R.E. Society's

R.P. Gogate College of Arts & Science

&

R.V. Jogalekar College of Commerce

(Autonomous)

Ratnagiri

Syllabus For

M. Sc. II

Organic Chemistry

Semester III and IV

Under Choice Based Credit System

(CBCS)

As Per framework of NEP 2020

With effect from Academic Year 2024-2025

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 1 | Page

R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce (Autonomous), Ratnagiri Board of Studies in Chemistry Academic Year 2024-25

PG Course:

Sr.	Туре	No.	Course	Nomenclatur	Sr.	Туре	No.	Course	Nomenclature
No.	of the	of	Code	e	No.	of the course	of	Code	
	course	Cr.					Cr.		
		Seme	ster I				Semes	ter II	
1	Major	04	PSCH	Inorganic	1	Major	04	PSCH	Inorganic
	Mandatory		101	Chemistry-I		Mandatory		201	Chemistry-II
2	Major	04	PSCH	Organic	2	Major	04	PSCH	Organic
	Mandatory		102	Chemistry-I		Mandatory		202	Chemistry-II
3	Major	04	PSCH	Analytical	3	Major	04	PSCH	Analytical
	Mandatory		103	Chemistry-I		Mandatory		203	Chemistry-II
4	Major	02	PSCH	Chemistry	4	Major	02	PSCH	Chemistry
	Mandatory		104	Practical-I		Mandatory		204	Practical-
				(Organic					(Organic
				Chemistry and					Chemistry and
				Analytical					Analytical
				Chemistry)					Chemistry)
5	Major	02	PSCH	Physical	5	Major	02	PSCH	Physical
	Electives		105	Chemistry I		Electives		205	Chemistry III
6	Major		PSCH	Chemistry	6	Major		PSCH	Chemistry
	Electives	02	106	Practical E-I		Electives	02	206	Practical E-III
				(Physical and					(Physical and
				Inorganic					Inorganic
				Chemistry)					Chemistry)
7	Major	02	PSCH	Physical	7	Major	02	PSCH	Physical
	Electives		107	Chemistry II		Electives		207	Chemistry IV
8	Major	02	PSCH	Chemistry	8	Major	02	PSCH	Chemistry
	Electives		108	Practical E-II		Electives		208	Practical E-IV
				(Physical and					(Physical and
				Inorganic					Inorganic
				Chemistry)					Chemistry)
	Sem	ester II	I (Organic)		Seme	ester IV	/ (Organic)
1	Major	4	PSOC	Theoretical	1	Major	4	PSOC	Theoretical
	Mandatory-		H301	Organic		Mandatory-I		H401	Organic
	Ι			Chemistry I					Chemistry II
2	Major	4	PSOC	Synthetic	2	Major	4	PSOC	Synthetic
	Mandatory-		H302	organic		Mandatory-II		H402	organic
	II			chemistry I		-			chemistry II
3	Maior	4	PSOC	Natural	3	Maior	4	PSOCH	Organic
_	Mandatory-	-	H303	products &	_	Mandatory-III	-	403	Chemistry
	III		11505	Spectroscopy		······································			Practical IV
				specification					
1			1	1	1		1		

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 2 | Page

4	Major Mandatory- IV	02	PSOC H304	Organic Chemistry practical I					
5	Major Electives-I	02	PSOC H305	Medicinal Chemistry	5	Major Electives-I	4	PSOCH 404	Natural products & Heterocyclic Chemistry
6	Major Electives-I	02	PSOC H306	Organic Chemistry practical II	6	Major Electives-II	4	PSOCH 405	Bio –Organic Chemistry
7	Major Electives-II	02	PSOC H307	Biogenesis & Green Chemistry	7	Major Mandatory	06	PSOCH 406	Research Project (RP)
8	Major Electives-II	02	PSOC H308	Organic Chemistry practical III					
9	Major Mandatory	04	PSOCH 309	Research Project (RP)					

Master of Science (M.Sc.) Programme

Under Choice Based Credit System (CBCS)

Course Structure

M.Sc .II Organic chemistry

(To be implemented from Academic Year 2024-25)

Course Code	Semester III	Credits	Course Code	Semester IV	Credits
	Major Mandatory			Major Mandatory	
PSOCH301	Theoretical Organic Chemistry I	4	PSOCH401	Theoretical Organic Chemistry II	4
PSOCH302	Synthetic organic chemistry I	4	PSOCH402	Synthetic organic chemistry II	4
PSOCH303	Natural products & Spectroscopy I	4	PSOCH403	Organic Chemistry Practical IV	4
PSOCH304	Organic Chemistry practical I	2			
	Major Electives (Any One)			Major Electives (Any One)	
PSOCH305	Medicinal Chemistry	2	PSOCH404	Natural products & Heterocyclic Chemistry	4
PSOCH306	Organic Chemistry practical II	2			
	OR			OR	
PSOCH307	Biogenesis & Green Chemistry	2	PSOCH405	Bio –Organic Chemistry	4
PSOCH308	Organic Chemistry practical III	2			
PSOCH309	Research Project (RP)	4	PSOCH406	Research Project (RP)	6
		22			22

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 4 | Page

Syllabus for Masters of Science in Organic Chemistry for the year 2024-25

Nomenclature of the Course	Theoretical Organic Chemistry I				
Class	M.ScII				
Semester	Ш				
Course Code	PSCHO301				
No. of Credits	04				
Nature	Theory				
Туре	Major: Mandatory				
Course Outcomes:	ar will be able to				
CO1: Identify and classify the diffe	er will be able to				
corboactions nitrones, corbo	neg armag and latence. Explain the structural				
carbocations, intrenes, carbe	nes, arynes, and ketenes; Explain the structural				
characteristics of each type of	of intermediate and discuss their relative stabilities.				
CO2: Describe and demonstrate the	e methods for generating these intermediates in organic				
reactions: Predict and elucid	ate the key reactions that involve these intermediates.				
cos: Define and explain the conce	pi of neighbouring group participation (NGP) and its				
CO4. Apply Weedword Heffmann	IOIIS.				
cO4. Apply woodward Hollinani	futes for different types of pericyclic reactions, predict the				
acid E to Endiandria acid A	Formation of Vitamin D using pariculais reaction				
CO5: Understand the basic concent	to of molecular symmetry and symmetry elements: analyze				
the conformations of medium	n-sized rings focusing on eight to ten membered rings				
CO6: Understand the fundamental	principles of photochemistry including quantum yield				
electronic states and transitio	and the selection rules. Analyse photochemical				
reactions of various classes of	of compounds like olefins, carbonyl compounds, aromatic				
compounds and various phot	ochemical oxidation and reduction reactions				
CO7: Understand the basic concept	ts of conformational analysis of medium rings				
stereochemistry of fused ring	and bridged ring compounds Effect of conformation on				
reactivity of cyclohexane de	rivatives in reactions like electrophilic addition				
elimination molecular rearra	angements, reduction of cyclohexanones (with LiAlH ₄ .				
selectride and MPV reduction) and oxidation of cyclohexanols				

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 5 | Page

Curric	ulum:	
Unit	Unit Title	Sub titles (Learning Points)
No.		
Ι	Organic reaction mechanisms	1.1 Organic reactive intermediates, methods of generation, structure, stability and important reactions involving carbocations, nitrenes, carbenes, arynes and ketenes. [5L] 1.2 Neighbouring group participation: Mechanism and effects of anchimeric assistance, NGP by unshared/ lone pair electrons, π -electrons, aromatic rings, σ -bonds with special reference to

norbornyl and bicyclo[2.2.2] octyl cation systems (formation of
non-classical carbocation) [3L]
1.3 Role of FMOs in organic reactivity: Reactions involving
hard and soft electrophiles and nucleophiles, ambident
nucleophiles, ambident electrophiles, the α effect.[2L]
1.4 Pericyclic reactions: Classification of pericyclic reactions;
thermal and photochemical reactions. Three approaches:
Evidence for the concertedness of bond making and breaking
Symmetry-Allowed and Symmetry-Forbidden Reactions :
• The Woodward-Hoffmann Rules-Class by Class
• The generalised Woodward-Hoffmann Rule Explanations
for Woodward-Hoffmann Rules
• The Aromatic Transition structures [Huckel and Mobius]
Frontier Orbitals
• Correlation Diagrams, FMO and PMO approach
Molecular orbital symmetry, Frontier orbital of ethylene, 1, 3
butadiene, 1,3,5 hexatriene and allyl system. [5L]

II	Pericyclic	2.1 Cycloaddition reactions: Supra and antra facial additions, 4n
	reactions	and 4n+2 systems, 2+2 additions of ketenes. Diels-Alder
		reactions, 1, 3-Dipolar cycloaddition and cheletropic reactions,
		ene reaction, retro-Diels-Alder reaction, regioselectivity,
		periselectivity, torquoselectivity, site selectivity and effect of
		substituents in Diels-Alder reactions.
		Other Cycloaddition Reactions- [4+6] Cycloadditions, Ketene
		Cycloaddition, Allene Cycloadditions, Carbene Cycloaddition,
		Epoxidation and Related Cycloadditions.
		Other Pericyclic reactions: Sigmatropic Rearrangements,
		Electrocyclic Reactions, Alder 'Ene' Reactions. [7L]
		2.2 Electrocyclic reactions: Conrotatory and disrotatary
		motions, $4n\pi$ and $(4n+2)\pi$ electron and allyl systems. [3L]
		2.3 Sigmatropic rearrangements: H-shifts and C-shifts, supra
		and antarafacial migrations, retention and inversion of
		configurations. Cope (including oxy- Cope and aza-Cope) and
		Claisen rearrangements. Formation of Vitamin D from 7-
		dehydrocholesterol, synthesis of citral using pericyclic reaction,
		conversion of Endiandric acid E to Endiandric acid A. [5L]
111	Stereochemistry-I	3.1 Classification of point groups based on symmetry elements
		with examples (nonmathematical treatment). [2L]
		3.2 Conformational analysis of medium rings: Eight to ten
		transporter reactions [21]
		3.3 Stereochemistry of fused ring and bridged ring compounds:
		decalins, hydrindanes, perhydroanthracenes, steroids, and
		Bredt s rule. [5L]
		3.4 Anancomeric systems, Effect of conformation on reactivity
		of cyclonexane derivatives in the following feactions (including
		mechanism): electrophilic addition, elimination, molecular
		realized and MPV reduction) and ovidation of evaluation
		selectifice and wir v reduction) and oxidation of cyclonexanols.
		[JL]

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 7 | Page

IV	Photochemistry	4.1 Principles of photochemistry: quantum yield, electronic
		states and transitions, selection rules, modes of dissipation of
		energy (Jablonski diagram), electronic energy transfer:
		photosensitization and quenching process. [3L]
		4.2 Photochemistry of carbonyl compounds: $\pi \rightarrow \pi^*$, $n \rightarrow \pi^*$
		transitions, Norrish- I and Norrish-II cleavages, Paterno Buchi
		reaction. Photoreduction, calculation of quantum yield,
		photochemistry of enones, photochemical rearrangements of α ,
		β -unsaturated ketones and cyclohexadienones. Photo Fries
		rearrangement, Barton reaction. [8L]
		4.3 Photochemistry of olefins: cis-trans isomerizations,
		dimerizations, hydrogen abstraction, addition and Di- π - methane
		rearrangement including aza-di- π -methane. Photochemical
		Cross-Coupling of Alkenes, Photodimerisation of alkenes. [2L]
		4.4 Photochemistry of arenes: 1, 2-, 1, 3- and 1, 4- additions.
		Photocycloadditions of aromatic Rings. [1L]
		4.5 Singlet oxygen and photo-oxygenation reactions.
		Photochemically induced Radical Reactions.
		Chemiluminescence. [1L]

- 1. March's Advanced Organic Chemistry, Jerry March, sixth edition, 2007, John Wiley and sons.
- 2. A guide to mechanism in Organic Chemistry, 6th edition, 2009, Peter Sykes, Pearson education, New Delhi.
- 3. Advanced Organic Chemistry: Reaction Mechanisms, R. Bruckner, Academic Press (2002).
- 4. Mechanism and theory in Organic Chemistry, T. H. Lowry and K. C. Richardson, Harper and Row.
- 5. Organic Reaction Mechanism, 4th edition, V. K. Ahluvalia, R. K. Parashar, Narosa Publication.
- 6. Reaction Mechanism in Organic Chemistry, S.M. Mukherji, S. P. Singh, Macmillan Publishers, India.

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 8 | Page

- 7. Organic Chemistry, Part A and B, Fifth edition,2007, Francis A. Carey and Richard J. Sundberg, Springer.
- 8. Organic Chemistry, J. Clayden, S. Warren, N. Greeves, P. Wothers, 1st Edition, Oxford University Press (2001).
- Organic Chemistry, Seventh Edition, R.T. Morrison, R. N. Boyd & S. K. Bhattacharjee, Pearson. Advanced Organic Chemistry: Reactions & Mechanisms, second edition, B. Miller and R. Prasad, Pearson.
- 10. Organic reactions & their mechanisms, third revised edition, P.S. Kalsi, New Age International Publishers.
- 11. Organic Chemistry: Structure and Function, P. Volhardt and N. Schore, 5th Edition, 2012
- 12. Organic Chemistry, W. G. Solomons, C. B. Fryhle, , 9th Edition, Wiley India Pvt. Ltd., 2009.
- 13. Pericyclic Reactions, S. Sankararaman, Wiley VCH, 2005.
- 14. Advanced organic chemistry, Jagdamba Singh L. D. S. Yadav, Pragati Prakashan, 2011
- 15. Pericyclic reactions, Ian Fleming, Oxford university press, 1999.
- 16. Pericyclic reactions-A mechanistic approach, S. M. Mukherji, Macmillan Co. of India 1979.
- 17. Organic chemistry, 8th edition, John McMurry
- 18. Modern methods of Organic Synthesis, 4th Edition W. Carruthers and Iain Coldham, Cambridge University Press 2004
- 19. Modern physical chemistry, Eric V Anslyn, Dennis A. Dougherty, University science books, 2006
- 20. Physical Organic Chemistry, N. S. Isaacs, ELBS/Longman
- 21. Stereochemistry of Carbon Compounds: Principles and Applications, D, Nasipuri, 3rd edition, New Age International Ltd.
- 22. Stereochemistry of Organic Compounds, Ernest L. Eliel and Samuel H. Wilen, Wiley-India edit
- 23. Stereochemistry, P. S. Kalsi, 4th edition, New Age International Ltd
- 24. Organic Stereochemistry, M. J. T. Robinson, Oxford University Press, New Delhi, India edition, 2005
- 25. Bioorganic, Bioinorganic and Supramolecular chemistry, P.S. Kalsi and J.P. Kalsi. New Age International Publishers
- 26. Supramolecular Chemistry; Concepts and Perspectives, J. M. Lehn, VCH.
- 27. Crown ethers and analogous compounds, M. Hiraoka, Elsevier, 1992.
- 28. Large ring compounds, J.A.Semlyen, Wiley-VCH, 1997.
- 29. Fundamentals of Photochemistry, K. K. Rohtagi-Mukherji, Wiley- Eastern
- 30. Essentials of Molecular Photochemistry, A. Gilbert and J. Baggott, Blackwell Sciertific Publication.
- 31. Molecular Photochemistry, N. J. Turro, W. A. Benjamin.
- 32. Introductory Photochemistry, A. Cox and T. Camp, McGraw-Hill.
- 33. Photochemistry, R. P. Kundall and A. Gilbert, Thomson Nelson.
- 34. Organic Photochemistry, J. Coxon and B. Halton, Cambridge University Press.

