

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 1 | Page

Name of Programme	B. Sc. Biotechnology	
Level	UG	
No. of Semesters	06	
Year of Implementation	2023-24	
Programme Specific	At the end of the Programme, Learner will be able -	
Outcomes (PSO)	1. To impart hands on skills in preparation of buffers and	
	solutions.	
	2. To impart skills in handling the cultures of micro – organisms.	
	3. To impart the knowledge of molecular biology techniques.	
	4. To impart the skills of Science communication.	
	5. To impart knowledge of society and make students aware	
	about the Problems in society.	
	6. To understand basic principles of research methodology and	
	identify a research problem.	
	7. To gain critical thinking and analytical skills to understand	
	new diagnostic methods.	
	8. To design strategies for successful implementation of ideas.	
Relevance of PSOs to	Biotechnology is important at Global, National, Regional and	
national and global	these levels and it is relevent to everyday life. The surriculum	
davalopmental peeds	design of B So Biotechnology programme holps in	
developmental needs	understanding various concepts in detail. This programme	
	includes new emerging technologies and their applications. This	
	also involves the actual working and mechanism required in	
	industries. The application part is taken care of so that the learner	
	shall be able to connect the phenomena around him with the	
	curriculum. This programme also imparts the research values	
	among the learners. The hard and softs skills acquired during the	
	completion of this programme shall make him employable.	

The performance of the learners shall be evaluated into two parts. The learner's performance shall be assessed by Internal Assessment with 40 % marks in the first part and by conducting the Semester End Examinations of 60 % marks in the second part.

Standard of Passing

The learner to pass a course shall have to obtain a minimum of 40% marks in aggregate for each course where the course consists of Internal Assessment & Semester End Examination. The learner shall obtain minimum of 40% marks (i. e. 16 out of 40) in the Internal Assessment and 40% marks in Semester End Examination (i. e. 24 out of 60) separately, to pass the course and minimum of Letter Grade "P" in the project component, wherever applicable to pass a particular semester. A learner will be said to have passed the course if the learner passes the Internal Assessment and Semester End Examination together.

Semester GPA/ Program CGPA Semester/Program	% of Marks	Alpha-Sign / Letter Grade Result
9.00-10.00	90.0 -100	0 (Outstanding)
$8.00 \le 9.00$	80.0 ≤ 90.0	A+ (Excellent)
$7.00 \le 8.00$	$70.0 \le 80.0$	A (Very Good)
$6.00 \le 7.00$	$60.0 \le 70.0$	B+ (Good)
$5.50 \le 6.00$	55.0 ≤ 60.0	B (Above Average)
$5.00 \le 5.50$	50.0 ≤ 55.0	C (Average)
$4.00 \le 5.00$	$40.0 \le 50.0$	P (Pass)
Below 4.00	Below 40	F (Fail)
Ab (Absent)	-	Absent

Performance Grading:

Letter Grades and Grade Points

Bachelor of Science (B.Sc.) in Biotechnology Programme Under Choice Based Credit System (CBCS) Course Structure

F. Y. Biotechnology

(To be implemented from Academic Year 2023-24)

Course Code	Semester I	Credits	Course Code	Semester II	Credits
Discipline Specific Course (DSC)			Discipline Specific Course (DSC)		
	Major			Major	
USBT101	Fundamentals of Biotechnology	02	USBT201	Cell Biology and Microbiology	02
USBT102	Introduction to Microbiology	02	USBT202	Biochemistry – Concept of Biomolecules	02
USBT103	Biotechnology Practical I	02	USBT203	Biotechnology Practical II	02
	Minor			Minor	
USBT104	Basic Chemistry – I	02	USBT204	Basic Chemistry - III	02
USBT105	Basic Chemistry – II	1 + 1	USBT205	Basic Chemistry - IV	02
			USBT206	Basic Chemistry Practical	02
	Indian Knowledge System(IK	S)			
USBT106	Traditional Biotechnology	02			
	Skill Enhancement Course (SEC)		Skill Enhancement Course (SEC)
USBT107	Biostatistics	02	USBT207	Bio-analytical Techniques	1 + 1
	Ability Enhancement Course (AEC)			Ability Enhancement Course	(AEC)
USBT108	English: Communication Skills – I	02	USBT208	English: Communication Skills – II	02
	Value Education Course (VEC	C)		Value Education Course (VE	'C)
USBT109	Environmental Education - I	02	USBT209	Environmental Education - II	02

