB402 - Applied Microbiology Modules at a Glance

Unit No.	Modules	No. of Lectures
Ι	Applications of Microbiology in bioremediation & pollution control	15
II	Applications of Enzymes	15
III	Microbial bio-molecules in diagnostics and therapeutics	15
IV	Novel uses of microorganisms and microbial products	15
	Total	60

R. P. Gogate College of Arts & Science and
(Autonomous) RatnagiriR. V. Jogalekar College of Commerce,
43 | Page

Course Outcomes:

At the end of the course the learner will be able

- 1. To understand and explain different applications of Microbiology
- 2. To explain the role of microbial bio molecules in diagnostic and therapeutic industry
- 3. To understand the role of microbiology in pollution control and remediation
- 4. To assess and apply the novel uses of microorganisms and microbial products.

Curriculum:

PSMB402 - Applied Microbiology			
Unit	Unit Title Learning Points		No of Lectures
Ι	Applications of Microbiology in bioremediation & pollution control	 1.1 Introduction to Bioremediation strategies for synthetic compounds, petrochemicals, inorganic waste. 1.2 Bioremediation strategies and techniques in situ and testing its efficacy and side effects 1.3 Bioremediation of metals & gaseous ex situ. Environment modification for bioremediation 1.4 Approaches to bioremediation : Microbial seeding & bioengineering using rDNA technology 1.5 Bioremediation of various ecosystems-Soil, marine, air 	
II	Applications of Enzymes	 2.1 Enzymes as analytical tool for the assessment of food quality, safety, and monitoring food processing 2.2 Applications of enzymes in food : Baking, fruit juice production, processing, brewing, and dairy. Applications of nonfood enzymes in detergents, Textiles, medical. 2.3 New industrial enzyme applications: Cosmetics, enzymes for preservation. Hard surface cleaning, oil field application, waste water treatment. 	15 (1)

	3.1 Protein therapeutics: Pharmaceuticals, monoclonal antibodies. Enzymes (Dnase I, Alginate lyase, Glycosidase)			
III	molecules in diagnostics and	3.2 Nucleic acid as a therapeutic agent – antisense RNA ribozymes and Nucleic acid delivery	15 (1)	
	therapeutics	3.3 Vaccines –		
		Subunit and Peptide vaccines.		
		3.4 Molecular diagnosis of genetic diseases.		
		4.1 Biosensors, microbial concrete, Bioleaching,		
IV	Novel uses of	Enhanced oil recovery, Biofuels		
	microorganisms and	4.2 Biotech of the marine environment, microbial	15 (1)	
	microbial products	contribution of climate change		
		4.3 Biopolymers, Bio surfactants		

Learning Resources recommended:

- 1. Environmental Biotechnology by Alan Scragg2nd edition
- 2. Wolfang Aehle ,Enzyme in industry
- 3. Muthuswamy --Enzymes in Food and Beverage Processing Edited by Muthusamy Chandrasekaran, CRC Press-
- 4. Medical Biotechnology Pratibha Nallari –
- 5. Comprehensive Biotechnology-Ramawat 4th Edition.
- 6. Glick: Molecular Biotechnology Principles and Applications of Recombinant DNA (3rd, Third Edition) By Bernard R. Glick Nallari
- 7. Alan Scragg , Environmental Biotechnology by Alan Scragg B. D. Singh Kalyani Publishers, 2010 - Biotechnology -

Teaching Plan

Unit No.	Unit Title	Teaching Methods	No. of Lectures
Ι	Applications of Microbiology in bioremediation & pollution control	Chalk & Board, ICT	15
II	Applications of Enzymes	Chalk & Board, ICT	15
III	Microbial bio-molecules in diagnostics and therapeutics	Chalk & Board, ICT	15
IV	Novel uses of microorganisms and microbial products	Chalk & Board, ICT	15

R. P. Gogate College of Arts & Science and
(Autonomous) RatnagiriR. V. Jogalekar College of Commerce,
45 | Page

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class test	20
Assignment	15
Class performance	05
Total	40