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 9 | Page

Teachi	Teaching Plan:					
Unit No.	Unit Title	Teaching Methods	No. of Lectures (in hrs)			
Ι	Organic reaction mechanisms	Lecture, PPT	15			
II	Pericyclic reactions	Lecture, PPT	15			
III	Stereochemistry-I	Lecture, PPT	15			
IV	Photochemistry	Lecture, PPT	15			

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 40

Method	Marks
One Periodical Class Test / Written objectives / Assignments/ Short	30
answer Questions / Seminar to be conducted in the given semester	
Active participation in routine class instructional deliveries and overall	10
conduct as a responsible learner, mannerism and articulation and exhibit	
of leadership qualities in organizing	
related academic activities	

B) Semester End Examination: Maximum Marks: 60

Question No.	Unit	Type of Question	Marks
Q.1	Unit I	Descriptive. short note etc.	12
Q.2	Unit II	Descriptive. short note etc.	12
Q.3	Unit III	Descriptive. short note etc.	12
Q.4	Unit IV	Descriptive. short note etc.	12
Q.5	All Units	short note / objective, etc.	12

Nomenclature of the Course	Synthetic Organic Chemistry-I
Class	M.ScII
Semester	III
Course Code	PSCHO302
No. of Credits	04
Nature	Theory
Туре	Major: Mandatory

At the end of the Course, the Learner will be able to:

- CO1: Demonstrate knowledge in rearrangement reactions with respect to mechanism and applications.
- CO2: Explain the generation of free radicals, different types of free radical mechanisms and various reactions which are involved with free radicals.
- CO3: Understand the concept of enamines, ylides and α -C-H functionalization.
- CO4: Study the important metals / Non-metals in organic synthesis.

Curricu	Curriculum:				
Unit No.	Unit Title	Sub titles (Learning Points)			
Ι	Name reactions with mechanism and application	 1.1 Mukaiyama esterification, Mitsonobu reaction, Darzen's Glycidic Ester syntheis, Ritter reaction, Yamaguchi esterification, Peterson olefination. [5L] 1.2 Domino reactions: Characteristics; Nazerov cyclization [3L] 1.3 Multicomponent reactions: Strecker Synthesis, Ugi 4CC, Biginelli synthesis, Hantzsch synthesis, Pictet-Spengler synthesis [5L] 1.4 Click Reactions: Characteristics; Huisgen 1,3-Dipolar Cycloaddition [2L] 2.1 Introduction: Generation, stability, reactivity and structural and stereochemical properties of free radicals, Persistent and charged radicals, Electrophilic and nucleophilic radicals. [3L] 2.2 Radical Initiators: azobisisobutyronitrile (AIBN) and dibenzoyl peroxide. [1L] 2.3 Characteristic reactions - Free radical substitution, addition to multiple bonds. Radical chain reactions, Radical halogenation of hydrocarbons (Regioselectivity), radical cyclizations, autoxidations: synthesis of Cumene hydroperoxide from cumene. [4L] 2.4 Radicals in synthesis: Inter and intra molecular C-C bond formation via mercuric hydride, tin hydride, thiol donors. Cleavage of C-X, C-Sn, C-Co, C-S, O-O bonds. Oxidative coupling, C-C bond formation in aromatics: 			
Π	Radicals in organic synthesis				

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 11 | Page

		SRNAr reactions. [4L]		
		2.5 Hunsdiecker reaction, Pinacol coupling, McMurry		
		coupling, Sandmeyer reaction, Acyloin condensation. [3L]		
III	Enamines, Ylides and α-C-H functionalization	3.1 Enamines: Generation & application in organic synthesis with mechanistic pathways, Stork enamine reaction. Reactivity, comparison between enamines and enolates. Synthetic reactions of enamines including asymmetric reactions of chiral enamines derived from chiral secondary amines. [4L] 3.2 Phosphorus, Sulfur and Nitrogen Ylides: Preparation and their synthetic applications along with their stereochemical aspects. Wittig reaction, Horner-Wadsworth-Emmons Reaction, Barton-Kellogg olefination. [6L] 3.3 α -C-H functionalization: By nitro, sulfoxide, sulfone and phosphonate groups: generation of carbanions by strong bases (LDA/n-butyl lithium) and applications in C-C bond formation. Bamford-Stevens reaction, Julia olefination and its modification, Seyferth–Gilbert homologation, Steven's		
IV	Metals / Non- metals in organic synthesis	 Bamford-Stevens reaction, Julia olefination and i modification, Seyferth–Gilbert homologation, Steven's rearrangement. [5L] 4.1 Mercury in organic synthesis: Mechanism an regiochemistry of oxymercuration and demercuration of alkenes, mercuration of aromatics, transformation of argents. [3L] 4.2 Organoboron compounds: Mechanism and regiochemistry of hydroboration of alkenes and alkynes, asymmetric hydroboration using chiral boron reagents, 9-BB hydroboration, oxazaborolidine (CBS catalyst) and function group reduction by diborane. [3L] 4.3 Organosilicons: Salient features of silicon governing the reactivity of organosilicons, preparation and important bond forming reactions of alkyl silanes, alkenyl silanes, aryl silane and allyl silanes. β-silyl cations as intermediate Iodotrimethylsilane in organic synthesis. [3L] 4.4 Silyl enol ethers: Application: As nucleophiles (Michareaction, Mukaiyama aldol reaction), in ring contraction reactions. [2L] 4.5 Organotin compounds: Preparation of alkenyl and allyl to compounds; application in C-C bond formation, in replacement of halogen by H at the same C atom. [2L] 4.6 Selenium in organic synthesis: Preparation or preparation of the synthesis: Preparation or preparation of the synthesis: Preparation or preparation. [2L] 		

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 12 | Page

unsaturation, selenoxide and seleno acetals as α -C-H activating
groups [2L]

- 1. Advanced Organic Chemistry, Part A and Part B: Reaction and Synthesis, Francis A. Carey, Richard J. Sundberg, 5th Edition, Springer Verlag
- 2. Modern Methods of Organic Synthesis, 4th Edition, W. Carruthers and Iain Coldham, Cambridge University Press, 2004.
- 3. Chem. Rev. 2002, 102, 2227-2302, Rare Earth Metal Triflates in Organic Synthesis, S. Kobayashi, M. Sugiura, H. Kitagawa, and W.W.L. Lam.
- 4. Organic Chemistry, Clayden Greeves Warren and Wothers, Oxford Press (2001).
- 5. Moder Organic Synthesis: An Introduction, G.S. Zweifel and M.H. Nantz, W.H. Freeman and Company, (2007).
- 6. Advanced Organic Chemistry: Reaction Mechanism, R. Bruckner, Academic Press (2002).
- 7. Principles of Organic Synthesis, R.O.C. Norman & J. M. Coxon, 3rd Edn., Nelson Thornes.
- 8. Organic Chemistry, 7th Edn, R. T. Morrison, R. N. Boyd, & S. K. Bhattacharjee, Pearson.
- 9. Strategic Applications of Name Reactions in Organic Synthesis, L. Kurti & B. Czako (2005), Elsevier Academic Press.
- 10. Advanced Organic Chemistry: Reactions & Mechanisms, 2nd Edn., B. Miller & R. Prasad, Pearson.
- 11. Organic reactions and their mechanisms, 3rd revisededition, P.S. Kalsi, New Age International Publishers.
- 12. Organic Synthesis: The Disconnection Approach, Stuart Warren, John Wiley & Sons, 2004.
- 13. Name Reactions and Reagents in Organic Synthesis, 2nd Edn., Bradford P. Mundy, Michael G. Ellard, and Frank Favoloro, Jr., Wiley-Interscience.
- 14. Name Reactions, Jie Jack Lie, 3rd Edn., Springer.
- 15. Organic Electrochemistry, H. Lund, and M. Baizer, 3rd Edn., Marcel Dekker.

Teaching Plan:				
Unit No.	Unit Title	Teaching Methods	No. of Lectures (in hrs)	
1	Name reactions with mechanism and application	Lecture, PPT	15	
2	Radicals in organic synthesis	Lecture, PPT	15	
3	Enamines, Ylides and α -C-H functionalization	Lecture, PPT	15	
4	Metals / Non-metals in organic synthesis	Lecture, PPT	15	

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 13 | Page

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 40

Method	Marks
One Periodical Class Test / Written objectives / Assignments/ Short	30
answer Questions / Seminar to be conducted in the given semester	
Active participation in routine class instructional deliveries and overall	10
conduct as a responsible learner, mannerism and articulation and exhibit	
of leadership qualities in organizing related academic activities	

B) Semester End Examination: Maximum Marks: 60

Question No.	Unit	Type of Question	Marks
Q.1	Unit I	Descriptive. short note etc.	12
Q.2	Unit II	Descriptive. short note etc.	12
Q.3	Unit III	Descriptive. short note etc.	12
Q.4	Unit IV	Descriptive. short note etc.	12
Q.5	All Units	short note / objective, etc.	12

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 14 | Page

Nomenclature of the	Natural products and Spectroscopy
Course	
Class	M.ScII
Semester	III
Course Code	PSCHO303
No. of Credits	04
Nature	Theory
Туре	Major: Mandatory

At the end of the Course, the Learner will be able to:

- CO1: Understand the importance of carbohydrates, general structural features natural pigments, insect pheromones and alkaloids.
- CO2: Study about the multi-step synthesis of natural products, prostaglandins, lipids, insect growth regulators, plant growth regulators.
- CO3: Study the fundamentals and applications of advanced spectroscopic techniques such as proton NMR spectroscopy and 13C –NMR spectroscopy.
- CO4: Study the advanced NMR techniques such as DEPT experiment, COSY and HETCOR spectra, NOE and NOESY techniques.

Curricul	Curriculum:				
Unit No.	Unit Title	Sub titles (Learning Points)			
Ι	Natural products-I	 1.1 Carbohydrates: Introduction to naturally occurring sugars: Deoxysugars, aminosugars, branched sugars. Structure elucidation of lactose and Dglucosamine (synthesis not expected).Structural features and applications of inositol, starch, cellulose, chitin and heparin.[5L] 1.2 Natural pigments: General structural features, occurrence, biological importance and applications of: carotenoids, anthocyanins, quinones,flavones, pterins and porphyrins (chlorophyll). Structure elucidation of β-carotene and Cyanin (with synthesis). Synthesis of ubiquinone from 3, 4, 5- trimethoxyacetophenone.[5L] 1.3 Insect pheromones: General structural features and importance. Types of pheromones (aggregation, alarm, releaser, primer, territorial, trail, sex pheromones etc.), advantage of pheromones over conventional pesticides. Synthesis of bombykol from acetylene, disparlure from 6- methylhept-1-ene,grandisol from 2-methyl-1, 3-butadiene.[3L] 1.4 Alkaloids: Occurrence and physiological importance of morphine and atropine. Structure elucidation, spectral data and synthesis of conijne [2L] 			

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 15 | Page

т		
Π	Natural products- II	 2.1 Multi-step synthesis of natural products: Synthesis of the following natural products with special reference to reagents used, stereochemistry and functional group transformations:[8L] a) Woodward synthesis of Reserpine from benzoquinone b) Corey synthesis of Longifoline from resorcinol c) Gilbert-Stork synthesis of Griseofulvin from phloroglucinol d) Corey's Synthesis of Caryophyllene from 2-Cyclohexenone and Isobutylene e) Synthesis of Juvabione from Limonene f) Synthesis of Taxol. 2.2 Prostaglandins: Classification, general structure and biological importance. Structure elucidation of PGE1.[2L] 2.3 Lipids: Classification, role of lipids, Fatty acids and glycerol derived from oils and fats.[2L] 2.4 Insect growth regulators: General idea, structures of JH₂ and JH₃. [1L] 2.5 Plant growth regulators: Structural features and applications of arylacetic acids, gibberellic acids and triacontanol. Synthesis of triacontanol (synthesis of stearyl magnesium bromide and 12-bromo-1-
		tetrahydropyranyloxydodecane expected).[2L]
III	Advanced spectroscopic techniques-I	3.1 Proton NMR spectroscopy: Recapitulation, chemical and magnetic equivalence of protons, First order, second order, Spin system notations (A ₂ , AB, AX, AB ₂ , AX ₂ , AMX and A ₂ B ₂ -A ₂ X ₂ spin systems with suitable examples). Long range coupling (Allylic coupling, 'W' coupling and Coupling in aromatic and heteroaromatic systems), Temperature effects, Simplification of complex spectra, nuclear magnetic double resonance, chemical shift reagents. [7L] 3.2 ¹³ C –NMR spectroscopy: Recapitulation, equivalent and non-equivalent carbons (examples of aliphatic and aromatic compounds), ¹³ C- chemical shifts of aromatic carbons, heteronuclear coupling of carbon to ¹⁹ F and ³¹ P [4L] 3.3 Spectral problems based on UV, IR, 1HNMR and ¹³ CNMR and Mass spectroscopy.
1V	Advanced	4.1 Auvanced NNIK techniques: DEP1 experiment,
	techniques-II	determining number of attached hydrogens
		(weinyi/inethylene/methine and quaternary carbons), two dimensional spectroscopic techniques, COSV and UETCOP
		spectra NOE and NOESV techniques [101]
		specifia, INOE and INOES I techniques. [IUL]

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 16 | Page

4.2 Spectral problems based on UV, IR, 1HNMR, 13CNMR
(Including 2D technique) and Mass spectroscopy [5L]

- 1. Natural product chemistry, A mechanistic, biosynthetic and ecological approach, Kurt B.G. Torssell, Apotekarsocieteten Swedish Pharmaceutical Press.
- Natural products chemistry and applications, Sujata V. Bhat, B.A. Nagasampagi and S. Meenakshi, Narosa Publishing House, 2011.
- 3. Organic Chemistry Natural Products Volume-II, O. P. Agarwal, Krishna Prakashan, 2011.
- 4. Natural Product Chemistry Vol.1 and 2, K. Nakanishi J. Goto. S.Ito Majori and S. Nozoo, Academic Press, 1974.
- 5. Chemistry of natural products, V.K. Ahluwalia, Vishal Publishing Co. 2008.
- 6. Heterocyclic chemistry, 3rd edition, Thomas L. Gilchrist, Pearson Education, 2007.
- 7. Heterocyclic Chemistry, Synthesis, Reactions and Mechanisms, R. K. Bansal, Wiley Eastern Ltd., 1990.
- 8. Heterocyclic Chemistry, J. A. Joule and G. F. Smith, ELBS, 2nd edition, 1982.
- Natural Products: Chemistry and Biological Significance Interscience, J. Mann, R.S.Davidson, J.B.Hobbs, D.V. Banthrope and J. B. Harborne, Longman, Essex, 1994.
- 10. Organic Chemistry, Vol 2, I.L. Finar, ELBS, 6th edition, Pearson.
- 11. Stereoselective Synthesis: A Practical Approach, M. Nogradi, Wiley-VCH, 1995.
- 12. Rodd's Chemistry of Carbon Compounds, Ed. S. Coffey, Elsevier.
- 13. Chemistry, Biological and Pharmacological Properties of Medicinal Plants from the Americas, Ed. Kurt Hostettmann, M.P. Gupta and A. Marston, Harwood Academic Publishers.
- 14. Introduction to Flavonoids, B.A. Bohm, Harwood Academic Publishers, 1998.
- 15. New Trends in Natural Product Chemistry, Atta-ur-Rahman and M.I. Choudhary, Harwood Academic Publishers, 1998.
- 16. Insecticides of Natural Origin, Sukh Dev, Harwood Academic Publishers.
- 17. Total. Synthesis of Longifolene, J. Am. Chem. Soc., E. J. Corey, M. Ohno, R. B. Mitra, and P. A. Vatakencherry. 1964, 86, 478.
- 18. Total. Synthesis of Longifolene, J. Am. Chem. Soc. 1961, 83, 1251.
- 19. The Total Synthesis of Reserpine, Woodward, R. B.; Bader, F. E.; Bickel, H., Frey, A. J.; Kierstead, R. W. Tetrahedron 1958, 2, 1-57.
- 20. Total synthesis of Griseofulvin, Stork, G.; Tomasz, M. J. Am. Chem. Soc. 1962, 84, 310.
- 21. The Alkaloids, The fundamental Chemistry A biogenetic approach, Marcel Dekker Inc. New York, 1979.
- 22. Medicinal Natural Products, a Biosynthetic Approach, Derick Paul, John Wiley and Sons, 2002.
- 23. Biosynthesis of Natural Products, Mannitto Paolo, Ellis Horwoocl Limited, 1981.
- 24. Selected Organic synthesis, Ian Fleming, John Wiley and Sons, 1973.
- 25. Total synthesis of Natural Products, J. Apsimon, John Wiley and Sons.