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 4 | Page SMART Criteria for Course Outcomes:

Specific: Each course outcome is specific, outlining the knowledge and skills students are expected to acquire in relation to the specific topics covered.

Measurable: Each outcome can be measured through assessments, tests, or projects to determine the level of understanding and proficiency achieved by the students.

Achievable: The outcomes are achievable within the duration of the course, considering the number of lectures allocated to each topic.

Relevant: The outcomes are relevant to the subject of financial services and capital market, addressing important concepts, types, and mechanisms involved.

Time-bound: The outcomes are expected to be achieved by the end of the course, providing a clear timeline for assessment and evaluation.

Name of the Course	Fundamentals of Biotechnology
Course Code	USBT101
Class	F. Y. B. Sc.
Semester	Ι
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective (Major I)

Course Outcomes:

By the end of the course, the student will be able to:

- CO1 Be able to relate to applications and benefits of Biotechnology in the fields of agriculture, livestock, human health and environment.
- CO2 Discuss the basics of fermentation.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Applications of Biotechnology	Applications of biotechnology: - Agriculture: GM fruits- GM papaya, GM tomato, Insect resistant transgenic plants – Bt cotton, Bt brinjal, Modifications in nutrient quality – starch, oilseed protein, golden rice Livestock:	15
		quality, pharmaceuticals and nutritional supplements, industrial applications	
		Human welfare: Cloned genes for production of - Insulin; recombinant vaccine for Hepatitis B virus. Molecular farming, Edible vaccines and their advantages Environment- Pollution abatement through GMOs Bioethics Case study: Genetically modified microbes	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 6 | Page

		for bioremediation of oil spills in	
		marine environment	
II	Fermentation technology	Introduction to fermentation	15
		Microbial biomage Microbial	
		enzymes Microbial metabolites	
		recombinant products.	
		transformation processes.	
		Development of fermentation	
		Industry	
		Component parts of fermentation	
		process Screening:	
		Definition, Primary screening and	
		its methods, Secondary screening	
		and its methods	
		Fermenter design:	
		Definition of a fermenter, aerated	
		design Construction materials used	
		aeration and agitation	
		Basic introduction to process	
		parameters:	
		Temperature control, Foam	
		production and control pH	
		measurement and control, CO2 and	
		O2 control	
		Fermentation medium:	
		Basic requirements of industrial	
		metha, Chiena for use of raw	
		materials used Growth factors	
		Water. Carbohydrate sources.	
		Protein sources	
		Product: A typical process of	
		Ethanol production and	
		Antibiotic production	

- 1. Dubey, R. C. (1993). A textbook of Biotechnology. S. Chand Publishing.
- 2. Dubey, R. C. (2014). Advanced biotechnology. S. Chand Publishing.
- 3. Singh, B. D., & Singh, B. D. (2007). Biotechnology expanding horizons. Kalyani publishers.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 7 | Page

- 4. Stanbury, P. F., Whitaker, A., & Hall, S. J. (2013). Principles of fermentation technology. Elsevier.
- 5. Casida, L. E. (1968). Industrial microbiology. Industrial microbiology.
- Okafor, N., & Okeke, B. C. (2017). Modern industrial microbiology and biotechnology. CRC Press.

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

Question	Unit	Marks
1	Both Units	Do as directed. (Any 10) 10 M
2	Ι	Long Answer Questions 15 M
3	II	Long Answer Questions 15 M
4	Both Units	Short notes (04 out of 06) 20 M

Name of the Course	Introduction of Microbiology
Course Code	USBT102
Class	F. Y. B. Sc.
Semester	Ι
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective (Major II)

Course Outcomes:

CO1 – To understand the role of sterilization and disinfection in the field of Microbiology.