B. Semester End Evaluation (Paper Pattern)

Question No	Unit	Type of Question (Marks)
Q1	Ι	Short Note (12)
Q2	II	Short Note (12)
Q3	III	Short Note (12)
Q4	IV	Short Note (12)
Q5	I, II, III, IV	Objective (12)
Total		60

Name of the Course	Practicals of PSMB401 and PSMB402
Course Code	PSMB403
Class	M.Sc. II
Semester	IV
No of Credits	04
Nature	Practical
Туре	Major: Mandatory
Highlight revision specific to	Understanding starter cultures enhances employability in food
employability/	industry roles, such as food technologist or quality control
entrepreneurship/ skill	specialist. Proficiency in fermented food production is valuable in
development	food technology and culinary industries. Proficiency in advanced
	detection methods enhances employability in food safety and
	quality assurance. Expertise in microbial metabolite production is
	valuable in biotechnology and pharmaceutical industries. Skill
	development involves implementing quality control measures,
	adhering to standards, and risk assessment. Apart from this
	mastering sampling technique, understanding detection principles,
	and data interpretation is also covered. Course also encompasses
	knowledge of fermentation techniques, controlling microbial
	growth, and optimizing flavor profiles. Entrepreneurs can
	establish testing labs specializing in rapid and sensitive
	microorganism detection & can offer quality assurance consulting
	services to food companies.
	Proficiency in Good Manufacturing Practices (GMP) is vital for
	roles involving compliance and quality assurance. Expertise in
	for product safety
	Knowledge of cleaning, disinfection, and clean room practices is
	valuable for maintaining aseptic environments. Skill development
	includes risk assessment, audit procedures, and knowledge of
	relevant ISO standards. It also involves knowledge of cosmetic
	formulation, preservation techniques, and microbial testing
	protocols along with in-depth understanding of GMP principles,
	audit procedures, and quality management systems. Entrepreneurs
	can offer consulting services for water, pharmaceutical &
	cosmetic product analysis.

PSMB403 - Practicals of PSMB401 and PSMB402 Modules at a Glance

Sr. No.	Modules	No. of Lectures
Ι	Practicals of PSMB401 (Industrial and Food Microbiology Practicals)	60
II	Practicals of PSMB402 (Applied Microbiology Practicals)	60
	Total	120

Course Outcomes:

At the end of the course the learner will be able to

- 1. Perform bioassay of antibiotics
- 2. Preparation and analysis of sauerkraut
- 3. Isolate and characterize the probiotic producing microorganisms
- 4. Isolate pigments and biopolymer producing bacteria from environmental samples
- 5. Isolate & characterize agarase producing bacteria
- 6. Perform residual starch degradation

Curriculum:

PSMB403 - Practicals of PSMB401 and PSMB402			
Title	Learning Points	No of Lectures	
	Practicals		
Practicals of PSMB401 (Industrial and	 Isolation & Characterization of organisms with probiotic potential from food samples Effect of prebiotic on probiotic culture Sauerkraut preparation and Microbiological analysis Production of antibiotic and access 	60 (2)	
Food Microbiology Practicals)	 4. Production of antibiotic and assay Assignments Detection of microorganism in food by any one Novel method. BIS methods to study different adulterants in foods 		

	PRACTICALS	
	1) Enrichment and isolation of Agarase producing bacteria	
Practicals of	2) Isolation of pigment producing bacteria from marine	
PSMB402	environment and extraction of pigments through solvent extraction	
(Applied	procedures	60 (2)
Microbiology	3) Removal of blood stains by using proteases/detergents.	
Practicals)	4) Residual starch degradation by amylase	
	SELF STUDY	
	1. Report on an visit to an relevant industry/institute	

Learning Resources recommended:

- 1. Petra Foerst, Chalat Santivarangkna 2016 Advances in Probiotic Technology ,CRC Press A Science Publishers Book
- Robert E.C., Wildman 2nd Ed. "Handbook of Neutraceuticals & Functional Foods " CRC Press A SCIENCE PUBLISHERS BOOK
- 3. https://www.researchgate.net/publication/351692943_Isolation_and_Characterization_of _Probiotics_from_Different_Curd_Samples
- 4. <u>https://www.academia.edu/7844126/Isolation_and_characterization_of_probiotic_lactic_</u> <u>Acid_bacteria_from_milk_and_curd_samples</u>
- 5. Bibek Ray and Arun Bhunia (2008) Fundamental Food Microbiology. 4th Ed. CRC Press.
- 6. Comprehensive Biotechnology-Ramawat 4th Edition.
- 7. https://link.springer.com/chapter/10.1007/978-3-642-24520-6_2
- 8. Wolfang Aehle ,Enzyme in industry
- 9. https://www.sciencedirect.com/science/article/abs/pii/S2352554121002096

Teaching Plan

Sr. No.	Unit Title	Teaching Methods	No. of Lectures
Ι	Industrial and Food Microbiology Practicals	Practical & Demonstration	60
II	Applied Microbiology Practicals	Practical & Demonstration	60

Evaluation Pattern –

Dractical	External		Internal			
Course	Major techniques	Minor Techniques	Journal	Viva	Spots / Quiz/ Lab	Total
PSMB403	40 Marks	20 Marks	10 Marks	10 Marks	20 Marks	100 Marks

R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 49 | Page

Name of the Course	Advances in Biotechnology
Course Code	PSMB404
Class	M.Sc. II
Semester	IV
No of Credits	02
Nature	Theory
Туре	Major: Elective
Highlight revision specific to	Understanding principles of nanoscale materials, applications in
employability/	medicine, and ethical considerations are important with respect to
entrepreneurship/ skill	various careers in biotechnology. Proficiency in nanotechnology
development	applications in biotech fields enhances employability in materials
	science, medicine, and agriculture. Entrepreneurs can develop
	algal-based products for sustainable food, energy, and cosmetics
	markets. The knowledge of algae cultivation, biofuel production
	and environmental implications offer opportunities for
	employment in research, development and application of advanced
	technologies. Other skills such as understanding nanomaterial
	properties, biosynthesis, and applications in various sectors are
	also imparted.

PSMB404 - Advances in Biotechnology Modules at a Glance

Sr. No.	Modules	No. of Lectures
Ι	Nano Biotechnology	15
II	Algal Biotechnology	15
	Total	30

Course Outcomes:

At the end of the course students will:

- 1. Comprehend the fundamental principles of nanoscale materials, their properties and potential applications in various industries.
- 2. Demonstrate the ability to design and synthesize nanomaterials with specific properties for targeted biomedical or industrial applications.

R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri

- 3. Demonstrate proficiency in algal biomass production and processing techniques for application in biofuel production and sustainable resource management.
- 4. Apply knowledge of algal biotechnology to develop innovative solutions for environmental challenges.

Curriculum:

PSMB404 - Advances in Biotechnology				
Unit	Title	Learning Points	No of Lectures	
Ι	Nano Biotechnology	 1.1 Basics of Nanotechnology - Types of nano materials - Properties of nano materials 1.2 Fundamentals of Bio-nanotechnology - nanomotors of biological systems – ATP synthase: a nanoturbine - Flagellar motors in bacteria -Linear molecular motors 1.3 Biosynthesis of nanomaterials biosystems as nano factories - Bacteria as machinery for synthesis of nano metals- gold, silver, Zinc, cadmium, platinum - Fungi and Actinomycetes as fabricators of nano metals, Algae as nanotechnologists 1.4 DNA and proteins as templates for molecular Nanotechnology and nano electronics 1.5 Applications of nanotechnology – Nanomedicine, nano bio-devices, nano implants, applications in agriculture, food and cosmetics 	15 (1)	
II	Algal Biotechnology	 2.1 Culture techniques and media for growth of fresh water algae: - Measurement of algal growth in culture - lag phase, log phase, stationary phase and death phase using biomass, chlorophyll content, Measurement of algal pigemnts. 2.2 Culturing microalgae in Photo bioreactors, Fermentor and Outdoor ponds: Variation in design, culture conditions, scale up, advantages and disadvantages 2.3 Applications of Algal Biotechnology: Food Supplements and fertilizers, Bioactive compounds and cosmetics, Biofuel, Bioplastics. 	15 (1)	

Learning Resources recommended:

Unit 1

- 1. Bionanotechnology –concepts and applications. Madhuri Sharon, Maheshwar Sharon, Sunil Pandey, Goldie Oza
- 2. Nanotechnology- Principles and Practices 2 nd edition Sulabha K. Kulkarni Capital Publishing Company
- 3. Nanotechnology- Nanomaterials and Nanodevices G.Mohan Kumar .Narosa Publications

Unit 2

- 1. Bellinger, E. G. and Sigee, D. C. (2010). Freshwater algae: Identification and use as a bioindicators. Wiley-Blackwell (Pre-read Book)
- 2. Lee, R. E. (2008). Phycology. 4ed. Cambridge University Press (Pre-read Book)
- 3. Andersen, R. A. (2005). Algal culturing techniques. Elsevier Academic Press
- 4. Sahoo, D. and Seckbach, J. (2015). The Algae World. Springer
- 5. Prescott, G. W. (1954). How to Know Fresh-Water Algae. WM C. Brown Company (For practicals only)
- 6. Vuuren, S. J. (2006). Easy identification of the most common freshwater algae. A guide for the identification of microscopic algae in South African freshwaters. DWAF and NWU (For practicals only)
- 7. Sharma, P., Sharma, N. (2017) Industrial and Biotechnological Applications of Algae: A Review. Journal of Advances in Plant Biology 1(1):01-25. (Review Paper)
- 8. Barkia, I., Saari, N., Manning, S. R. (2019). Microalgae for High-Value Products Towards Human Health and Nutrition. Mar. Drugs 2019, 17, 304; doi:10.3390/md17050304 (Review Paper)
- 9. Rasul, I. et. al. (2017) Algae Biotechnology: A green light for engineered algae. From Algae Based Polymers, Blends and Composites. Elsevier (Book Chapter)
- 10.Barsanti, L. and Gualtieri P. (2014). Algae: Anatomy, Biochemistry, and Biotechnology, 2ed. CRC Press.
- 11. Richmond, A. and Hu, Q. (2013). Handbook of Microalgal Culture: Applied Phycology and Biotechnology, 2ed. John Wiley & Sons,

Teaching Plan

Unit No.	Unit Title	Teaching Methods	No. of Lectures
Ι	Nano Biotechnology	Chalk & Board, ICT	15
II	Algal Biotechnology	Chalk & Board, ICT	15

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class test	10
Assignment	05
Class performance	05
Total	20

B. Semester End Evaluation (Paper Pattern)

Question No	Unit	Type of Question (Marks)
Q1	Ι	Short Note (12)
Q2	II	Short Note (12)
Q3	I, II	Objective (06)
Total	30	

Name of the Course	Practicals of PSMB404
Course Code	PSMB405
Class	M.Sc. II
Semester	IV
No of Credits	02
Nature	Practical
Туре	Major: Elective
Highlight revision specific to	Proficiency in nanotechnology applications in biotech fields enhances
employability/	employability in materials science, medicine, and agriculture.
entrepreneurship/ skill	Entrepreneurs can develop algal-based products for sustainable food,
development	energy, and cosmetics markets. They can also understand and
	navigate regulatory framework related to nanoparticle products. Skill
	development includes understanding nanomaterial properties,
	biosynthesis, and innovating new nanotechnology based products
	considering market needs.

PSMB405 - Practicals of PSMB404 Modules at a Glance

Sr. No.	Modules	No. of Lectures
Ι	Practicals of PSMB404 (Advances in Biotechnology Practicals)	60
	Total	60

Course Outcomes:

At the end of the course learners will be able to

- 1. Synthesize silver nanoparticles and determine its antibacterial activity
- 2. Prepare growth culture medium for algae
- 3. Cultivate microalgae form freshwater environments

Curriculum:

PSMB405 - Practicals of PSMB404			
Title	Learning Points	No of Lectures	
Practicals of PSMB404 (Advances in Biotechnology Practicals)	 PRACTICALS Preparation and characterization of Silver Nanoparticles Survival Curve and antibacterial activity of nano silver particles Study of nano silver coated gauze / textiles for antimicrobial effect on different bacteria. Preparation of growth culture medium for fresh water algae and study its diversity with respect to its type count and morphology. Counting algal Cells in Cultures with the Light Microscope. SELF STUDY Assignment on Measurement of Chlorophyll a and Carotenoids Concentration in Cyanobacteria Study various types of microalgae and its role in climate change 	60 (2)	