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 17 | Page

- 26. The Logic of Chemical Synthesis, E. J. Corey and Xue-Min Cheng, Wiley Interscience.
- 27. Classics in Total Synthesis, K. C. Nicolaou and E. J. Sorensen, Weinhem: VCH, 1996.
- 28. Spectroscopy of Organic compounds, P. S. Kalsi, New Age International Pub. Ltd. And Wiley Eastern Ltd., Second edition, 1995.
- 29. Spectrometric Identification of Organic compounds, R.M. Silverstein and others, John Wiley and Sons Inc., 5th ed., 1991.
- 30. Spectroscopic methods in organic chemistry, Williams and Fleming, Tata McGraw Hill, 4th ed, 1989.
- 31. Organic structures from spectra, L. D. Field, S. Sternhell, John R.Kalman, Wiley, 4th ed., 2011.
- 32. Introduction to spectroscopy, Donald L. Pavia, Gary M. Lampman, George S. Kriz, James R. Vyvyan, 4th ed., 2009.
- 33. Organic spectroscopic structure determination: a problem-based learning approach Douglass F. Taber, Oxford University Press, 17- Sep-2007.
- 34. Organic Spectroscopy: Principles And Applications, Jag Mohan, Alpha Science International Ltd., 30-Mar-2004.
- 35. Alkaloids, V.K. Ahuluwalia, Ane Books Pvt.Ltd.
- 36. Biotransformations in Organic Chemistry, 5thEdition, Kurt Faber, Springer.
- 37. Structure Determination of Organic Compounds, EPretsch, P. Buhlmann, C.Affolter, Springer.

Unit No.	Unit Title	Teaching Methods	No. of Lectures (in hrs)	
1	Natural products-I	Lecture, PPT	15	
2	Natural products-II	Lecture, PPT	15	
3	Advanced spectroscopic techniques-I	Lecture, PPT	15	
4	Advanced spectroscopic techniques-II	Lecture, PPT	15	

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 18 | Page

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks:40

Method	Marks
One Periodical Class Test / Written objectives / Assignments/ Short	30
answer Questions / Seminar to be conducted in the given semester	
Active participation in routine class instructional deliveries and overall	10
conduct as a responsible learner, mannerism and articulation and exhibit	
of leadership qualities in organizing	
related academic activities	

B) Semester End Examination: Maximum Marks: 60

Question No.	Unit	Type of Question	Marks
Q.1	Unit I	Descriptive. short note etc.	12
Q.2	Unit II	Descriptive. short note etc.	12
Q.3	Unit III	Descriptive. short note etc.	12
Q.4	Unit IV	Descriptive. short note etc.	12
Q.5	All Units	short note / objective, etc.	12

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 19 | Page

Nomenclature of the	Organic Chemistry Practical I
Course	
Class	M.Sc. II
Semester	Ш
Course Code	PSOCH304
No. of Credits	02
Nature	Practical
Туре	Major: Mandatory

At the end of the Course, the Learner will be able to

CO1: Find the chemical type of mixture in the given ternary mixture.

CO2: Decide scheme for separation of components using proper reagents.

- CO3: Purify separated organic compound using different purification technique.
- CO4: Identify Organic compounds.

Syllabus:			
Unit	Unit Title	Sub titles (Learning Points)	
No.			
I & II	Separation of a ternary	1. Separation of a ternary mixture (S-S-S, S-S-L, S-	
	mixture of organic compounds	L-L and L-L-L) (for solid mixture: water insoluble/	
	and identification including	soluble including carbohydrates) based upon	
	derivative preparations using	differences in the physical and the chemical	
	micro-scale technique.	properties of the components.	
		2. Identification of the two components (indicated	
		by the examiner) using micro-scale technique.	
		3. Preparation of derivatives (any one of separated	
		compound).	
		(Minimum 6 experiments)	

References:

- 1. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis- V.K. Ahluwalia and Renu Aggarwal, Universities Press India Ltd., 2000.
- 2. Advanced Practical Organic Chemistry N. K. Vishnoi, Third Addition, Vikas Publishing House PVT Ltd.
- 3. Systematic Laboratory Experiments in Organic Synthesis- A. Sethi, New Age International Publications.
- 4. Systematic Identification of Organic compounds, 6th edition, R. L. Shriner, R. C. Fuson and D.Y. Curtin Wiley, New York.
- 5. Vogel's Textbook of Quantitative Analysis, revised, J. Bassett, R. C. Denney, G. H. Jeffery and J. Mendham, ELBS.
- 6. Experiments and Techniques in Organic Chemistry, D. Pasto, C. Johnson and M. Miller, Prentice Hall.
- 7. Macro-scale and Micro-scale Organic Experiments, K. L. Williamson, D. C. Heath.

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 20 | Page

- 8. Systematic Qualitative Organic Analysis, H. Middleton, Adward Arnold.
- 9. Handbook of Organic Analysis- Qualitative and Quantitative, H. Clark, Adward Arnold.
- 10. Vogel's Textbook of Practical Organic Chemistry, Fifth edition,2008, B.S.Furniss, A. J.Hannaford, P. W. G. Smith, A. R. Tatchell, Pearson Education.
- 11. Laboratory Manual of Organic Chemistry, Fifth edition, R K Bansal, New Age Publishers.
- 12. Organic structures from spectra, L. D. Field, S. Sternhell, John R. Kalman, Wiley, 4th ed., 2011.

Teachin	ig Plan:		
Unit	Unit Title	Teaching Methods	No. of Lectures
No.			(in hrs)
Ι	Separation of a ternary mixture	Lecture, Demo, experiment	60
	of organic compounds		
II	Identification including	Lecture, Demo, experiment	
	derivative preparations using		
	micro-scale technique.		

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks:20

Method	Marks
Assessment during practical's (Interaction / Performance) skill, Accuracy,	10
precision of measurement, Record of observation, calculations, result and	
conclusion.	
Timely submission of journal	05
Overall performance (attendance, punctuality, interaction during practical	05
session throughout semester)	
Total	20

B) Semester End Examination: Maximum Marks: 30

Sr. No.	Name of course	Method	Duration	Marks
1.	Separation of a ternary mixture	Experiment performance as per the practical slip	Three hours and half hours	25
2.	Identification of the one component and preparation of any one derivative.	Experiment performance as per the practical slip	Three hours and half hours	25
Journal & Viva				10
Total				60

Practical examination will be of 60 marks at the end of semester which will be converted to 30Marks.

CIE/ Internal	Semester End	Total Marks
20	30	50

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 21 | Page

Nomenclature of the Course	Medicinal Chemistry
Class	M.ScII
Semester	III
Course Code	PSOCH305
No. of Credits	02
Nature	Theory
Туре	Major Electives

At the end of the Course, the Learner will be able to:

CO1: Understand the important terms used in medicinal chemistry.

CO2: Study the procedures in drug design

CO3: Study the modern methods of drug design and their synthesis.

CO4: Understand modern methods of drug design and synthesis

Syllabus				
Unit	Unit Title	Sub titles (Learning Points)		
No.				
Ι	Drug discovery,	1.1 Introduction, important terms used in medicinal chemistry:		
	design and	receptor, therapeutic index, bioavailability, drug assay and drug		
	development	potency. General idea of factors affecting bioactivity: Resonance,		
		inductive effect, bioisosterism, spatial considerations. Basic		
		pharmacokinetics: drug absorption, distribution, metabolism		
		(biotransformation) and elimination. Physical and chemical		
		parameters like solubility, lipophilicity, ionization, pH, redox		
		potential, H-bonding, partition coefficient and isomerism in drug		
		distribution and drug-receptor binding. [7]		
		1.2 Procedures in drug design: Drug discovery without a lead:		
		Penicillin, Librium. Lead discovery: random screening, non-		
		random (or targeted) screening. Lead modification: Identification		
		of the pharmacophore, Functional group modification. Structure-		
		activity relationship, Structure modification to increase potency		
		and therapeutic index: Homologation, chain branching, ring-		
		chain transformation, bioisosterism, combinatiorial synthesis		
		(basic idea). [8L]		
Π	Drug design,	2.1 Introduction to quantitative structure activity relationship		
	development and	studies. QSAR parameters: - steric effects: The Taft and other		
	synthesis	equations; Methods used to correlate regression parameters with		
		biological activity: Hansch analysis- A linear multiple regression		
		analysis.[5L]		
		2.2 Introduction to modern methods of drug design and synthesis-		
		computeraided molecular graphics based drug design, drug		

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 22 | Page

design via enzyme inhibition (reversible and irreversible),
bioinformatics and drug design.[3L]
2.3 Concept of prodrugs and soft drugs. (a) Prodrugs: Prodrug
design, types of prodrugs, functional groups in prodrugs,
advantages of prodrug use. (b) Soft drugs: concept and properties.
[3L]
2.4 Synthesis and application of the following drugs: Fluoxetine,
luorine e, esomeprazole, fluconazole, zidovudine,
methotrexate, diclofenac, labetalol, fenofibrate. [4L]

- Nelson, D. L, and Cox, M. M, (2008) Lehninger principles of Biochemistry 5th Edition, W. H. Freeman and Company, NY., USA.
- 2. Stryer, Lubert; Biochemistry; W. H. Freeman publishers.
- 3. Voet, D. and J. G. Voet (2004) Biochemistry, 3rd Edition, John Wiley & sons, Inc. USA.
- 4. Zubay, Goffrey L; Biochemistry; Wm C. Brown publishers.
- 5. V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara and J-M Basset, Chem. Rev. 2011, 111, 3036-3075;
- 6. R. B. Nasir Baig and R. S.Varma, Chem. Comm., 2013, 49, 752-770;
- 7. M. B. Gawande, A. K. Rathi, P. S. Varma, Appl. Sci., 2013, 3, 656-674;
- 8. J. Govan and Y. K. Gun'ko, Nanomaterials, 2014, 4, 222-214.
- K. Philippot and P. Serp, Nanomaterials in catalysis, First Edition. Edited by P. Serp and K. Philippot; 2013 Wiley – VCH Verlag GmbH & Co. K GaA.
- D. Astruc, Nanomaterials and Catalysis, Wiley-VCH Verlag GmbH & Co. KgaA, 2008, 1-48;
- C. N. R. Roa, A. Muller and A. K. Cheetham, The chemistry of Nanomaterials, Wiley-VCH Verlag GmbH & Co. KgaA, 2005, 1-11;
- 12. The organic chemistry of drug design and drug action, Richard B. Silverman, 2nd edition, Academic Press.
- 13. Medicinal chemistry, D.Sriram and P. Yogeeswari, 2nd edition, Pearson.
- 14. An introduction to drug design-S. S. Pandeya and J. R. Dimmock (New age international).
- 15. Burger's medicinal chemistry and drug discovery. By Manfred E. Wolf.
- 16. T. B. of Organic medicinal and pharmaceutical chemistry-Wilson and Gisvold's (Ed. Robert F. Dorge).
- 17. An introduction to medicinal chemistry-Graham L. Patrick, OUP Oxford, 2009.
- 18. Principles of medicinal chemistry (Vol. I and II)-S. S. Kadam, K. R. Mahadik and K.G. Bothara , Nirali prakashan.
- 19. Medicinal chemistry (Vol. I and II)-Burger.
- 20. Strategies for organic drug synthesis and design D. Lednicer Wiley.
- 21. Pharmacological basis of therapeutics-Goodman and Gilman's (McGraw Hill).

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 23 | Page

Teaching Plan:			
Unit	Unit Title	Teaching Methods	No. of
No.			Lectures
			(in hrs)
1	Drug discovery,	Lecture, PPT	15
	design and		
	development		
2	Drug design,	Lecture, PPT	15
	development and		
	synthesis		

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 20

Method	Marks
One Periodical Class Test / Written objectives / Assignments/ Short	15
answer Questions / Seminar to be conducted in the given	
semester	
Active participation in routine class instructional deliveries and overall	05
conduct as a responsible learner, mannerism and articulation and exhibit	
of leadership qualities in organizing	
related academic activities	

B) Semester End Examination: Maximum Marks: 30

Question No.	Unit	Type of Question	Marks
Q. 1	Unit I	Descriptive, short note	10
Q. 2	Unit II	Descriptive, short note	10
Q. 3	All units	short note, objective, etc.	10

Nomenclature of the	Organic Chemistry Practical II
Course	
Class	M.Sc. II
Semester	III
Course Code	PSOCH306
No. of Credits	02
Nature	Practical
Туре	Major: Elective

CO1: Study the planning of synthesis, effect of reaction parameters including stoichiometry, and safety aspects including MSDS.

CO2: Understand the possible mechanism, expected spectral data (IR and NMR) of Starting material and final product.

CO3: Purify the product by steam distillation/vacuum distillation/column chromatography.

CO4: Measure its mass or volume, check the purity by TLC, determine physical constant and calculate percentage yield.

Syllabus	3:		
Unit	Unit Title	Sub titles (Learning Points)	
No.			
I & II	Single step organic	1. Preparation of acetanilide from aniline and acetic acid	
	preparation (1.0 g	using Zn dust. (Purification by column chromatography)	
	scale) involving	2. Preparation of 1-nitronaphthalene from naphthalene.	
	purification by Steam	(Purification by steam distillation)	
	distillation / Vacuum	3. Preparation of acetyl ferrocene from ferrocene.	
	distillation or	(Purification by column chromatography)	
	Column	4Preparation of 3-nitroaniline from 1,3-dinitrobenzene.	
	chromatography.	(Purification by column chromatography)	
		5. Preparation of benzyl alcohol from benzaldehyde.	
		(Purification by vacuum distillation).	
		6. Preparation of methyl salicylate from salicylic acid.	
		(Purification by vacuum distillation).	
		7Preparation of 4-methylacetophenone from toluene.	
		(Purification by vacuum distillation).	
		8Preparation of phenyl acetate from phenol. (Purification	
		by vacuum distillation)	
		9. Preparation of 2-chlorotoluene from <i>o</i> -toluidine.	
		(Purification by steam distillation)	
		10. Preparation of 4-nitrophenol from phenol. (Purification	
		by steam distillation/ column chromatography)	
		11. Preparation of fluorenone from luorine. (Purification	
		by column chromatography)	

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 25 | Page

	12.	Preparation	of	dimethylphthalate	from	phthalic
	anhy	dride. (Purific	cation	n by vacuum distillat	ion).	
	(Mi	nimum 6 expe	erime	ents)		

- 1. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis- V.K. Ahluwalia and Renu Aggarwal, Universities Press India Ltd., 2000.
- 2. Advanced Practical Organic Chemistry N. K. Vishnoi, Third Addition, Vikas Publishing House PVT Ltd.
- 3. Systematic Laboratory Experiments in Organic Synthesis- A. Sethi, New Age International Publications.
- 4. Systematic Identification of Organic compounds, 6th edition, R. L. Shriner, R. C. Fuson and D.Y. Curtin Wiley, New York.
- 5. Vogel's Textbook of Quantitative Analysis, revised, J. Bassett, R. C. Denney, G. H. Jeffery and J. Mendham, ELBS.
- 6. Experiments and Techniques in Organic Chemistry, D. Pasto, C. Johnson and M. Miller, Prentice Hall.
- 7. Macro-scale and Micro-scale Organic Experiments, K. L. Williamson, D. C. Heath.
- 8. Systematic Qualitative Organic Analysis, H. Middleton, Adward Arnold.
- 9. Handbook of Organic Analysis- Qualitative and Quantitative, H. Clark, Adward Arnold.
- 10. Vogel's Textbook of Practical Organic Chemistry, Fifth edition,2008, B.S.Furniss, A. J.Hannaford, P. W. G. Smith, A. R. Tatchell, Pearson Education.