CO2 – To develop skills towards use of microscopy and staining techniques.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Unit	Title Sterilization and Isolation techniques	Learning PointsIntroduction:Definition and concept ofSterilization and Disinfection.Types and Applications:Dry Heat, Steam under pressureGases, Radiation and FiltrationChemical Agents and their Modeof Action:Aldehydes, Halogens, QuaternaryAmmonium Compounds, Phenoland Phenolic Compounds, HeavyMetals, Alcohol, Dyes, andDetergents.Disinfectant:Ideal Disinfectant. Examples ofDisinfectantNutrition, Cultivation andMaintenance of microorganisms:	No. of Lectures 15
		Disinfectant Nutrition Cultivation and	
		Maintenance of microorganisms:	
		Nutritional categories of	
		of Culture Media, methods of	
		isolation.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 9 | Page

II	Microscopy and stains	Simple and Compound	15
		Microscope:	
		General principles of optics; various	
		parts and their functions - objectives	
		– numerical aperture, resolving	
		power, depth of focus, working	
		distance, aberrations; oculars;	
		condensers.	
		Dark Field Microscope; Phase	
		Contrast Microscope and	
		Fluorescent Microscope, TEM,	
		SEM	
		Applications of microscopes	
		Stains and Staining Solutions-	
		Definition of Dye and Chromogen;	
		acidic and basic dyes; functions and	
		types of chromophore and	
		auxochrome groups. Theories to	
		explain staining.	
		Definition and function of stain;	
		mordant, intensifiers and fixative.	
		Natural and Synthetic Dyes.	
		Simple Staining, Differential	
		Staining – Gram staining and	
		Acid Fast Staining with specific	
		examples	

- 1. Prescott, L. M. (2002). Microbiology 5th Edition.
- 2. Pelczar, Microbiology. (1993). India: McGraw-Hill Education.
- 3. Ananthanarayan, R., Paniker, C. J. (2006). Ananthanarayan and Paniker's Textbook of Microbiology. India: Orient Longman.
- 4. Salle, A. J., & Salle, A. J. (1954). Fundamental principles of bacteriology McGraw-Hill.
- 5. Frobisher M. Fundamentals of Microbiology (9th Ed)

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

Question	Unit	Marks
No.		
1	Both Units	Do as directed. (Any 10) 10 M
2	Ι	Long Answer Questions 15 M
3	II	Long Answer Questions 15 M
4	Both Units	Short notes (04 out of 06) 20 M

Name of the Course	Biotechnology Practical I
Course Code	USBT103
Class	F. Y. B. Sc.
Semester	Ι
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 – To impart knowledge and hands on experience of the various practicals related to fundamentals of Biotechnology and introduction to Microbiology.

Curriculum:

Title	Learning Points	No. of Lectures
Regular	1. Analyze a case-study and write a report on any one recent	60
Practicals	application of Biotechnology (Not older than past 5 years)	
	2. Study of Microscopes – Compound Microscope (Including	
	Handling and storage), Dark Field Microscope, Phase	
	Contrast Microscope, Fluorescent Microscope. (Including	
	ray diagrams)	
	3. Monochrome staining using any suitable material. (Bacteria/Plant/Animal tissue)	
	4. Differential staining – Gram staining, Acid fast staining,	
	Romanowsky staining.	
	5. Special staining – cell wall, capsule.	
	6. Special staining – Spores, negative staining.	
	7. Fungal staining – wet mount (Lactophenol cotton blue/Methylene Blue)	
	8. Preparation of media- Nutrient broth and Agar, MacConkey Agar, Sabouraud's Agar	
	 Sterilization of Laboratory Glassware and Media using Autoclave and Hot air oven 	
	10. Isolation techniques: T-streak, polygon method	
	11. Colony Characteristics of Microorganisms.	
	12. Use of Bergey's manual to help identify any one isolate	
	13. Isolation of Yeasts from natural environment.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 12 | Page