Learning Resources recommended:

- 1. Andersen, R. A. (2005). Algal culturing techniques. Elsevier Academic Press
- 2. Vuuren, S. J. (2006). Easy identification of the most common freshwater algae. A guide for the identification of microscopic algae in South African freshwaters. DWAF and NWU
- 3. Richmond, A. and Hu, Q. (2013). Handbook of Microalgal Culture: Applied Phycology and Biotechnology, 2ed. John Wiley & Sons, Ltd.

Teaching Plan

Sr. No.	Practical Title	Teaching Methods	No. of Lectures
Ι	Advances in Biotechnology Practical	Practical & Demonstration	60

Evaluation Pattern –

Draatical	Exte	ernal	Internal			
Course	Major technique	Minor Technique	Journal	Viva	Spots / Quiz/ Lab	Total
PSMB405	20 Marks	10 Marks	05 Marks	05 Marks	10 Marks	50 Marks

R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 55 | Page

Name of the Course	Mycology and Protozoology
Course Code	PSMB406
Class	M.Sc. II
Semester	IV
No of Credits	02
Nature	Theory
Туре	Major: Elective
Highlight revision specific to	Understanding mycology and protozoology enhances
employability/	employability in biotechnology, pharmaceuticals, and ecology
entrepreneurship/ skill	roles. Proficiency in fungal pigments, mycotoxins, and lipid
development	production is valuable in food, cosmetics, and bioproduction
	industries. Skills such as protozoan classification, culturing
	techniques, and understanding their ecological significance are
	also being imparted. Expertise in identifying pathogenic protozoa,
	valuable in clinical settings for diagnosing and managing
	infectious diseases. Capability to assess the ecological impact of
	protozoa and fungi in various ecosystems, will help the students to
	contribute to environmental monitoring and biodiversity studies.

PSMB406 - Mycology and Protozoology Modules at a Glance

Sr. No.	Modules	No. of Lectures
Ι	Fungal technology	15
II	Protozoology	15
	Total	30

Course Outcomes:

At the end of this course the learner will

- 1. Be familiar to contributions that show new applications, developments of wellestablished technology, novel research into new technology with reference to these two categories of microorganisms.
- 2. Have solid understanding of basic concepts in these fields and the knowledge gained will enable students to apply these concepts to problems in the different fields of Mycology and Protozoology.

R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 56 | Page

Curriculum:

PSMB406 - Mycology and Protozoology				
Unit	Title	Learning Points	No of Lectures	
Ι	Fungal technology	 1.1 Mycology a) A neglected Mega Science b) The diversity of fungi and fungus like organisms c) Fungal molecular taxonomy: An overview 1.2 Fungal Pigments and Mycotoxins a) Genetic basis of pigment production b) Factors affecting pigment production c) Fermentation for pigment synthesis d) Mycotoxins and their replacement e) Relevance of pigments in various fields 1.3 Fungal siderophores – structure, function and applications 1.4 Fungal Lipid production a) Oleaginous fungi b) Lipid production from lignocelluloses and crude glycerol 1.5 Fungal Metabolites a) Enzymes - Xylanase, Laccase, Galactosidase, Inulinase, Catalase and b). Flavors and Aroma c) Engineering of fungal biomolecules 	15 (1)	

		2.1 Introduction to Protozoa	
		a) Classification of Protozoa	
		b) Processes in Protozoa: Motility, Nutrition,	
		Reproduction	
		c) Cultivation of Protozoa	
		2.2 Protozoa used in Wastewater Microbiology	
		a) Sarcodina	
		b) Flagellates	
		c) Ciliates	
		d) Sporozoa	
		e) Rhizopoda	
II	Protozoology	2.3 Importance of Protozoans in water and	15 (1)
		wastewater treatment	
		a) Protozoa as indicators of wastewater treatment	
		efficiency	
		b) Activated sludge ecosystems	
		c) Microfaunas as indicators	
		2.4 Importance of Protozoans in Soil	
		bioremediation	
		2.5 Protozoan Parasites	
		a) Giardia spps	
		b) Microsporidia	
		c) Toxoplasma	