11. Laboratory Manual of Organic Chemistry, Fifth edition, R K Bansal, New Age Publishers.

Lacini			1
Unit	Unit Title	Teaching Methods	No. of
No.			Lectures
			(in hrs.)
Ι	Single step organic	Lecture, Demo, experiment	60
	preparation (1.0 g		
	scale)		
II	Purification by Steam	Lecture, Demo, experiment	
	distillation / Vacuum		
	distillation or Column		
	chromatography.		

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 26 | Page

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 20

Method	Marks
One Periodical Class Test / Written objectives / Assignments/ Short	15
answer Questions / Seminar to be conducted in the given semester	
Active participation in routine class instructional deliveries and overall conduct	05
as a responsible learner, mannerism and articulation and exhibit of leadership	
qualities in organizing related academic activities.	
Total	20

B) Semester End Examination: Maximum Marks: 30

Sr. No.	Name of course	Method	Duration	Marks
1.	Preparation	Experiment performance as per the practical slip	Three and half hours	25
2.	Purification	Experiment performance as per the practical slip	Three and half hours	25
	10			
Total				

Practical examination will be of 60 marks at the end of semester which will be converted to 30Marks.

CIE/ Internal	Semester End	Total Marks
20	30	50

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 27 | Page

Nomenclature of the	Biogenesis & Green Chemistry
Course	
Class	M.ScII
Semester	III
Course Code	PSOCH307
No. of Credits	02
Nature	Theory
Туре	Major Electives

At the end of the Course, the Learner will be able to:

CO1: Understand the general pathway of amino acid biosynthesis.

CO2: Study various pathways involved in biogenesis.

CO3: Understand the principles of green chemistry and designing the green synthetic routes. CO4: Study the microwave assisted synthesis, ultracound assisted reactions

CO4: Study the microwave assisted synthesis, ultrasound assisted reactions.

Syllabus	5:	
Unit	Unit Title	Sub titles (Learning Points)
No.		
Ι	Biogenesis and	3.1 Primary and secondary metabolites and the building
	biosynthesis of	blocks, general pathway of amino acid biosynthesis. [3L]
	natural products	3.2 Acetate pathway: Biosynthesis of malonylCoA, saturated
		fatty acids, prostaglandins from arachidonic acid, aromatic
		polyketides. [4L]
		3.3 Shikimic Acid pathway: Biosynthesis of shikimic acid,
		aromatic amino acids, cinnamic acid and its derivatives,
		lignin and lignans, benzoic acid and its derivatives,
		flavonoids and isofalvonoids. [4L]
		3.4 Mevalonate pathway: Biosynthesis of mevalonic acid,
		monoterpenes – geranyl cation and its derivatives,
		sesquiterpenes – farnesyl cation and its derivatives and
		diterpenes. [4L]
Π	Green Chemistry	4.1 Introduction, basic principles of green chemistry.
		Designing a green synthesis: Green starting materials, green
		reagents, green solvents and reaction conditions, green
		catalysts. [1L]
		4.2 Use of the following in green synthesis with suitable
		examples: [9L]
		a) Green reagents: dimethylcarbonate, polymer supported
		reagents.
		b) Green catalysts: Acid catalysts, oxidation catalysts, basic
		catalysts, phase transfer catalysts [Aliquat 336,

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 28 | Page

benzyltrimethyl ammonium chloride (TMBA) Tetra-n-butyl
benzylumieuryl annionium emoride (TWBA), Tetra-n-butyl
ammonium chloride, crown ethers], biocatalysts.
c) Green solvents: water, ionic liquids, deep eutectic
solvents, supercritical carbon dioxide.
d) Solid state reactions: solid phase synthesis, solid
supported synthesis
e) Microwave assisted synthesis: reactions in water,
reactions in organic solvents, solvent free reactions.
f) Ultrasound assisted reactions.
4.3 Comparison of traditional processes versus green
processes in the syntheses of ibuprofen, adipic acid, 4
aminodiphenylamine, p-bromotoluene and benzimidazole.
[3L]
4.4 Green Cataysts : Nanocatalyst, Types of nanoctalysts,
Advantages and Disadvantages of Nanocatalysts, Idea of
Magnetically separable nanocatalysts. [2L]

- 1. Enzyme catalysis in organic synthesis, 3rd edition. Edited by Karlheinz Drauz, Harold Groger, and Oliver May, Wiley-VCH Verlag GmbH & Co KgaA, 2012.
- 2. Biochemistry, Dr U Satyanarayan and Dr U Chakrapani, Books and Allied (P) Ltd.
- 3. Bioorganic, Bioinorganic and Supramolecular chemistry, P.S. Kalsi and J.P. Kalsi. New Age International Publishers.
- 4. The Organic Chemistry of Enzyme-Catalysed Reactions, Academic Press, By Richard B. Silverman.
- 5. Enzymes: Practical Introduction to structure, mechanism and data analysis, By Robert A. Copeland, Wiley-VCH, Inc.
- 6. The Organic Chemistry of Biological Pathways By John McMurry, Tadhg Begley by Robert and company publishers.
- 7. Bioorganic Chemistry- A practical approach to Enzyme action, H. Dugas and C. Penny. Springer Verlag, 1931.
- 8. Biochemistry: The chemical reactions in living cells, by E. Metzler. Academic Press.
- 9. Concepts in biotechnology by D. Balasubrarnanian & others.
- 10. Principals of biochemistry by Horton & others.
- 11. Bioorganic chemistry A chemical approach to enzyme action by Herman Dugas and Christopher Penney.
- 12. Medicinal Natural Products: A Biosynthetic Approach by Paul M. Dewick. 3rd Edition, Wiley.
- Natural product chemistry, A mechanistic, biosynthetic and ecological approach, Kurt B. G. Torssell, Apotekarsocieteten – Swedish pharmaceutical press.
- Natural products Chemistry and applications, Sujata V Bhat, B.A. Nagasampagi and S. Meenakshi, Narosa Publishing House.

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 29 | Page

- 15. Natural Products Volume- 2, By O. P. Agarwal.
- 16. Chemistry of Natural Products, F. F. Bentley and F. R. Dollish, 1974.
- 17. Natural Product Chemistry Vol.1 and 2, K. Nakanishi J. Goto. S.Ito Majori and S. Nozoo, Academic Press, 1974.
- 18. Chemistry of natural products, V.K. Ahluwalia, Vishal Publishing Co.
- 19. Green Chemistry: An Introductory Text, 2nd Edition, Published by Royal Society of Chemistry, Authored by Mike Lancater.
- 20. Organic synthesis in water. By Paul A. Grieco, Blackie.
- 21. Green chemistry, Theory and Practical, Paul T. Anastas and John C. Warner.
- 22. New trends in green chemistry By V. K. Ahulwalia and M. Kidwai, 2nd edition, Anamaya Publishers, New Delhi.
- 23. An introduction to green chemistry, V. Kumar, Vishal Publishing Co.

24. Organic synthesis: Special techniques. V.K.Ahulwalia and Renu Aggarwal.

Teachin	ng Plan:		
Unit	Unit Title	Teaching Methods	No. of
No.			Lectures
			(in hrs)
1	Biogenesis and	Lecture, PPT	15
	biosynthesis of		
	natural products		
2	Green Chemistry	Lecture, PPT	15

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 20

Method	Marks
One Periodical Class Test / Written objectives / Assignments/ Short	15
answer Questions / Seminar to be conducted in the given semester	
Active participation in routine class instructional deliveries and overall	05
conduct as a responsible learner, mannerism and articulation and exhibit of	
leadership qualities in organizing related academic activities	
Total	20

B) Semester End Examination: Maximum Marks: 30

Question No.	Unit	Type of Question	Marks
Q. 1	Unit I	Descriptive, short note	10
Q. 2	Unit II	Descriptive, short note	10
Q. 3	All units	Short note , objective, etc.	10

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 30 | Page

Nomenclature of the	Organic Chemistry Practical III
Course	
Class	M.Sc. II
Semester	Ш
Course Code	PSOCH308
No. of Credits	02
Nature	Practical
Туре	Major: Elective

CO1: Study the planning of synthesis, effect of reaction parameters including stoichiometry, and safety aspects including MSDS.

CO2: Understand the possible mechanism, expected spectral data (IR and NMR) of starting material and final product.

CO3: Purify the product by steam distillation/vacuum distillation/column chromatography.

CO4: Measure its mass or volume, check the purity by TLC, determine physical constant and calculate percentage yield.

Syllabus	5:		
Unit	Unit Title	Sub titles (Learning Points)	
No.			
I & II	Single step organic	1. Preparation of acetanilide from aniline and acetic acid	
	preparation (1.0 g	using Zn dust. (Purification by column chromatography)	
	scale) involving	2. Preparation of 1-nitronaphthalene from naphthalene.	
	purification by Steam	(Purification by steam distillation)	
	distillation / Vacuum	3. Preparation of acetyl ferrocene from ferrocene.	
	distillation or	(Purification by column chromatography)	
	Column	4Preparation of 3-nitroaniline from 1,3-dinitrobenzene.	
	chromatography.	(Purification by column chromatography)	
		5. Preparation of benzyl alcohol from benzaldehyde.	
		(Purification by vacuum distillation).	
		6. Preparation of methyl salicylate from salicylic acid.	
		(Purification by vacuum distillation).	
		7Preparation of 4-methylacetophenone from toluene.	
		(Purification by vacuum distillation).	
		8Preparation of phenyl acetate from phenol. (Purification	
		by vacuum distillation)	
		9. Preparation of 2-chlorotoluene from <i>o</i> -toluidine.	
		(Purification by steam distillation)	
		10. Preparation of 4-nitrophenol from phenol. (Purification	
		by steam distillation/ column chromatography)	
		11. Preparation of fluorenone from fluorene. (Purification by	
		column chromatography)	

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 31 | Page

	12.	Preparation	of	dimethylphthalate	from	phthalic
	anhy	dride. (Purific	cation	n by vacuum distillat	tion).	
	(Mi	nimum 6 expe	erime	ents)		

- 1. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis- V.K. Ahluwalia and Renu Aggarwal, Universities Press India Ltd., 2000.
- 2. Advanced Practical Organic Chemistry N. K. Vishnoi, Third Addition, Vikas Publishing House PVT Ltd.
- 3. Systematic Laboratory Experiments in Organic Synthesis- A. Sethi, New Age International Publications.
- 4. Systematic Identification of Organic compounds, 6th edition, R. L. Shriner, R. C. Fuson and D.Y. Curtin Wiley, New York.
- 5. Vogel's Textbook of Quantitative Analysis, revised, J. Bassett, R. C. Denney, G. H. Jeffery and J. Mendham, ELBS.
- 6. Experiments and Techniques in Organic Chemistry, D. Pasto, C. Johnson and M. Miller, Prentice Hall.
- 7. Macro-scale and Micro-scale Organic Experiments, K. L. Williamson, D. C. Heath.
- 8. Systematic Qualitative Organic Analysis, H. Middleton, Adward Arnold.
- 9. Handbook of Organic Analysis- Qualitative and Quantitative, H. Clark, Adward Arnold.
- 10. Vogel's Textbook of Practical Organic Chemistry, Fifth edition,2008, B.S.Furniss, A. J.Hannaford, P. W. G. Smith, A. R. Tatchell, Pearson Education.

11. Laboratory Manual of Organic Chemistry, Fifth edition, R K Bansal, New Age Publishers.

I cacini	lg 1 lall.		
Unit	Unit Title	Teaching Methods	No. of
No.			Lectures
			(in hrs)
Ι	Single step organic	Lecture, Demo, experiment	60
	preparation		
II	Purification by Steam	Lecture, Demo, experiment	
	distillation / Vacuum		
	distillation or Column		
	chromatography.		

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 32 | Page

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 20

Method	Marks
One Periodical Class Test / Written objectives / Assignments/ Short	15
answer Questions / Seminar to be conducted in the given semester	
Active participation in routine class instructional deliveries and overall conduct as	05
a responsible learner, mannerism and articulation and exhibit of leadership	
qualities in organizing related academic activities.	
Total	20

B) Semester End Examination: Maximum Marks: 30

Sr. No.	Name of course	Method	Duration	Marks
1.	Preparation	Experiment performance as per the practical slip	Three and half hours	25
2.	Purification	Experiment performance as per the practical slip	Three and half hours	25
	10			
Total				

Practical examination will be of 60 marks at the end of semester which will be converted into 30Marks.

CIE/ Internal	Semester End	Total Marks
20	30	50

Nomenclature of the Course	Research Project (RP)
Class	M.Sc. II
Semester	III
Course Code	PSOCH309
No. of Credits	04
Nature	Research Project
Туре	Major: Mandatory
1	

On successful completion of this course, learners will be able to:

- CO1: Identify the research problem/ objective.
- CO2: Critically evaluate existing literature in their field of study to identify research Objective.
- CO3: Formulate the research objective.

CO4: Demonstrate the ability to develop a comprehensive research proposal, including clear

research questions, appropriate methodologies, and feasible timelines

- CO5: Understand the ethics and research methodology.
- CO6: Learn project management techniques and strategies to effectively plan, execute, and monitor research projects, ensuring timely completion and adherence to budget constraints.
- CO7: Gain practical experience in budget planning and resource allocation for research projects, including identifying potential funding sources and justifying expenses.

Curricu	lum:	
Unit	Unit Title	Sub titles (Learning Points)
No.		
Ι	Project-I	Identifying research objective/ problem for project work,
		literature survey, deciding methodology, practical
		implementation of the project, data analysis and conclusions,
		preparing project
		report (a dissertation).

- 1. Research Papers
- 2. Internet
- 3. Books and journals

Teaching Plan:				
Unit	Unit Title	Teaching	No. of	
No.		Methods	Lectures	
			(in hrs)	
Ι	Identifying problem for project work, literature	Discussion,	120	
	survey	literature review.		
	Deciding methodology and practical	Discussion,		
	implementation of the project (if any).	Experimental		
		work.		
	Data analysis (if any) and conclusions, preparing	Presentation and		
	project report (a dissertation).	discussion.		