14. Study of morphology and colony characteristics of yeasts	
15. Isolation and enumeration of microorganisms – Serial dilution, surface spread method	
16. Isolation and enumeration of microorganisms – Serial dilution, pour plate method	
17. Screening of antibiotic producers from soil by Crowded plate method.	
18. Screening of antibiotic producers from soil by Wilkins Overlay method.	
19. Study of mitosis from suitable plant material/ Permanent slides/Photographs	
20. Study of meiosis from suitable plant material/ Permanent slides/Photographs	

- 1. Dubey, R. C. (2014). Advanced biotechnology. S. Chand Publishing.
- 2. Singh, B. D., & Singh, B. D. (2007). Biotechnology expanding horizons. Kalyani publishers.
- 3. Okafor, N., & Okeke, B. C. (2017). Modern industrial microbiology and biotechnology. CRC Press.
- 4. Prescott, L. M. (2002). Microbiology 5th Edition.
- 5. Pelczar, Microbiology. (1993). India: McGraw-Hill Education.
- 6. Ananthanarayan, R., Paniker, C. J. (2006). Ananthanarayan and Paniker's Textbook of Microbiology. India: Orient Longman

Evaluation Pattern

	No of	Duration	Total Marks	CIE	Total
	Experiments				
Biotechnology	4	06 hrs	60 M (02	40 M	100
Practical I	experiments		Papers)	(20 M for	
	of 1.5 hrs		(02 Major and	Journal, 10 M	
	duration		02 Minor	for viva, 10 M	
			Experiments)	for overall	
	(02 Papers)			performance)	

Name of the Course	Basic Chemistry – I
Course Code	USBT104
Class	F. Y. B. Sc.
Semester	Ι
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective (Minor I)

Course Outcomes:

CO1 – To develop an understanding of chemical bonds.

CO2 - To be able to differentiate between chiral and achiral molecules and different enantiomers.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Nomenclature and chemical bonds	ClassificationandSystematicNomenclatureoforganiccompounds (few examples)	15
		Chemical Bonds:	
		Types and transition between the main types of bonding.	
		Ionic Bond:	
		Nature of Ionic Bond, factors	
		influencing the formation of Ionic	
		Bond. Structure of NaCl and CsCl.	
		Covalent Bond:	
		Nature of Covalent Bond, Types of	
		covalent bond (Polar and	
		Coordinate covalent bonds).	
		Structure of CH ₄ , NH ₃ , H ₂ O, Shapes	
		of BeCl ₂ , BF ₃ .	
		Hydrogen Bond:	
		Theory of Hydrogen Bonding and	
		Types of Hydrogen Bonding (with	
		examples of RCOOH, ROH,	
		Salicylaldehyde, Amides and	
		Polyamides).	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 14 | Page

II	Stereochemistry	Isomerism:	15
		Types of Isomerism:	
		Constitutional Isomerism (Chain,	
		Position and Functional) and	
		Stereoisomerism, Chirality.	
		Geometric Isomerism and Optical	
		Isomerism:	
		Enantiomers, Diastereomers, and	
		Racemic mixtures Cis-Trans,	
		Threo, Erythro and Meso isomers.	
		Diastereomerism (Cis - Trans	
		Isomerism) in Alkenes and	
		Cycloalkanes (3 and 4 membered	
		ring)	
		Conformation:	
		Conformations of Ethane.	
		Difference between Configuration	
		and Conformation.	
		Configuration:	
		Asymmetric Carbon Atom,	
		Stereogenic/ Chiral Centers,	
		Chirality Representation of	
		Configuration by —Flying Wedge	
		Formula	
		Projection formulae:	
		Fischer, Newman and Sawhorse.	
		The Interconversion of the	
		Formulae.	