Learning Resources recommended:

Unit 1 – Fungal technology

- 1. Applied Mycology by Mahendra Rai, Paul Dennis Bridge, 2009, CAB International.
- 2. Fungal Biology 4thed. By J. W. Deacon, 2006, Blackwell Publishing.
- 3. Fungal Biomolecules sources, Applications and Recent developments by Vijay kumar Gupta, Robert L. Mach, S. Sreenivasaprasad2015, Published by John Wiley & Sons .ltd.
- 4. Developments in Fungal Biology and Applied Mycology by Tulsi Satyanarayana, Sunil K. Deshmukh, B. N. Johri2017, Springer.
- 5. Gunther Winkelmann (2007) "Ecology of siderophores with special reference to the fungi" *Biometals*, 20:379–392.
- 6. E. Ahmed* and S. J. M. Holmström (2014); "Siderophores in environmental research: roles and applications" *Microbial Biotechnology*, 7, 196–208. Published by John Wiley & Sons Ltd and Society for Applied Microbiology.
- 7. Biotechnology of Yeasts and Filamentous Fungi by Andriy A. Sibirny 2017, Springer International Publishing AG.

R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 58 |

Unit 2 – Protozoology

1. The handbook of water and waste water Microbiology by Duncan Mara and Nigel Horan,2003

- 2. Wastewater Microbiology, 2nd edition by Bergey, D.H
- 3. Wastewater Microbiology, 4th edition by Gabriel Bitton, 2011
- 4. Pauli W, Berger S, Protozoa in wastewater treatment: Function and Importance.

```
Biodegradation and Persistence, 2001, Pg 203-252. doi:10,1007/10508767_3
```

- 5. Atlas of Medical Helminthology and Protozoology, 2001 Peter L. Chiodini, A.H.Moody, D.W.Manser
- 6. Textbook of Medical Parasitology: Protozoology and Helminthology, 4th edition by S. C. Parija
- 7. https://www.sciencedirect.com/science/article/abs/pii/S1872203207600687
- 8. https://www.nature.com/articles/ismej201320

Teaching Plan

Unit No.	Unit Title	Teaching Methods	No. of Lectures
Ι	Fungal technology	Chalk & Board, ICT	15
II	Protozoology	Chalk & Board, ICT	15

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class test	10
Assignment	05
Class performance	05
Total	20

B. Semester End Evaluation (Paper Pattern)

Question No	Unit	Type of Question (Marks)
Q1	Ι	Short Note (12)
Q2	II	Short Note (12)
Q3	I, II	Objective (06)
Total	30	

R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 59 | Page

Name of the Course	Practicals of PSMB406	
Course Code	PSMB407	
Class	M.Sc. II	
Semester	IV	
No of Credits	02	
Nature	Practical	
Туре	Major: Elective	
Highlight revision specific to	Understanding mycology enhances employability in	
employability/	biotechnology, pharmaceuticals, and ecology roles. Proficiency in	
entrepreneurship/ skill	fungal pigments, mycotoxins, and lipid production is valuable in	
development	food, cosmetics, and bioproduction industries. Understanding	
	virology and viral detection enhances employability in healthcare,	
	research, and diagnostics roles. Expertise in bacteriophages an	
	phage therapy enhances employability in microbiology and	
	medical research. Skill development includes understanding	
	disease symptoms, virus detection techniques, and economic losses	
	due to viral infections, microscopy, serological methods, nucleic	
	acid detection, and virus neutralization. Other skills such as	
	protozoan classification, culturing techniques, and understanding	
	their ecological significance are also being imparted.	
	Entrepreneurs can establish viral diagnostic labs; wastewater	
	treatment consulting and can also offer plant virus detection	
	services to farmers or develop disease-resistant crops.	