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 40

Sr. No.	Method	Marks
1	Identifying problem for project work, literature survey	25
2	Overall performance	15

B) Semester End Examination: Maximum Marks: 60

Sr. No	Criteria	Marks
1	Synopsis	10
2	Presentation	
	Theoretical methodology/Working condition of project	15
	• Significance of the study/Society application and Inclusion of recent references	10
	Depth of knowledge in the subject	10
3	Research Proposal Viva	15

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 35 | Page

Project guidelines:

- 1. Every learner will have to complete one long project/two short project within academic year.
- 2. Learners can take one long project or two short projects.
- 3. However, for one long project learners have to submit two separate project reports / dissertation consisting of the problem definition, literature survey and current status, objectives, methodology and some preliminary experimental work in Semester III (if any) and actual experimental work, results and analysis in semester IV.
- 4. The experimental project related to advanced topic in chemistry/interdisciplinary topic, industrial project a research institute/training of handling sophisticate equipment, he/she

should mention in a report what training he/she has got, which instruments he/she handled and their principle and operation etc.

- 5. Maximum three learners can do a joint project. Each one of them will submit a separate project report with details.
- 6. Each project will be of 100 marks with 40% by continuous internal evaluation and 60% by semester end evaluation.
- 7. Learners should prepare and submit printed (one sided), Hard bound research proposal.

Format of Project Report:

a) Title Page:

Mentioning the title of the report, name of the learner, program, institution, and the project.

b) Declaration:

A statement by the learner declaring that the report is the original work and acknowledging any assistance or references used.

c) Acknowledgments:

Recognizing individuals or organizations that provided support, guidance, or resources during the training/project.

d) Table of Contents:

Providing a clear outline of the report's sections and page numbers.

e) Abstract:

A bird's eye view of learner's entire presentation has to be precisely offered under this category. A brief overview of the project, its objectives and key findings should be mentioned.

f) Introduction:

Background information about the project and its significance. Objectives and scope of the project.

g) Literature Review:

Overview of relevant literature and studies related to the chosen field and development issues.

h) Methodology:

Description of: Planning of experimental procedure as per the need of the project. Designing and implementation of the project as per the objectives through theoretical, experimental or computational methods.

i) References & Appendices:

List of all sources cited in the project report. Additional supporting materials.

The project report shall be prepared as per the broad guidelines given below:

- Font type: Times New Roman.
- Font size: 12-For content, 14-for Title.
- Line Space: 1.5-for content and 1-for in table work, justified format.
- Page Size: A4.
- Margin: in Left-1.5, Up-Down-Right-1.
- The Project Report shall be hard bounded.

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 37 | Page

Title of the Project

A Synopsis Submitted

То

R. P. Gogate college of Arts and Science and

R.V. Jogalekar College of Commerce College (Autonomous), Ratnagiri

Under

University of Mumbai

For partial completion of the degree

Of

Master in Science

(Organic Chemistry)

Under the Faculty of Science

By

Name of Student

Under the Guidance of

Name of the Guiding Teacher

R. P. Gogate college of Arts and Science and

R.V. Jogalekar College of Commerce College (Autonomous) Ratnagiri Month and Year

On separate page

Index

Sr No	Title	Page No.
01		
02		
03		
04		
05		

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 38 | Page

DECLARATION BY LEARNER

I the undersigned Miss/Mr. ______ [Name of the learner] here by, declare that work embodied in this project work titled_______forms my own contribution to the research work carried out under the guidance of [Name of the guiding teacher]_______is a resultof my own research work and has not been previously submitted to any other University for any other Degree/ Diploma to this or any other University.

Wherever reference has been made to previous works of others, it has been clearly indicated as such and included in the bibliography.

I, here by further declare that all information of this document has been obtained and presented in accordance with academic rules and ethical conduct.

Name and Signature of the learner

Certified by

Name and signature of the Guiding Teacher

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 39 | Page

On separate page

Acknowledgment (To be written by learner) (Model structure of the acknowledgement)

To list who all have helped me is difficult because they are so numerous and the depth is so enormous.

I would like to acknowledge the following as being idealistic channels and fresh dimensions in the completion of this project.

I thank the R. P. Gogate College of Arts and Science and R.V. Jogalekar College of Commerce, Ratnagiri (Autonomous) and University of Mumbai for giving me opportunity to do this project.

I would like to thank my Principal,______for providing the necessary facilities required for completion of this project.

I take this opportunity to thank our HOD_____, for his moral support and guidance

I would also like to express my sincere gratitude towards my project guide whose guidance and care made the project successful.

I would like to thank my College Library, for having provided various reference booksand magazines related to my project.

Lastly, I would like to thank each and every person who directly or indirectly helped me in the completion of the project especially my Parents and Peers who supported me throughout my project.

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 40 | Page

Nomenclature of the	Theoretical Organic Chemistry II
Course	
Class	M.ScII
Semester	IV
Course Code	PSOCH401
No. of Credits	04
Nature	Theory
Туре	Major: Mandatory

At the end of the Course, the Learner will be able to

CO1: Outline fundamental principles of physical organic Chemistry.

CO2: Understand the concepts of supramolecular chemistry.

CO3: Understand the concept of racemisation, determination of enantiomers, diastereomer. composition, molecular dissymmetry and chiroptical properties.

CO4: Understand the basic concepts of asymmetric synthesis.

Curricu	Curriculum:			
Unit	Unit Title	Sub titles (Learning Points)		
No.				
Ι	Physical organic chemistry	1.1 Structural effects and reactivity: Linear free energy relationship (LFER) in determination of organic reaction mechanism, The Hammett equation, substituent constants, theories of substituent effects, interpretation of σ - values, reaction constants ρ , Yukawa-Tsuno equation. [7L] 1.2 Uses of Hammett equation, deviations from Hammett equation. Dual parameter correlations, Inductive substituent constants. The Taft model, σ I and σ R scales, steric parameters Es and β . Solvent effects, Okamoto-Brown equation, Swain-Scott equation, Edward and Ritchie correlations, Grunwald-Winstein equation, Dimroth's ET parameter, Solvatochromism Zscale, Spectroscopic Correlations, Thermodynamic Implications. [8L]		
Π	Supramolecular chemistry	 2.1 Principles of molecular associations and organizations as exemplified in biological macromolecules like nucleic acids, proteins and enzymes. [3L] 2.2 Synthetic molecular receptors: receptors with molecular cleft, molecular tweezers, receptors with multiple hydrogen sites. [3L] 2.3 Structures and properties of crown ethers, cryptands, cyclophanes, calixarenes, rotaxanes and cyclodextrins. Synthesis of crown ethers, cryptands and calixarenes. [5L] 		

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 41 | Page

		2.4 Molecular recognition and catalysis molecular	
		salf assembly Supramolecular Polymers Calcard Fibres [4]	
TT		2.1 D	
111	Stereochemistry-	3.1 Racemisation and resolution of racemates including	
		conglomerates: Mechanism of racemisation, methods of	
		resolution: mechanical, chemical, kinetic and equilibrium	
		asymmetric transformation and through inclusion compounds.	
		[3L]	
		3.2 Determination of enantiomer and diastereomer composition:	
		enzymatic method, chromatographic methods. Methods based	
		on NMR spectroscopy: use of chiral derivatising agents (CDA),	
		chiral solvating agents (CSA) and Lanthanide shift reagents	
		(LSR). [3L]	
		3.3 Correlative method for configurational assignment:	
		chemical, optical rotation, and NMR spectroscopy. [4L]	
		3.4 Molecular dissymmetry and chiroptical properties: Linearly	
		and circularly polarized light. Circular birefringence and	
		circular dichroism. ORD and CD curves. Cotton effect and its	
		applications. The octant rule and the axial α -haloketone rule	
		with applications. [5L]	
IV	Asymmetric	4.1 Principles of asymmetric synthesis: Introduction, the chiral	
	synthesis	pool in Nature, methods of asymmetric induction – substrate,	
		reagent and catalyst-controlled reactions. [3L]	
		4.2 Synthesis of L-DOPA [Knowles's Mosanto process].	
		Asymmetric reactions with mechanism: Aldol and related	
		reactions, Cram's rule, Felkin-Anh model, Sharpless	
		enantioselective epoxidation, hydroxylation.	
		aminohydroxylation. Diels-Alder reaction, reduction of	
		prochiral carbonyl compounds and olefins [9L]	
		4.3 Use of chiral auxiliaries in diastereoselective reductions	
		asymmetric amplification Use of chiral RINOLs RINAPs and	
		chiral oxazolines asymmetric transformations [31]	
IV	Asymmetric synthesis	 4.1 Principles of asymmetric synthesis: Introduction, the chiral pool in Nature, methods of asymmetric induction – substrate, reagent and catalyst-controlled reactions. [3L] 4.2 Synthesis of L-DOPA [Knowles's Mosanto process]. Asymmetric reactions with mechanism: Aldol and related reactions, Cram's rule, Felkin-Anh model, Sharpless enantioselective epoxidation, hydroxylation, aminohydroxylation, Diels-Alder reaction, reduction of prochiral carbonyl compounds and olefins. [9L] 4.3 Use of chiral auxiliaries in diastereoselective reductions, asymmetric amplification. Use of chiral BINOLs, BINAPs and chiral oxazolines asymmetric transformations. [3L] 	

- 1. March's Advanced Organic Chemistry, Jerry March, sixth edition, 2007, John Wiley and sons.
- 2. A guide to mechanism in Organic Chemistry, 6th edition, 2009, Peter Sykes, Pearson education, New Delhi.
- 3. Advanced Organic Chemistry: Reaction Mechanisms, R. Bruckner, Academic Press (2002).
- 4. Organic Reaction Mechanism, 4th edition, V. K. Ahluvalia, R. K. Parashar, Narosa Publication.
- 5. Reaction Mechanism in Organic Chemistry, S.M. Mukherji, S.P.Singh, Macmillan Publishers, India.

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 42 | Page

- 6. Organic Chemistry, Part A and B, Fifth edition, 2007, Francis A. Carey and Richard J. Sundberg, Springer.
- 7. Organic Chemistry, J. Clayden, S. Warren, N. Greeves, P. Wothers, 1st Edition, Oxford University Press (2001).
- Organic Chemistry, Seventh Edition, R.T. Morrison, R. N. Boyd & S. K. Bhattacharjee, Pearson.Advanced Organic Chemistry: Reactions & Mechanisms, second edition, B. Miller and R. Prasad, Pearson.
- 9. Organic reactions & their mechanisms, third revised edition, P.S. Kalsi, New Age International Publishers.
- 10. Organic Chemistry: Structure and Function, P. Volhardt and N. Schore, 5th Edition, 2012
- 11. Organic Chemistry, W. G. Solomons, C. B. Fryhle, , 9th Edition, Wiley India Pvt. Ltd., 2009.
- 12. Pericyclic Reactions, S. Sankararaman, Wiley VCH, 2005.
- 13. Advanced organic chemistry, Jagdamba Singh L. D. S. Yadav, Pragati Prakashan, 2011.
- 14. Pericyclic reactions, Ian Fleming, Oxford university press, 1999.
- 15. Organic chemistry, 8th edition, John McMurry.
- 16. Modern methods of Organic Synthesis, 4th Edition W. Carruthers and Iain Coldham, Cambridge University Press 2004.
- 17. Modern physical chemistry, Eric V Anslyn, Dennis A. Dougherty, University science books,2006.
- 18. Physical Organic Chemistry, N. S. Isaacs, ELBS/Longman.
- 19. Stereochemistry of Carbon Compounds: Principles and Applications, D, Nasipuri, 3rd edition, New Age International Ltd.
- 20. Stereochemistry of Organic Compounds, Ernest L. Eliel and Samuel H. Wilen, Wiley-India edit.
- 21. Stereochemistry, P. S. Kalsi, 4th edition, New Age International Ltd.
- 22. Organic Stereochemistry, M. J. T. Robinson, Oxford University Press, New Delhi, India edition, 2005.
- 23. Bioorganic, Bioinorganic and Supramolecular chemistry, P.S. Kalsi and J.P. Kalsi. New Age International Publishers.
- 24. Supramolecular Chemistry; Concepts and Perspectives, J. M. Lehn, VCH.
- 25. Crown ethers and analogous compounds, M. Hiraoka, Elsevier, 1992.
- 26. Large ring compounds, J.A.Semlyen, Wiley-VCH, 1997.
- 27. Fundamentals of Photochemistry, K. K. Rohtagi-Mukherji, Wiley- Eastern.
- 28. Essentials of Molecular Photochemistry, A. Gilbert and J. Baggott, Blackwell Sciertific Publication.
- 29. Molecular Photochemistry, N. J. Turro, W. A. Benjamin.
- 30. Introductory Photochemistry, A. Cox and T. Camp, McGraw-Hill.
- 31. Photochemistry, R. P. Kundall and A. Gilbert, Thomson Nelson.
- 32. Organic Photochemistry, J. Coxon and B. Halton, Cambridge University Press.
- 33. Molecular Orbitals and Organic Chemical Reactions by Ian Fleming (Wiley A john Wiley and Sons, Ltd., Publication).

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 43 | Page

Teaching Plan:			
Unit	Unit Title	Teaching Methods	No. of
No.			Lectures
			(in hrs)
Ι	Physical organic	Lecture, PPT	15
	chemistry		
Π	Supramolecular	Lecture, PPT	15
	chemistry		
III	Stereochemistry-	Lecture, PPT	15
	II		
IV	Asymmetric	Lecture, PPT	15
	synthesis		

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 40

Method	Marks
One Periodical Class Test / Written objectives / Assignments/ Short answer	30
Questions / Seminar to be conducted in the given semester	
Active participation in routine class instructional deliveries and	10
overall conduct as a responsible learner, mannerism and articulation and	
exhibit	
of leadership qualities in organizing related academic activities	

B) Semester End Examination: Maximum Marks: 60

Question No.	Unit	Type of Question	Marks
Q.1	Unit I	Descriptive. short note etc.	12
Q.2	Unit II	Descriptive. short note etc.	12
Q.3	Unit III	Descriptive. short note etc.	12
Q.4	Unit IV	Descriptive. short note etc.	12
Q.5	All Units	short note / objective, etc.	12

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 44 | Page

Nomenclature of the	Synthetic organic chemistry II
Course	
Class	M.ScII
Semester	IV
Course Code	PSOCH402
No. of Credits	04
Nature	Theory
Туре	Major: Mandatory

At the end of the Course, the Learner will be able to:

- CO1: Understand about the protecting groups for different functional groups, concept of umpolung and the various termed involved in the retrosynthesis.
- CO2: Study about the C-C one group and two group disconnections by their applications in different organic reactions.
- CO3: Understand the concept of Electro-organic chemistry and selected methods of Organic synthesis.
- CO4: Explain the important transition and rare earth metals in organic synthesis with its mechanism and application.