- 1. Bahl, B. S., & Bahl, A. (2017). A textbook of organic chemistry. S. Chand Publishing.
- 2. Lee, J. D. (2008). Concise inorganic chemistry. John Wiley & Sons.
- 3. Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (2013). Fundamentals of analytical chemistry. Cengage learning.
- 4. Vogel, A. I., & Jeffery, G. H. (1989). Vogel's textbook of quantitative chemical analysis. Wiley.
- 5. Mosher, M. (1992). Organic Chemistry. (Morrison, Robert Thornton; Boyd, Robert Neilson).

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 15 | Page

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

Question	Unit	Marks
No.		
1	Both Units	Do as directed. (Any 10) 10 M
2	Ι	Long Answer Questions 15 M
3	II	Long Answer Questions 15 M
4	Both Units	Short notes (04 out of 06) 20 M

Name of the Course	Basic Chemistry – II
Course Code	USBT105
Class	F. Y. B. Sc.
Semester	Ι
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective (Minor II)

Course Outcomes:

- CO1 To develop skills towards use of titrimetric and gravimetric analysis.
- CO2 To impart knowledge and hands on experience of the various practicals related to titrimetric and Gravimetry.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Titrimetric and	Titrimetric Analysis:	15
	Oravinieu y	Titration, Titrant, Titrand, End Point,	
		Equivalence Point, Titration Error, Indicator,	
		Primary and Secondary Standards,	
		Characteristics and examples.	
		Types of Titrations – Acid –Base, Redox.	
		Precipitation, Complexometric Titration.	
		Acid – Base Titration - Strong Acid Vs Strong	
		Base. Theoretical aspects of Titration Curve	
		and End Point Evaluation.	
		Theory of Acid –Base Indicators, Choice and	
		Suitability of Indicators.	
		Gravimetric Analysis:	
		Solubility and Precipitation, Factors affecting	
		Solubility, Nucleation, Particle Size, Crystal	
		Growth, Colloidal State, Ageing/Digestion of	
		Precipitate.	
		Co-Precipitation and Post-Precipitation.	
		Washing, Drying and Ignition of Precipitate.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 17 | Page

Π	Regular Practicals	1. Preparation of Normal, Molar, Molal, Percent solution	45
		2. Determination of strength of HCl in commercial sample	
		3. To standardize commercial sample of NaOH using potassium hydrogen phthalate (KHP).	
		4. To standardize commercial sample of HCl using borax.	
		5. Determination of Acetic acid in Vinegar by Titrimetric Method.	
		 6. Determination of the amount of Mg (II) present in the given solution complexometrically. 7. Determination of the amount of Fe (II) present in the given solution titrimetrically. 8. Determination of amount of NaHCO₃ + Na₂CO₃ in the given solid mixture titrimetrically. 9. Study transfer of electrons (Titration of sodium thiosulphate with potassium dichromate) 10. Determination of the volume strength of hydrogen peroxide solution by titration with standardized potassium permanganate solution 11. Determination of amount of K oxalate 	
		and oxalic acid in the given solution titrimetrically	
		12. Determination of percent composition of BaSO ₄ and NH ₄ Cl in the given mixture Gravimetrically.	
		13. Characterization of organic compounds containing only C, H, O elements (no element test) – compounds belonging to the classes – Carboxylic acid, phenol, aldehyde/ketone, ester, alcohol, hydrocarbon.	
		14. Characterization of organic compounds containing only C, H, O, N, S, Halogen elements (element tests to be done) – Compounds belonging to the classes – Amine, Amide, Nitro compounds, Thiamide,	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 18 | Page

Haloalka	Haloalkane, Haloarene.				
15. Qu compoun	alitative ds.	analysis	of	Inorganic	

- 1. Bahl, B. S., & Bahl, A. (2017). A textbook of organic chemistry. S. Chand Publishing.
- 2. Vogel, A. I., & Jeffery, G. H. (1989). Vogel's textbook of quantitative chemical analysis. Wiley.
- 3. Patel H. N., Turakhia S. P., Puniyani S. R. (2018). F. Y. B. Sc. College Practical Chemistry for Biotechnology, Himalaya Publishing House.