PSMB407 – Practicals of PSMB406 Modules at a Glance

Sr. No.	Modules	No. of Lectures
Ι	Practicals of PSMB406 (Mycology and Protozoology Practicals)	60
	Total	60

Course Outcomes: At the end of the course the learner will be able to

- 1. Isolate and characterize fungal pigments
- 2. Perform Mycotoxin isolation and characterization
- 3. Estimate fungal enzymes using chemical assay

Curriculum:

PSMB407 – Practicals of PSMB406			
Title	Learning Points	No of Lectures	
Practicals of PSMB406 (Mycology and Protozoology Practicals)	 PRACTICALS 1. Qualitative and quantitative estimation of fungal Laccase enzyme 2. Isolation and characterization of fungal pigments. 3. Mycotoxin isolation and characterization. 4. Laboratory diagnosis of protozoan diseases. 5. Isolation and identification of environmental protozoa SELF STUDY 1. Assignment on Emerging protozoa/fungal diseases. 	60 (2)	

Learning Resources recommended:

- 1. Medical Mycology Laboratory procedures by Chakrabarti A. and Shivaprakash M. R.
- 2. Mycology Manual by M. S. Ali Shtayeh, R. M. Jamous and R. Yaghmour
- 3. The handbook of water and waste water Microbiology by Duncan Mara and Nigel Horan,2003
- 4. Textbook of Medical Parasitology: Protozoology and Helminthology, 4 thedition by S. C. Parija

Teaching Plan

Sr. No.	Practical Title	Teaching Methods	No. of Lectures
Ι	Mycology and Protozoology Practicals	Practical & Demonstration	60

Evaluation Pattern –

	External		Internal			
Practical Course	Major technique	Minor Technique	Journal	Viva	Spots / Quiz/ Lab	Total
PSMB407	20 Marks	10 Marks	05 Marks	05 Marks	10 Marks	50 Marks

R. P. Gogate College of Arts & Science and
(Autonomous) RatnagiriR. V. Jogalekar College of Commerce,
61 | Page

Name of the Course	Research Project
Course Code	PSMB408
Class	M.Sc. II
Semester	IV
No of Credits	06
Nature	Research Project
Туре	Major: Mandatory
Highlight revision specific to	Engaging in a research project can develop a wide range of
employability/	skills that are highly valuable in terms of employability,
entrepreneurship/ skill	entrepreneurship, and skill development. Research projects
development	often involve presenting findings through written reports,
	presentations, and discussions. Developing clear and concise
	communication skills is essential for effectively conveying
	ideas to different audiences, whether it's for a job interview,
	or collaborating with others. Planning, organizing, and
	executing a research project requires strong project
	management skills. Learning how to manage time,
	resources, and tasks efficiently can be beneficial for career
	advancement and entrepreneurial ventures. Research
	projects often involve encountering obstacles and challenges
	that require innovative solutions. Developing problem-
	solving abilities through research can help individuals adapt
	to various situations in their careers. Research projects
	encourage creativity in exploring new ideas, hypotheses, and
	approaches. Cultivating a mindset of innovation through
	research can lead to the development of novel solutions,
	products, or services, which are essential for
	entrepreneurship and staying ahead in dynamic industries.

Inclusion of project work in the course curriculum of the M.Sc. programme is one of the ambitious aspects in the programme structure. The main objective of inclusion of project work is to inculcate the element of research work challenging the potential of learner as regards to his/her eager to enquire and ability to interpret particular aspect of the study in his/her own words. It is expected that the guiding teacher should undertake the counselling sessions and make the awareness among the learners about the methodology of formulation, preparation and evaluation pattern of the project work.

Marks: 90 (Research Project); 30 (Presentation); 30 (Project Viva): Total 150 Credits: 6

Course Outcomes

- 1. Identify the research problem and formulate objectives
- 2. Choose appropriate methodology with proper tools and techniques
- 3. Analyse and interpret the data collected from the performed experiments.
- 4. Make decision or find out conclusions on the basis of data analysis
- 5. Recall and list key research paradigms and methodologies in the subject.
- 6. Explain the principles of statistical analysis and their application in subject of research.