Curricu	Curriculum:			
Unit	Unit Title	Sub titles (Learning Points)		
No.				
Ι	Designing Organic	1.1 Protecting groups in Organic Synthesis: Protection and		
	Synthesis-I	deprotection of the hydroxyl, carbonyl, amino and carboxyl		
		functional groups and its applications. [3L]		
		1.2 Concept of umpolung (Reversal of polarity): Generation		
		of acyl anion equivalent using 1,3-dithianes, methyl		
		thiomethyl sulfoxides, cyanide ions, cyanohydrin ethers,		
		nitro compounds and vinylated ethers. [3L]		
		1.3 Introduction to Retrosynthetic analysis and synthetic		
		planning: Linear and convergent synthesis; Disconnection		
		approach: An introduction to synthons, synthetic equivalents,		
		disconnection approach, functional group interconversions		
		(FGI), functional group addition (FGA), functional group		
		removal (FGR) importance of order of events in organic		
		synthesis, one and two group C-X disconnections (1,1; 1,2;		
		1,3 difunctionalized compounds), selective organic		
		transformations: chemoselectivity,		
		regioselectivity, stereoselectivity, enantioselectivity. [9L]		
Π	Designing Organic	2.1 General strategy: choosing a disconnection-		
	Synthesis-II	simplification, symmetry, high yielding steps, and		
		recognisable starting material. [3L]		

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 45 | Page

	1	
		 2.2 One group C-C Disconnections: Alcohols (including stereoslectivity), carbonyls (including regioselectivity), Alkene synthesis, use of acetylenes and aliphatic nitro compounds in organic synthesis. [6L] 2.3 Two group C-C Disconnections: 1, 2-1, 3-1, 4-1, 5- and 1,6- difunctionalized compounds, Diels-Alder reactions, α, β-unsaturated compounds, control in carbonyl condensations, Michael addition and Robinson annelation. [6L]
III	Electro-organic	3.1 Electro-organic chemistry: [7L]
	chemistry and	3.1.1 Introduction: Electrode potential, cell parameters,
	Selected methods of	electrolyte, working electrode, choice of solvents, supporting
	Organic synthesis	electrolytes.
		3.1.2 Cathodic reduction: Reduction of alkyl halides,
		aldehydes, ketones, nitro compounds, olefins, arenes,
		electro-dimerization.
		3.1.3 Anodic oxidation: Oxidation of alkylbezene, Kolbe
		reaction, Non-Kolbe oxidation, Shono oxidation.
		3.2 Selected Methods of Organic synthesis [8L]
		Applications of the following in organic synthesis:
		3.2.1 Crown ethers, cryptands, micelles, cyclodextrins,
		catenanes.
		3.2.2 Organocatalysts: Proline, Imidazolidinone.
		3.2.3 Pd catalysed cycloaddition reactions: Stille reaction,
		Saeguse-ito oxidation to enones, Negisni coupling.
		3.2.4 Use of Sc(OII), and YB(OII) as water tolerant Lewis
		Alder reaction Eriedel Crafts reaction
IV	Transition and rara	4.1 Introduction to basic concents: 18 cleatron rule, bonding
1 V	earth metals in	in transition metal complexes C-H activation ovidative
	organic synthesis	addition reductive elimination migratory insertion [3]
	organie synthesis	4.2 Palladium in organic synthesis: π -bonding of Pd with
		olefins, applications in C-C bond formation, carbonylation.
		alkene isomerisation, cross-coupling of organometallics and
		halides. Representative examples: Heck reaction, Suzuki-
		Miayura coupling, Sonogashira reaction and Wacker
		oxidation. Heteroatom coupling for bond formation between
		aryl/vinyl groups and N, S, or P atoms. [5L]
		4.3 Olefin metathesis using Grubb's catalyst. [1L]
		4.4 Application of Ni, Co, Fe, Rh, and Cr carbonyls in
		organic synthesis. [4L]

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 46 | Page

4.5 Application of samarium iodide including reduction of
organic halides, aldehydes and ketones, α -functionalised
carbonyl and nitro compounds. [1L]
4.6 Application of Ce(IV) in synthesis of heterocyclic
quinoxaline derivatives and its role as a de-protecting agent.
[1L]

- 1. Advanced Organic Chemistry, Part A and Part B: Reaction and Synthesis, Francis A. Carey, Richard J. Sundberg, 5th Edition, Springer Verlag.
- 2. Modern Methods of Organic Synthesis, 4th Edition, W. Carruthers and Iain Coldham, Cambridge University Press, 2004.
- 3. Chem.Rev. 2002, 102, 2227-2302, Rare Earth Metal Triflates in Organic Synthesis, S. Kobayashi, M. Sugiura, H. Kitagawa, and W.W.L. Lam.
- 4. Organic Chemistry, Clayden Greeves Warren and Wothers, Oxford Press (2001).
- 5. Moder Organic Synthesis: An Introduction, G.S. Zweifel and M.H. Nantz, W.H. Freeman and Company, (2007).
- 6. Advanced Organic Chemistry: Reaction Mechanism, R. Bruckner, Academic Press (2002).
- 7. Principles of Organic Synthesis, R.O.C. Norman & J. M. Coxon, 3rd Edn, Nelson Thornes.
- 8. Organic Chemistry, 7th Edn, R. T. Morrison, R. N. Boyd, & S. K. Bhattacharjee, Pearson
- 9. Strategic Applications of Name Reactions in Organic Synthesis, L. Kurti & B. Czako (2005), Elsevier Academic Press.
- 10. Advanced Organic Chemistry: Reactions & Mechanisms, 2nd Edn, B. Miller & R. Prasad, Pearson.
- 11. Organic reactions and their mechanisms, 3rd revisededition, P.S. Kalsi, New Age International Publishers.
- 12. Organic Synthesis: The Disconnection Approach, Stuart Warren, John Wiley & Sons, 2004.
- 13. Name Reactions and Reagents in Organic Synthesis, 2nd Edn., Bradford P. Mundy, Michael G. Ellard, and Frank Favoloro, Jr., Wiley-Interscience .
- 14. Name Reactions, Jie Jack Lie, 3rd Edn, Springer.
- 15. Organic Electrochemistry, H. Lund, and M. Baizer, 3rd Edn, Marcel Dekker.

Teaching Plan:			
Unit No.	Unit Title	Teaching Methods	No. of Lectures (in hrs)
Ι	Designing Organic Synthesis-I	Lecture, PPT	15
П	Designing Organic Synthesis-II	Lecture, PPT	15
III	Electro-organic chemistry and Selected methods of Organic synthesis	Lecture, PPT	15
IV	Transition and rare earth metals in organic synthesis	Lecture, PPT	15

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks:

Method	Marks
One Periodical Class Test / Written objectives / Assignments/ Short answer	30
Questions / Seminar to be conducted in the given semester	
Active participation in routine class instructional deliveries and overall	
conduct as a responsible learner, mannerism and articulation and exhibit	
of leadership qualities in organizing related academic activities	

B) Semester End Examination: Maximum Marks: 60

Question No.	Unit	Type of Question	Marks
Q.1	Unit I	Descriptive. short note etc.	12
Q.2	Unit II	Descriptive. short note etc.	12
Q.3	Unit III	Descriptive. short note etc.	12
Q.4	Unit IV	Descriptive. short note etc.	12
Q.5	All Units	short note / objective, etc.	12

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 48 | Page

Nomona	lature of the	Organic Chamistry Practical IV	
		Organic Chemistry Fractical TV	
Class			
Semester			
Course			
No. of C	redits		
Nature		Practical	
Туре		Major: Mandatory	
~	<u> </u>		
Course	Outcomes:		
At the er	nd of the Course	, the Learner will be able to:	
CO1: U	nderstand the p	lanning of synthesis, effect of reaction parameters including	
sto	oichiometry, and	l safety aspects including MSDS.	
CO2: Ur	nderstand the po	ssible mechanism, expected spectral data (IR and NMR) of starting	
m	aterial and final	product.	
CO3: Pt	rify the produc	t, measure its mass or volume, check the purity by TLC, determine	
physical constant and calculate percentage yield.			
~			
Curricu	lum:		
Unit	Unit Title	Sub titles (Learning Points)	
No.			
Ι	Two steps	1. Acetophenone \rightarrow Acetophenone phenyl hydrazine \rightarrow 2-phenyl	
	preparations	indole.	
2. 2-naphthol \rightarrow 1-phenyl azo-2-naphthol \rightarrow 1-amino-2-n		2. 2-naphthol \rightarrow 1-phenyl azo-2-naphthol \rightarrow 1-amino-2-naphthol.	
3.		3. Cyclohexanone \rightarrow cyclohexanone oxime \rightarrow Caprolactum.	
4.		4. Hydroquinone \rightarrow hydroquinone diacetate \rightarrow 2, 5-	
dihydro		dihydroxyacetophenone.	
5.		5. 4-nitrotoluene \rightarrow 4-nitrobenzoic acid \rightarrow 4-aminobenzoic acid.	
		6. <i>o</i> -nitroaniline \rightarrow <i>o</i> -phenylene diamine \rightarrow Benzimidazole.	
		7. Benzophenone \rightarrow benzophenone oxime \rightarrow benzanilide.	
		8. <i>o</i> -chlorobenzoic acid \rightarrow N-phenyl anthranilic acid \rightarrow acridone.	
		9. Benzoin \rightarrow benzil \rightarrow benzilic acid.	
10			
		10. Phthalic acid \rightarrow phthalimide \rightarrow anthranilic acid.	
		10. Phthalic acid \rightarrow phthalimide \rightarrow anthranilic acid. 11. Resorcinol \rightarrow 4-methyl-7-hydroxy coumarin \rightarrow 4-methyl-7-	
		10. Phthalic acid \rightarrow phthalimide \rightarrow anthranilic acid. 11. Resorcinol \rightarrow 4-methyl-7-hydroxy coumarin \rightarrow 4-methyl-7- acetoxy coumarin.	
		 10. Phthalic acid → phthalimide → anthranilic acid. 11. Resorcinol → 4-methyl-7-hydroxy coumarin → 4-methyl-7-acetoxy coumarin. 12. Anthracene → anthraquinone → anthrone. 	
		 10. Phthalic acid → phthalimide → anthranilic acid. 11. Resorcinol → 4-methyl-7-hydroxy coumarin → 4-methyl-7-acetoxy coumarin. 12. Anthracene → anthraquinone → anthrone. (Minimum6 experiments) 	
		10. Phthalic acid \rightarrow phthalimide \rightarrow anthranilic acid. 11. Resorcinol \rightarrow 4-methyl-7-hydroxy coumarin \rightarrow 4-methyl-7- acetoxy coumarin. 12. Anthracene \rightarrow anthraquinone \rightarrow anthrone. (Minimum6 experiments)	
П	Combined	 10. Phthalic acid → phthalimide → anthranilic acid. 11. Resorcinol → 4-methyl-7-hydroxy coumarin → 4-methyl-7-acetoxy coumarin. 12. Anthracene → anthraquinone → anthrone. (Minimum6 experiments) Interpretation of spectral data of organic compounds (UV, IR, PMR, The Top and To	
Π	Combined spectral	 10. Phthalic acid → phthalimide → anthranilic acid. 11. Resorcinol → 4-methyl-7-hydroxy coumarin → 4-methyl-7-acetoxy coumarin. 12. Anthracene → anthraquinone → anthrone. (Minimum6 experiments) Interpretation of spectral data of organic compounds (UV, IR, PMR, CMR and Mass spectra). A student will be given UV, IR, PMR, 	
П	Combined spectral identificatio	 10. Phthalic acid → phthalimide → anthranilic acid. 11. Resorcinol → 4-methyl-7-hydroxy coumarin → 4-methyl-7-acetoxy coumarin. 12. Anthracene → anthraquinone → anthrone. (Minimum6 experiments) Interpretation of spectral data of organic compounds (UV, IR, PMR, CMR and Mass spectra). A student will be given UV, IR, PMR, CMR, and Mass spectra of a compound from which preliminary 	
Π	Combined spectral identificatio nn	 10. Phthalic acid → phthalimide → anthranilic acid. 11. Resorcinol → 4-methyl-7-hydroxy coumarin → 4-methyl-7-acetoxy coumarin. 12. Anthracene → anthraquinone → anthrone. (Minimum6 experiments) Interpretation of spectral data of organic compounds (UV, IR, PMR, CMR and Mass spectra). A student will be given UV, IR, PMR, CMR, and Mass spectra of a compound from which preliminary information should be reported within first half an 	

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 49 | Page

	material. The complete structure of the compound may then be	
	elucidated by referring to any	standard text-book/reference
	material etc.	
	(Minimum 6 spectral analysis).	

- 1. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis- V. K. Ahluwalia and Renu Aggarwal, Universities Press India Ltd., 2000.
- 2. Advanced Practical Organic Chemistry N. K. Vishnoi, Third Addition, Vikas Publishing House PVT Ltd.
- 3. Systematic Laboratory Experiments in Organic Synthesis- A. Sethi, New Age International Publications.
- 4. Systematic Identification of Organic compounds, 6th edition, R. L. Shriner, R. C. Fuson and D.Y. Curtin Wiley, New York.
- 5. Vogel's Textbook of Quantitative Analysis, revised, J. Bassett, R. C. Denney, G. H. Jeffery and J. Mendham, ELBS.
- 6. Experiments and Techniques in Organic Chemistry, D. Pasto, C. Johnson and M. Miller, Prentice Hall.
- 7. Macro-scale and Micro-scale Organic Experiments, K. L. Williamson, D. C. Heath.
- 8. Systematic Qualitative Organic Analysis, H. Middleton, Adward Arnold.
- 9. Handbook of Organic Analysis- Qualitative and Quantitative, H. Clark, Adward Arnold.
- 10. Vogel's Textbook of Practical Organic Chemistry, Fifth edition,2008, B.S.Furniss, A. J.Hannaford, P. W. G. Smith, A. R. Tatchell, Pearson Education.
- 11. Laboratory Manual of Organic Chemistry, Fifth edition, R K Bansal, New Age Publishers.
- 12. Organic structures from spectra, L. D. Field, S. Sternhell, John R. Kalman, Wiley, 4th ed., 2011.

Teaching Plan:

Unit	Unit Title	Teaching Methods	No. of	
No.			Lectures	
			(in hrs)	
Ι	Two steps preparations	Lecture, Demo, experiment	120	
Π	Combined spectral identification	Lecture, problem solving		

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 50 | Page

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 40

Method	Marks
Assessment during practicals (Interaction / Performance) Skill, Accuracy,	30
precision of measurement, Record of observation, calculations, graph, result	
and conclusion. Timely submission of journal	
Overall performance (attendance, punctuality, interaction during Practical	
session throughout semester)	

B) Semester End Examination: Maximum Marks: 60

Sr.	Name of course	Metho	Duration	Marks
No.		d		
1.	Two steps	Experiment performance	seven hours	75
	preparations	as per the practical slip		
2.	Combined	Experiment performance	Three and half hours	25
	spectral	as per the practical slip		
	identification			
Total				100

Practical examination will be of 100 marks at the end of semester which will be converted to 60 Marks.

CIE	Semester End	Total Marks
40	60	100

Nomenclature of the	Natural products and heterocyclic Chemistry	
Course		
Class	M.ScII	
Semester	IV	
Course Code	PSOCH404	
No. of Credits	04	
Nature	Theory	
Туре	Major Electives	

At the end of the Course, the Learner will be able to

- CO1: Explain the biological importance and synthesis of steroids.
- CO2: Explain the biological importance and synthesis of different vitamins, antibiotics, naturally occurring insecticides and terpenoids.
- CO3: Study the chemistry of monocyclic heterocycles, their nomenclature and reactions.
- CO4: Study the chemistry of bicyclic/tricyclic, fused heterocycles, their nomenclature and reactions.