Evaluation Pattern

	No of	Duration	Total Marks	CIE	Total
	Experiments				
Basic	2	06 hrs	60 M (02	40 M	100
Chemistry –	experiments		Papers)	(10 M for	
II	of 1.5 hrs		(20 M each for	Assignment,	
	duration		2 Experiments;	10 M for	
			20 M for	Journal, 10 M	
	(02 Papers)		Theory based	for Viva, 10 M	
			questions - 08	for Overall	
			M + 07 M + 05	Performance)	
			M)		

Name of the Course	Traditional Biotechnology
Course Code	USBT106
Class	F. Y. B. Sc.
Semester	Ι
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective (IKS)

Course Outcomes:

- CO1 To impart the knowledge and history of traditional Biotechnology.
- CO2 To explore the research institutes related to Biotechnology in India.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	History of	What is Biotechnology?	15
	Biotechnology	History and Introduction to Biotechnology:	
		Scope and importance of biotechnology;	
		Role of microorganisms in fermentation	
		World of Biotechnology-	
		Pharmaceutical Biotechnology, Plant	
		Biotechnology, Industrial Biotechnology,	
		Marine Biotechnology, Animal	
		Biotechnology, Medical Biotechnology,	
		Environmental Biotechnology.	
		Potential of Biotechnology-	
		Achievement of biotechnology; Prevention	
		of misuse of biotechnology.	
II	Biotechnology in	Biotechnology Institutions in India (Public	15
	India	and Private Sector); Public Perception of	
		Biotechnology.	
		Biotechnology in India –	
		ICGEB, Needs for future development,	
		Global scenario, Potential and achievements	
		of Biotechnology.	
		Bio-business in India, booming biotech	
		market, success story of biotech market,	
		policy initiatives and global trends;	
		Biotechnology research in India.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 20 | Page

Case study: Serum Institute of India and	
its products	
Case study: Any five Biotechnology	
institutions in India and its products.	

- 1. A Textbook of Biotechnology by R. C. Dubey, S. Chand Publishing.
- 2. Advanced Biotechnology by R. C. Dubey, S. Chand Publishing

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

Question	Unit	Marks	
No.			
1	Both Units	Do as directed. (Any 10) 10 M	
2	Ι	Long Answer Questions 15 M	
3	II	Long Answer Questions 15 M	
4	Both Units	Short notes (04 out of 06) 20 M	

Name of the Course	Skill Enhancement Course - Biostatistics
Course Code	USBT107
Class	F. Y. B. Sc.
Semester	Ι
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective (SEC)

Course Outcomes:

By the end of the course, the learner will be able to:

CO1 - Gain insights about the use of statistics in the field of Biotechnology.

CO2 – Apply the various statistical tools for analysis of biological data.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Data visualization, sampling strategies and Descriptive statistics	Introduction to Biostatistics: Definition and Importance of Statistics in Biology Variables, Types of variables (Quantitative and Qualitative) Types of Data and data visualization:	15
		Concept of Data, Sources of data, Types of data (Quantitative and Qualitative), Representation of Data and Graphs (Bar Diagrams, Pie Charts and Frequency distribution, Histogram, Polygon and Curve)	
		Sampling strategies:PopulationandSample,Significanceofusingsamples,Samplesize,Randomvariation,Samplingtechniques(Simplerandomsampling,Systematicsampling,Stratified sampling)Descriptive statistics:Measures of central tendency:Mean,Mode,Median (Ungrouped& Grouped data)	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 22 | Page

		Measures of dispersion:	
		Range, Variance, Standard deviation	
		(Ungrouped & Grouped data),	
		Coefficient of variation	
		Normal/Gaussian distribution,	
		Standard normal deviate,	
		Sampling variation, Standard	
		error of mean	
II	Parametric and Non –	Theory and Problems based on -	15
	parametric tests	Coefficient of Correlation and	
		Regression analysis; Steps in testing	
		statistical hypothesis	
		Parametric tests: Z test, Single	
		mean and two means, t-Test – Single	
		mean, paired and unpaired.	
		Non-parametric test: Chi-square	
		test.	