Guidelines for preparation of Research Project

- 1. Research Project can be undertaken on any Major subject.
- 2. Research Project can be based on primary data or secondary data.
- 3. The Research Project should be prepared under the guidance of the Project Guide.
- 4. The Research Project shall contain the chapters as follows:

Preliminary Pages of Thesis Chapter I: Abstract Chapter II: Introduction Chapter III: Literature Review Chapter IV: Materials and Methods Chapter V: Results and Discussion Chapter VI: Conclusion Chapter VII: Future Prospects Chapter VIII: References Chapter IX: Appendix

- 5. Project Work will be done by the student individually or in groups.
- 6. The Research Project (Thesis) shall consist of 80 to 100 Pages.
- 7. The student should prepare a PowerPoint presentation based on the research project and he or she has to present it during practical and/or internal examination.
- 8. Two Copies of typed Research Projects should be submitted to the department as per the schedule provided by the college.
- 9. All P.G. Teachers under the Faculty of Science are eligible to work as Project Guide.
- 10. The Responsibility of guiding the projects will be shared by all P.G.Teachers in proportion.
- 11. Project viva shall be conducted by the practical examiners.

For this purpose, the following points may be kept in mind while assessing the project reports:

a. The panel of experts should try to verify that the candidate has done the project on his own and also identify his/her insight in the research problem concerned. The quality of the work should be evaluated on the basis of novelty, use of research methodology, contribution to the

R. P. Gogate College of Arts & Science andR. V. Jogalekar College of Commerce,(Autonomous) Ratnagiri63 | Page

society and developing critical thinking, analytical thinking and decision-making skills of students.

b. Research Project report will be examined by the External and/or Internal Examiner, for 90 marks.

c. Project work presentation will be assessed by the External and/or Internal examiner, for 30 Marks.

d. Project viva will be assessed by the External and/or Internal examiner, for 30 Marks.

Structure to be followed to maintain the uniformity in formulation and presentation of Project Work

(Model Structure of the Project Work)

Preliminary Pages of Thesis

Chapter I: Abstract

Abstract should be a miniature version of the thesis, and provide a brief summary of each of the main chapters of the thesis. A typical thesis abstract should have information on four aspects—(1) the rationale and main objectives of the study, (2) the materials and methods used, (3) the summary of the results obtained, and finally, (4) the conclusion of the entire thesis.

Chapter II: Introduction

In this chapter Selection and relevance of the problem, historical background of the problem, brief profile of the study area, definition/s of related aspects, characteristics, different concepts pertaining to the problem etc can be incorporated by the learner.

Chapter III: Literature Review

This chapter will provide information about studies done on the respective issue. This would specify how the study undertaken is relevant and contribute for value addition in information/ knowledge/ application of study area which ultimately helps the learner to undertake further study on same issue.

Chapter IV: Materials and Methods

This chapter will include Objectives, Hypothesis, Scope of the study, limitations of the study, significance of the study, Selection of the problem, Sample size, Data collection, Tabulation of data, Techniques and tools to be used, etc. can be incorporated by the learner.

Chapter V: Results and Discussion

In this section, you present your findings with supporting data. The Results, therefore, should communicate the facts, measurements, and observations gathered by the student supported by data in tables, diagrams, graphs, and photographs. Along with results there should be a Discussion section to show the relationships among observed facts. This chapter must show how far the objectives set out or assumptions made at the start of the experiment are proved or disproved. Application of bio statistical tools should be encouraged while interpreting the results.

Chapter VI: Conclusions

In this chapter of project work, findings of work will be covered and suggestion will be enlisted to validate the objectives and hypotheses.

Chapter VII: Future Prospects

This chapter should highlight avenues for future research that could stem from the current project, including unanswered questions, potential follow-up studies, or areas for further exploration.

Chapter VIII: References / Bibliography

The references or bibliography section of a research project should contain a list of all the sources cited within the main text. This section serves to acknowledge the work of other researchers and provide readers with the information they need to locate and consult the cited sources themselves.

Chapter IX: Appendix

The appendix of a research project typically includes supplementary materials that provide additional information or support for the main text.

Chairperson, (Dr. Nitin Potdar) BoS, Microbiology

R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, (Autonomous) Ratnagiri 65 | Page