Curricu	lum:				
Unit	Unit Title	Sub titles (Learning Points)			
No.					
Ι	Natural	1.1 Steroids: General structure, classification. Occurrence,			
	products-III	biological role, important structural and stereochemical features of			
		the following: ncorticosteroids, steroidal hormones, steroidal			
		alkaloids, sterols and bile acids.[5L]			
		1.2 Synthesis of 16-DPA from cholesterol and plant sapogenin.			
		[2L]			
		1.3 Synthesis of the following from 16-DPA: androsterone,			
		testosterone, oestrone, oestriol, oestradiol and progesterone. [5L]			
		1.4 Synthesis of cinerolone, jasmolone, allethrolone, exaltone and			
		muscone. [3L]			
Π	Natural	2.1 Vitamins: Classification, sources and biological importance of			
	products-IV	vitamin B1, B2, B6, folic acid, B12, C, D1, E (α-tocopherol), K1,			
		K2, H (β- biotin). [5L]			
		Synthesis of the following:			
		Vitamin A from β -ionone and bromoester moiety.			
		Vitamin B1 including synthesis of pyrimidine and thiazole			
		moieties			
		Vitamin B2 from 3, 4-dimethylaniline and D(-)ribose			
		Vitamin B6 from: 1) ethoxyacetylacetone and cyanoacetamide, 2)			
		ethyl ester of N-formyl-DL-alanine (Harris synthesis)			
		Vitamin E (α -tocopherol) from trimethylquinol and phytyl bromide			
		Vitamin K1 from 2-methyl-1, 4-naphthaquinone and phytol.			

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 52 | Page

		2.2 Antibiotical Classification on the basic of activity. Structure		
		2.2 Antibiotics: Classification on the basis of activity. Structure		
		elucidation, spectral data of penicillin-G, cephalosporin-C and		
		chloramphenicol.		
		Synthesis of chloramphenicol (from benzaldehyde and β -		
		nitroethanol) penicillin-G and phenoxymethylpenicillin from D-		
		penicillamine and t-butyl phthalimide malonaldehyde (synthesis of		
		D-penicillamine and t-butyl phthalimide malonaldehyde expected).		
		[6L]		
		2.3 Naturally occurring insecticides: Sources, structure and		
		biological properties of pyrethrums (pyrethrum I) rotenoids		
		(rotenone). Synthesis of pyrethrin I. [2L]		
		2.4 3.4 Terpenoids: Occurrence, classification, structure		
		elucidation, stereochemistry, spectral data and synthesis of		
		zingiberene. [2L]		
III	Heterocyclic	Heterocyclic compounds: Introduction, classification,		
	compounds-I	Nomenclature of heterocyclic compounds of monocyclic (3-6		
	-	membered) (Common, systematic (Hantzsch-Widman) and		
		replacement nomenclature)		
		Structure, reactivity, synthesis and reactions of pyrazole,		
		imidazole, oxazole, isoxazole, thiazole, isothiazole, pyridazines,		
		pyrimidine, pyrazines and oxazines. elimination, molecular		
		rearrangements, reduction of cyclohexanones (with LiAlH4		
		selectride and MPV reduction) and oxidation of cyclohexanols		
		selectrice and MPV reduction) and oxidation of cyclonexanols.		
IV	Hotomografia	[JL] Nomenelature of heterogyalic compounds of hisvalic/triavalic (5		
1 V		Nomenciature of neterocyclic compounds of bicyclic/tricyclic (5-		
	compounds-11	(Common systematic (Hontzach Widman) and replacement		
		(Common, systematic (Hantzsch-wildman) and replacement		
		nomenciature) Nucleophilic ring opening reactions of oxiranes,		
		aziridines, oxetanes and azetidines. Structure, reactivity, synthesis		
		and reactions of coumarins, quinoxalines, cinnolines, indole,		
		benzimidazoles, benzoxazoles, benzothiazoles, Purines and		
		acridines.		

- 1. Natural product chemistry, A mechanistic, biosynthetic and ecological approach, Kurt B.G. Torssell, Apotekarsocieteten Swedish Pharmaceutical Press.
- Natural products chemistry and applications, Sujata V. Bhat, B.A.Nagasampagi and S. Meenakshi, Narosa Publishing House, 2011.
- 3. Organic Chemistry Natural Products Volume-II, O. P. Agarwal, Krishna Prakashan, 2011.
- 4. Chemistry of natural products, F. F. Bentley and F. R. Dollish, 1974.
- 5. Natural Product Chemistry Vol.1 and 2, K. Nakanishi J. Goto. S.Ito Majori and S. Nozoo, Academic Press, 1974.

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 53 | Page

- 6. Chemistry of natural products, V.K. Ahluwalia, Vishal Publishing Co. 2008.
- 7. Heterocyclic chemistry, 3rd edition, Thomas L. Gilchrist, Pearson Education, 2007.
- 8. Heterocyclic Chemistry, Synthesis, Reactions and Mechanisms, R. K. Bansal, Wiley Eastern Ltd., 1990.
- 9. Heterocyclic Chemistry, J. A. Joule and G. F. Smith, ELBS, 2nd edition, 1982.
- 10. The Conformational Analysis of Heterocyclic Compounds, F.G. Riddell, Academic Press, 1980.
- 11. Principles of Modern Heterocyclic Chemistry, L.A. Paquette, W.B. Benjamin, Inc., 1978.
- 12. An Introduction to the Chemistry of Heterocyclic Compounds, 2nd edition, B.M. Acheson, 1975.
- Natural Products: Chemistry and Biological Significance Interscience, J. Mann, R.S.Davidson, J.B.Hobbs, D.V. Banthrope and J. B. Harborne, Longman, Essex, 1994.
- 14. Organic Chemistry, Vol 2, I.L. Finar, ELBS, 6th edition, Pearson.
- 15. Stereoselective Synthesis: A Practical Approach, M. Nogradi, Wiley-VCH, 1995.
- 16. Rodd's Chemistry of Carbon Compounds, Ed. S. Coffey, Elsevier.
- 17. New Trends in Natural Product Chemistry, Atta-ur-Rahman and M.I. Choudhary, Harwood Academic Publishers, 1998.
- 18. Insecticides of Natural Origin, Sukh Dev, Harwood Academic Publishers.
- 19. The Alkaloids, The fundamental Chemistry A biogenetic approach, Marcel Dekker Inc. New York, 1979.
- 20. Comprehensive Organic Chemistry by Barton and Olis, Pergamon Press, Oxford, 1979.
- 21. Medicinal Natural Products, a Biosynthetic Approach, Derick Paul, John Wiley and Sons, 2002.
- 22. Total synthesis of Natural Products, J. Apsimon, John Wiley and Sons.
- 23. The Logic of Chemical Synthesis, E. J. Corey and Xue-Min Cheng, Wiley Interscience.
- 24. Classics in Total Synthesis , K. C. Nicolaou and E. J. Sorensen, Weinhem: VCH, 1996.
- 25. Spectroscopy of Organic compounds, P.S. Kalsi, New Age International Pub. Ltd. And Wiley Eastern Ltd., Second edition, 1995.
- 26. Applications of Absorption Spectroscopy of Organic compounds, J.\ R. Dyer, Prentice Hall of India, 1987.
- 27. Spectrometric Identification of Organic compounds, R.M. Silverstein and others, John Wiley and Sons Inc., 5th ed., 1991.
- Spectroscopic methods in organic chemistry, Williams and Fleming, Tata McGraw Hill, 4th ed, 1989.
- 29. Organic spectroscopy, William Kemp, ELBS, 3rd ed., 1987.
- 30. Organic structures from spectra, L. D. Field, S. Sternhell, John R.Kalman, Wiley, 4th ed., . 3122

 Introduction to spectroscopy, Donald L. Pavia, Gary M. Lampman, George S. Kriz, James R. Vyvyan, 4th ed., 2009.

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 54 | Page

- 32. Organic spectroscopic structure determination: a problem-based learning approach Douglass F. Taber, Oxford University Press, 17- Sep-2007
- 33. Organic Spectroscopy: Principles And Applications, Jag Mohan, Alpha Science International Ltd., 30-Mar-2004
- 34. Alkaloids, V.K. Ahuluwalia, Ane Books Pvt. Ltd.
- 35. Biotransformations in Organic Chemistry, 5thEdition, Kurt Faber, Springer .
- 36. Structure Determination of Organic Compounds, EPretsch, P. Buhlmann, C.Affolter, Springer.

Teaching Plan:

Teaching Flain.			
Unit	Unit Title	Teaching Methods	No. of
No.			Lectures
			(in hrs)
Ι	Natural	Lecture, PPT	15
	products-III		
II	Natural	Lecture, PPT	15
	products-IV		
III	Heterocyclic	Lecture, PPT	15
	compounds-I		
IV	Heterocyclic	Lecture, PPT	15
	compounds-II		

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 40

Method	Marks
One Periodical Class Test / Written objectives / Assignments/ Short answer	30
Questions / Seminar to be conducted in the given semester	
Active participation in routine class instructional deliveries and overall	10
conduct as a responsible learner, mannerism and articulation and exhibit	
of leadership qualities in organizing related academic activities	

B) Semester End Examination: Maximum Marks: 60

Question No.	Unit	Type of Question	Marks
Q.1	Unit I	Descriptive. short note etc.	12
Q.2	Unit II	Descriptive. short note etc.	12
Q.3	Unit III	Descriptive. short note etc.	12
Q.4	Unit IV	Descriptive. short note etc.	12
Q.5	All Units	short note / objective, etc.	12

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 55 | Page

Nomenclature of the	Bioorganic Chemistry
Course	
Class	M.ScII
Semester	IV
Course Code	PSOCH405
No. of Credits	04
Nature	Theory
Туре	Major Electives

At the end of the Course, the Learner will be able to:

CO1: Study about amino acids, peptides, proteins, nucleic acids, RNAs and DNA.

CO2: Study about the chemistry of enzymes.

CO3: Understand about the chemistry of coenzymes.

CO4: Study about the various reactions involved with different biomolecules.

Syllabu	5:			
Unit	Unit Title	Sub titles (Learning Points)		
No.				
Ι	Biomolecules-I	1.1 Amino acids, peptides and proteins: Chemical and		
		enzymatic hydrolysis of proteins to peptides, amino acid		
		sequencing. Secondary structure of proteins, forces		
		responsible for holding of secondary structures, α - helix, β -		
		sheets, super secondary structure. Tertiary structure of protein:		
		folding and domain structure. Quaternary structure.[2L]		
		1.2 Nucleic acids: Structure and function of physiologically		
		important nucleotides (c-AMP, ADP, ATP) and nucleic acids		
		(DNA and RNA),		
		replication, genetic code, protein biosynthesis, mutation.[3L]		
		1.3Structure: Purine & pyrimidine bases, ribose, deoxyribose,		
		nucleosides and nucleotides (ATP, CTP, GTP, TTP, UTP)		
		formation of polynucleotides strand with its shorthand		
		representation.[3L]		
		1.4 RNAs (various types in prokaryotes and eukaryotes) m-		
		RNA and r- RNA - general account, t- RNA-clover leaf		
		model, Ribozymes.[2L]		
		1.5 DNA: Physical properties – Effect of heat on physical		
		properties of DNA (Viscosity, buoyant density and UV		
		absorption), Hypochromism,		
		Hyperchromism and Denaturation of DNA. Reactions of		
		nucleic acids (with DPA and Orcinol).[2L]		

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 56 | Page

	1.6 Chemical synthesis of oligonucleotides: Phosphodiester			
		Dhosphotriester Dhosphoramidite and H ₋ phosphonate		
		methods including solid phase approach [21]		
п	D'ann als and a H	2.1 Characterize of an approach.[5L]		
Ш	Biomolecules-II	2.1 Chemistry of enzymes: Introduction, nomenciature,		
		classes and general types of reactions catalyzed by enzymes.		
		Properties of enzymes: a) enzyme efficiency/ catalytic power		
		b) enzyme specificity; Fischer's 'lock and key'		
		and Koshland 'induced fit' hypothesis. Concept and		
		identification of active site.[6L]		
		2.2 Factors affecting enzyme kinetics: Substrate		
		concentration, enzyme concentration, temperature, pH,		
		product concentration etc. Reversible and irreversible		
		inhibition.[4L]		
		2.3 Mechanism of enzyme action: transition-state theory,		
		orientation and steric effect, acid-base catalysis, covalent		
		catalysis, strain or distortion. Mechanism of chymotrypsin		
		catalyzed hydrolysis of a peptide bond.[5L]		
III	Biomolecules - III	3.1 Chemistry of coenzymes. Structure, mechanism of action		
		and bio-modeling studies of the following coenzymes:		
		nicotinamide adenine dinucleotide, flavin adenine		
		dinucleotide, thiamine pyrophosphate, pyridoxal phosphate,		
		Vitamin B12, biotin, lipoic acid, Coenzyme A.[12L]		
		3.2 Oxidative phosphorylation, chemiosmosis, rotary model		
		for ATP synthesis and role of cytochrome in oxygen		
		for ATP synthesis and role of cytochrome in oxygen		
		for ATP synthesis and role of cytochrome in oxygen activation.[3L]		
IV	Biomolecules – IV	activation.[3L]4.1 Role of main enzymes involved in the synthesis and		
IV	Biomolecules – IV	for ATP synthesis and role of cytochrome in oxygen activation.[3L]4.1 Role of main enzymes involved in the synthesis and breakdown of glycogen.[2L]		
IV	Biomolecules – IV	 for ATP synthesis and role of cytochrome in oxygen activation.[3L] 4.1 Role of main enzymes involved in the synthesis and breakdown of glycogen.[2L] 4.2 Enzyme catalyzed organic reactions: Hydrolysis, 		
IV	Biomolecules – IV	 for ATP synthesis and role of cytochrome in oxygen activation.[3L] 4.1 Role of main enzymes involved in the synthesis and breakdown of glycogen.[2L] 4.2 Enzyme catalyzed organic reactions: Hydrolysis, hydroxylation, oxidation and reduction.[6L] 		
IV	Biomolecules – IV	 for ATP synthesis and role of cytochrome in oxygen activation.[3L] 4.1 Role of main enzymes involved in the synthesis and breakdown of glycogen.[2L] 4.2 Enzyme catalyzed organic reactions: Hydrolysis, hydroxylation, oxidation and reduction.[6L] 4.3 Enzymes in organic synthesis. Fermentation: Production 		
IV	Biomolecules – IV	 for ATP synthesis and role of cytochrome in oxygen activation.[3L] 4.1 Role of main enzymes involved in the synthesis and breakdown of glycogen.[2L] 4.2 Enzyme catalyzed organic reactions: Hydrolysis, hydroxylation, oxidation and reduction.[6L] 4.3 Enzymes in organic synthesis. Fermentation: Production of drugs/drug intermediates by fermentation. Production of 		
IV	Biomolecules – IV	 for ATP synthesis and role of cytochrome in oxygen activation.[3L] 4.1 Role of main enzymes involved in the synthesis and breakdown of glycogen.[2L] 4.2 Enzyme catalyzed organic reactions: Hydrolysis, hydroxylation, oxidation and reduction.[6L] 4.3 Enzymes in organic synthesis. Fermentation: Production of drugs/drug intermediates by fermentation. Production of chiral hydroxy acids vitamins amino acids β-lactam 		
IV	Biomolecules – IV	 for ATP synthesis and role of cytochrome in oxygen activation.[3L] 4.1 Role of main enzymes involved in the synthesis and breakdown of glycogen.[2L] 4.2 Enzyme catalyzed organic reactions: Hydrolysis, hydroxylation, oxidation and reduction.[6L] 4.3 Enzymes in organic synthesis. Fermentation: Production of drugs/drug intermediates by fermentation. Production of chiral hydroxy acids, vitamins, amino acids, β-lactam antibiotics. Synthesis of chemicals via microbial 		
IV	Biomolecules – IV	 for ATP synthesis and role of cytochrome in oxygen activation.[3L] 4.1 Role of main enzymes involved in the synthesis and breakdown of glycogen.[2L] 4.2 Enzyme catalyzed organic reactions: Hydrolysis, hydroxylation, oxidation and reduction.[6L] 4.3 Enzymes in organic synthesis. Fermentation: Production of drugs/drug intermediates by fermentation. Production of chiral hydroxy acids, vitamins, amino acids, β-lactam antibiotics. Synthesis of chemicals via microbial transformation synthesis of L-ephedrine. Chemical processes 		
IV	Biomolecules – IV	 for ATP synthesis and role of cytochrome in oxygen activation.[3L] 4.1 Role of main enzymes involved in the synthesis and breakdown of glycogen.[2L] 4.2 Enzyme catalyzed organic reactions: Hydrolysis, hydroxylation, oxidation and reduction.[6L] 4.3 Enzymes in organic synthesis. Fermentation: Production of drugs/drug intermediates by fermentation. Production of chiral hydroxy acids, vitamins, amino acids, β-lactam antibiotics. Synthesis of chemicals via microbial transformation, synthesis of L-ephedrine. Chemical processes with isolated enzymes in free form (hydrocyanation of free form (hydrocyanation of free form). 		
IV	Biomolecules – IV	 for ATP synthesis and role of cytochrome in oxygen activation.[3L] 4.1 Role of main enzymes involved in the synthesis and breakdown of glycogen.[2L] 4.2 Enzyme catalyzed organic reactions: Hydrolysis, hydroxylation, oxidation and reduction.[6L] 4.3 Enzymes in organic synthesis. Fermentation: Production of drugs/drug intermediates by fermentation. Production of chiral hydroxy acids, vitamins, amino acids, β-lactam antibiotics. Synthesis of chemicals via microbial transformation, synthesis of L-ephedrine. Chemical processes with isolated enzymes in free form (hydrocyanation of mphenoxybenzaldehyde) and immobilized form (production) 		
IV	Biomolecules – IV	 for ATP synthesis and role of cytochrome in oxygen activation.[3L] 4.1 Role of main enzymes involved in the synthesis and breakdown of glycogen.[2L] 4.2 Enzyme catalyzed organic reactions: Hydrolysis, hydroxylation, oxidation and reduction.[6L] 4.3 Enzymes in organic synthesis. Fermentation: Production of drugs/drug intermediates by fermentation. Production of chiral hydroxy acids, vitamins, amino acids, β-lactam antibiotics. Synthesis of chemicals via microbial transformation, synthesis of L-ephedrine. Chemical processes with isolated enzymes in free form (hydrocyanation of mphenoxybenzaldehyde) and immobilized form (production of charamater acid) [71] 		