- 1. Khanal, A. B. (2015). Mahajan's Methods in Biostatistics For Medical Students and Research Workers. India: Jaypee Brothers, Medical Publishers Pvt. Limited.
- 2. Cross, C. L., Daniel, W. W. (2018). Biostatistics: A Foundation for Analysis in the Health Sciences. United Kingdom: Wiley.
- 3. Arora, P. N., Malhan, P. K. (2009). Biostatistics. India: Himalaya Publishing House.

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

B. Semester End Evaluation (Paper Pattern)

Question	Unit	Marks
No.		
1	Both Units	Do as directed. (Any 10) 10 M
2	Ι	Long Answer Questions 15 M
3	II	Long Answer Questions 15 M
4	Both Units	Short notes (04 out of 06) 20 M

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 23 | Page

Name of the Course	Ability Enhancement Course - English: Communication Skills - I
Course Code	USBT108
Class	F. Y. B. Sc.
Semester	Ι
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

By the end of the course, the learner will be able to:

CO1 - Develop an understanding of communication skills required to excel in real work environment and corporate life.

CO2 - Gain insight into technical and non-technical qualities in career planning.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Unit I	Title Academic Skills	Learning PointsEssentials of Grammar: Parts of speech, Articles, Modals, Sentences and their types., Punctuation marksEmployment Communication: Introduction, Resume, Curriculum Vitae, Scannable Resume, Developing an Impressive Resume, 	No. of Lectures
		 Writing Professional Presentation: Nature of Oral Presentation, planning aPresentation, Preparing the Presentation, Delivering the Presentation Job Interviews: Introduction, Importance of Resume, Definition of Interview, Background Information, Types of Interviews, 	
		Preparatory Steps for Job Interviews, Interview Skill Tips,	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 24 | Page

		Changes in the Interview Process	
		Changes in the Interview Flocess,	
		FAQ During Interviews	
		Group Discussion: Introduction,	
		Ambience/Seating Arrangement for	
		Group Discussion, Importance of	
		Group Discussions. Difference	
		between Group Discussion Panel	
		Discussion and Debate Traits	
		Types of Group Discussions topic	
		hased and Case based Group	
		Discussion Individual Traits	
т	$G = f_{4} = G_{1} = 11$	Discussion, individual fraits	15
11	Soft Skills	Introduction to Soft Skills and Hard	15
		Skills	
		Personality Development:	
		Knowing Yourself, Positive	
		Thinking, Johari's Window,	
		Communication Skills, Non-verbal	
		Communication, Physical Fitness	
		Emotional Intelligence: Meaning	
		and Definition. Need for Emotional	
		Intelligence. Intelligence Quotient	
		versus Emotional Intelligence	
		Quotient Components of	
		Emotional Intelligence	
		Competencies of Emotional	
		Intelligence Skills to Develop	
		EmotionalIntalligance	
		Etiquette and Mannarism	
		Introduction Drofossional	
		Etiquette Technology Etiquette	
		Enquette, Technology Enquette	
		Communication 1 oday:	
		Significance of Communication,	
		GSC's 3M Model of	
		Communication, Vitality of the	
		Communication Process, Virtues of	
		Listening, Fundamentals of Good	
		Listening, Nature of Non-Verbal	
		Communication, Need for	
		Intercultural Communication,	
		Communicating Digital World	

- 1. Kumar, Sanjay, and Lata, Pushp. Communication Skills, Second Edition. India, Oxford University Press, 2015.
- 2. Chauhan, G. S., Sharma, S. (2016). Soft Skills: An Integrated Approach to Maximize Personality. India: Wiley.
- 3. Mitra, B. K. (2011). Personality development and soft skills (Vol. 156). Oxford University Press.