- Nelson, D. L, and Cox, M. M, (2008) Lehninger principles of Biochemistry 5th Edition, W. H. Freeman and Company, NY., USA.
- 2. Stryer, Lubert; Biochemistry; W. H. Freeman publishers.
- 3. Voet, D. and J. G. Voet (2004) Biochemistry, 3rd Edition, John Wiley & sons, Inc. USA.

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 57 | Page

- 4. Zubay, Goffrey L; Biochemistry; Wm C. Brown publishers.
- 5. V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara and J-M Basset, Chem. Rev. 2011, 111, 3036-3075;
- 6. R. B. Nasir Baig and R. S. Varma, Chem. Comm., 2013, 49, 752-770;
- 7. M. B. Gawande, A. K. Rathi, P. S. Varma, Appl. Sci., 2013, 3, 656-674;
- 8. J. Govan and Y. K. Gun'ko, Nanomaterials, 2014, 4, 222-214.
- K. Philippot and P. Serp, Nanomaterials in catalysis, First Edition. Edited by P. Serp and K. Philippot; 2013 Wiley – VCH Verlag GmbH & Co. K GaA
- D. Astruc, Nanomaterials and Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, 2008, 1-48;
- C. N. R. Roa, A. Muller and A. K. Cheetham, The chemistry of Nanomaterials, Wiley-VCH Verlag GmbH & Co. KGaA, 2005, 1-11;
- 12. The organic chemistry of drug design and drug action, Richard B. Silverman, 2nd edition, Academic Press.
- 13. Medicinal chemistry, D.Sriram and P. Yogeeswari, 2nd edition, Pearson.
- 14. An introduction to drug design-S. S. Pandeya and J. R. Dimmock (New age international)
- 15. Burger's medicinal chemistry and drug discovery. by Manfred E. Wolf.
- 16. Introduction to Medicinal chemistry. by Graham Patrick.
- 17. Medicinal chemistry-William O. Foye.
- 18. T. B. of Organic medicinal and pharmaceutical chemistry-Wilson and Gisvold's (Ed. Robert F. Dorge).
- 19. An introduction to medicinal chemistry-Graham L. Patrick, OUP Oxford, 2009.
- 20. Principles of medicinal chemistry (Vol. I and II)-S. S. Kadam, K. R. Mahadik and K.G. Bothara , Nirali prakashan.
- 21. Medicinal chemistry (Vol. I and II)-Burger.
- 22. Strategies for organic drug synthesis and design D. Lednicer Wiley.
- 23. Pharmacological basis of therapeutics-Goodman and Gilman's (McGraw Hill).
- 24. Enzyme catalysis in organic synthesis, 3rd edition. Edited by Karlheinz Drauz, Harold Groger, and Oliver May, Wiley-VCH Verlag GmbH & Co KgaA, 2012.
- 25. Biochemistry, Dr U Satyanarayan and Dr U Chakrapani, Books and Allied (P) Ltd.
- 26. Bioorganic, Bioinorganic and Supramolecular chemistry, P.S. Kalsi and J.P. Kalsi. New Age International Publishers.
- 27. The Organic Chemistry of Enzyme-Catalysed Reactions, Academic Press, By Richard B. Silverman.
- 28. Enzymes: Practical Introduction to structure, mechanism and data analysis, By Robert A. Copeland, Wiley-VCH, Inc.
- 29. The Organic Chemistry of Biological Pathways By John McMurry, Tadhg Begley by Robert and company publishers.
- 30. Bioorganic Chemistry- A practical approach to Enzyme action, H. Dugas and C. Penny. Springer Verlag, 1931.

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 58 | Page

- 31. Biochemistry: The chemical reactions in living cells, by E. Metzler. Academic Press.
- 32. Concepts in biotechnology by D. Balasubrarnanian & others.
- 33. Principals of biochemistry by Horton & others.
- 34. Bioorganic chemistry A chemical approach to enzyme action by Herman Dugas and Christopher Penney.
- 35. Medicinal Natural Products: A Biosynthetic Approach by Paul M. Dewick. 3rd Edition, Wiley.
- 36. Natural product chemistry, A mechanistic, biosynthetic and ecological approach, Kurt B.G. Torssell, Apotekarsocieteten Swedish pharmaceutical press.
- 37. Natural products Chemistry and applications, Sujata V Bhat, B.A. Nagasampagi and S. Meenakshi, Narosa Publishing House.
- 38. Natural Products Volume- 2, By O. P. Agarwal.
- 39. Chemistry of Natural Products, F. F. Bentley and F. R. Dollish, 1974.
- 40. Natural Product Chemistry Vol.1 and 2, K. Nakanishi J. Goto. S.Ito Majori and S. Nozoo, Academic Press, 1974.
- 41. Chemistry of natural products, V.K. Ahluwalia, Vishal Publishing Co.
- 42. Green Chemistry: An Introductory Text, 2nd Edition, Published by Royal Society of Chemistry, Authored by Mike Lancater.
- 43. Organic synthesis in water. By Paul A. Grieco, Blackie.
- 44. Green chemistry, Theory and Practical, Paul T. Anastas and John C. Warner.
- 45. New trends in green chemistry By V. K. Ahulwalia and M. Kidwai, 2nd edition, Anamaya Publishers, New Delhi.
- 46. An introduction to green chemistry, V. Kumar, Vishal Publishing Co.
- 47. Organic synthesis: Special techniques. V.K.Ahulwalia and Renu Aggarwal.

Teaching Plan:				
Unit	Unit Title	Teaching Methods	No. of	
No.			Lectures	
			(in hrs)	
Ι	Biomolecules-I	Lecture, PPT	15	
II	Biomolecules-II	Lecture, PPT	15	
III	Biomolecules - III	Lecture, PPT	15	
IV	Biomolecules – IV	Lecture, PPT	15	

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 59 | Page

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 40

Method	Marks
One Periodical Class Test / Written objectives / Assignments/ Short answer	30
Questions / Seminar to be conducted in the given semester	
Active participation in routine class instructional deliveries and overall	10
conduct as a responsible learner, mannerism and articulation and exhibit	
of leadership qualities in organizing related academic activities	

B) Semester End Examination: Maximum Marks: 60

Question No.	Unit	Type of Question	Marks
Q.1	Unit I	Descriptive. short note etc.	12
Q.2	Unit II	Descriptive. short note etc.	12
Q.3	Unit III	Descriptive. short note etc.	12
Q.4	Unit IV	Descriptive. short note etc.	12
Q.5	All Units	short note / objective, etc.	12

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 60 | Page

Nomenclature of the	Research Project
Course	
Class	M.ScII
Semester	IV
Course Code	PSOCH406
No. of Credits	06
Nature	Project
Туре	Mandatory

On successful completion of this course learners will be able to:

CO1: Identify the research problem and formulate objectives.

CO2: Choose appropriate methodology with proper tools and techniques.

CO3: Analyze and interpret the data collected from the performed experiments.

CO4: Make decision or find out conclusions on the basis of data analysis

CO5: Recall and list key research paradigms and methodologies in the subject.

CO6: Explain the principles of statistical analysis and their application in subject of research.

CO7: To develop problem solving, synthesis, spectral analysis, evaluation skills, encourage

team work, improve communication skills.

Syllabus:				
Unit	Unit Title	Sub titles (Learning Points)		
No.				
Ι	Research Project	After identifying problem for project work,		
		actual experimental work which involve		
		synthesis/analysis, characterization etc. and		
		preparing project report (a dissertation).		

References:

1. Previous Project Literature.

- 2. Internet.
- 3. Research Publications.
- 4. Project related references

Teaching Plan:

Teaching Than.			
Unit	Unit Title	Teaching Methods	No. of Lectures (in hrs)
II	Deciding methodology and practical implementation of the Project	Discussion, Experimental work	180
	Data analysis (if any) and conclusions, preparing project report (a dissertation).	Presentation and discussion	

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 61 | Page

Evaluation Pattern:

A) Continuous Internal Evaluation: Maximum Marks: 60

Sr. No	Method	Marks
1	Lab performance	40
2	Overall performance	20

B) Semester End Examination: Maximum Marks: 90

Sr. No	Criteria	Marks
1	Project Report	15
2	Presentation	
	• Experimental/Theoretical methodology/Working condition of	25
	project	
	• Significance of the study/Societal application and inclusion of	15
	recent References	
	• Depth of knowledge in the subject / Results and discussions	20
3	Project viva	15

Project guidelines:

- 1. Every learner will have to complete one long project/two short project within academic year.
- 2. Learners can take one long project or two short projects.
- 3. However, for one long project learners have to submit two separate project reports / dissertation consisting of the problem definition, literature survey and current status, objectives, methodology and some preliminary experimental work in Semester III (if any) and actual experimental work, results and analysis in semester IV.
- 4. The experimental project related to advanced topic in chemistry/interdisciplinary topic, industrial project a research institute/training of handling sophisticate equipment, he/she should mention in a report what training he/she has got, which instruments he/she handled and their principle and operation etc.
- 5. Maximum three learners can do a joint project. Each one of them will submit a separate project report with details.
- 6. Each project will be of 100 marks with 40% by continuous evaluation and 60% by semester end evaluation.
- 7. Learners should prepare and submit printed (one sided), Hard bound research proposal.

Format of Project Report:

a) Title Page:

Mentioning the title of the report, name of the learner, program, institution, and the project.

b) Certificate of Completion:

A certificate issued by guide confirming the successful completion of the project.

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 62 | Page

c) Declaration:

A statement by the learner declaring that the report is the original work and acknowledging any assistance or references used.

d) Acknowledgments:

Recognizing individuals or organizations that provided support, guidance, or resources during the training/project.

e) Table of Contents:

Providing a clear outline of the report's sections and page numbers.

f) Abstract:

A bird's eye view of learner's entire presentation has to be precisely offered under this category. A brief overview of the project, its objectives and key findings should be mentioned.

g) Introduction:

Background information about the project and its significance. Objectives and scope of the project.

h) Literature Review:

Overview of relevant literature and studies related to the chosen field and development issues.

i) Methodology:

Description of: Planning of experimental procedure as per the need of the project. Designing and implementation of the project as per the objectives through theoretical, experimental or computational methods.

j) Observations and data analysis:

Details of Testing, debugging, troubleshooting as per the need. Data collection and analysis.

k) Conclusion:

Summary of the key findings and outcomes of the project.

l) References & Appendices:

List of all sources cited in the project report. Additional supporting materials.

The project report shall be prepared as per the broad guidelines given below:

- Font type: Times New Roman,
- Font size: 12-For content, 14-for Title
- Line Space: 1.5-for content and 1-for in table work, Justified format
- Page Size: A4
- Margin: in Left-1.5, Up-Down-Right-1
- The Project Report shall be hard bounded.

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 63 | Page

Title of the Project

A Project Submitted

То

R. P. Gogate college of Arts and Science and

R.V. Jogalekar College of Commerce College (Autonomous), Ratnagiri

Under

University of Mumbai

For partial completion of the degree

Of

Master in Science

(Organic Chemistry)

Under the Faculty of Science

By

Name of Student

Under the Guidance of

Name of the Guiding Teacher

R. P. Gogate college of Arts and Science and

R.V. Jogalekar College of Commerce College (Autonomous) Ratnagiri

Month and Year

On separate page

Index

Sr No	Title	Page No.
01		
02		
03		
04		
05		

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 64 | Page

DECLARATION BY LEARNER

I the undersigned Miss/Mr. ______ [Name of the learner] here by, declare that work embodied in this project work titled _______forms my own contribution to the research work carried out under the guidance of [Name of the guiding teacher]_______is a resultof my own research work and has not been previously submitted to any other University for any other Degree/ Diploma to this or any other University.

Wherever reference has been made to previous works of others, it has been clearly indicated as such and included in the bibliography.

I, here by further declare that all information of this document has been obtained and presented in accordance with academic rules and ethical conduct.

Name and Signature of the learner

Certified by

Name and signature of the Guiding Teache

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 65 | Page On separate page

Acknowledgment (To be written by learner) (Model structure of the acknowledgement)

To list who all have helped me is difficult because they are so numerous and the depth is so enormous.

I would like to acknowledge the following as being idealistic channels and fresh dimensions in the completion of this project.

I thank the R. P. Gogate College of Arts and Science and R.V. Jogalekar College of Commerce, Ratnagiri (Autonomous) and University of Mumbai for giving me opportunity to do this project.

I would like to thank my Principal,______for providing the necessary facilities required for completion of this project.

I take this opportunity to thank our HOD_____, for his moral support and guidance

I would also like to express my sincere gratitude towards my project guide Whose guidance and care made the project successful.

I would like to thank my College Library, for having provided various reference books and magazines related to my project.

Lastly, I would like to thank each and every person who directly or indirectly helped me in the completion of the project especially my Parents and Peers who supported me throughout my project.

Date: 30 th April 2024 Place: Ratnagiri

Chairperson and HoD

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 66 | Page

R. P. Gogate College of Arts and Science and R. V. Jogalekar College of Commerce, (Autonomous), Ratnagiri 66 | Page