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

Question	Unit	Marks
No.		
1	Both Units	Do as directed. (Any 10) 10 M
2	Ι	Long Answer Questions 15 M
3	II	Long Answer Questions 15 M
4	Both Units	Short notes (04 out of 06) 20 M

Name of the Course	Value Education Course – Environmental Education - I
Course Code	USBT109
Class	F. Y. B. Sc.
Semester	Ι
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

- CO1 To develop an understanding of the structure and functioning of the ecosystems.
- CO2 To gain insights about the concept of pollution, climate change and sustainable development.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Ecology and interactions	Concept of Ecosystems:	15
		Definition and Components-	
		Structure and function of ecosystem	
		aspects of ecosystems	
		Food Chain and Food Web,	
		Ecological Pyramids (Energy,	
		Biomass and Number)	
		Aquatic and Terrestrial Ecosystems,	
		Different Abiotic Factors of	
		ecosystem and adaptations to	
		different abiotic factors	
		Ecological Interactions:	
		Commensalism, Mutualism,	
		Predation and Antibiosis, Parasitism,	
		competition	
		Biodiversity and its conservation:	
		Introduction – definition: genetic,	
		species, ecosystem diversity,	
		biogeographic classification of	
		India, value of biodiversity,	
		biodiversity at global, national and	
		local levels, India as a mega	
		diversity nation, Hotspots of	
		biodiversity, threats to biodiversity,	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 27 | Page

		conservation of biodiversity	
II	Pollution and climate change	conservation of biodiversityEnvironmental Pollution:Definition, Cause, effects and control measures of- Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, 	15
		sustainability, Indicators, paradigm towards new discipline- sustainability science.	

- 1. Verma, V. (2010). Botany. India: Ane Books Pvt Ltd.
- 2. Bharucha, E. (2005). Textbook of Environmental Studies for Undergraduate Courses. India: Universities Press (India) Pvt. Limited.
- 3. Verma, P. S. (2004). Cell Biology, Genetics, Molecular Biology: Evolution and Ecology. India: S. Chand Limited.
- 4. Khoiyangbam, R. S. (2015). Introduction to Environmental Sciences. India: Energy and Resources Institute.
- 5. Fulekar, M. H. (2010). Environmental Biotechnology. United Kingdom: CRC Press.
- 6. Scragg, A. H. (2004). Environmental University Press.

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 28 | Page

Question No.	Unit	Marks
1	Both Units	Do as directed. (Any 10) 10 M
2	Ι	Long Answer Questions 15 M
3	II	Long Answer Questions 15 M
4	Both Units	Short notes (04 out of 06) 20 M

Name of the Course	Cell Biology and Microbiology
Course Code	USBT201
Class	F. Y. B. Sc.
Semester	П
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective (Major I)

Course Outcomes:

- CO1 To discuss the ultrastructure, function and location of organelles in prokaryotic and eukaryotic cells.
- CO2 To gain insight into the basics of virology.

Curriculum:

Unit	Title	Learning Points	No. of
			Lectures
Ι	Ultrastructure of prokaryotic and eukaryotic cell	 Ultrastructure of Prokaryotic Cell: Concept of Cell shape, size and arrangement Bacterial structures external to cell wall: Flagella, Pilli, Fimbriae, Capsule, Slime Layer, Sheath Cell Wall (Gram Positive and Negative) Structures internal to cell wall: Cell Membrane, nucleoid, Cytoplasm and cytoplasmic inclusion bodies and vacuoles, Genetic Material spores and cysts Ultrastructure of Eukaryotic Cell: Cell wall; Plasma membrane, Cytoplasmic Matrix, Nucleus –Nuclear Structure, nuclear envelope, nucleoplasm, Nucleolus; cytoplasmic structures – cytoplasmic inclusions, cytoplasmic organelles - Endoplasmic Reticulum; Golgi Apparatus; Mitochondria; Chloroplasts; Ribosomes; Lysosome Endocytosis, Phagocytosis, Autophagy; Peroxisomes. External Cell Coverings: Cilia and Flagella Comparison of Prokaryotic and Eukaryotic Cells 	Lectures 15
ł			

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 30 | Page

II	Virology	Introduction to virology: Historical perspective, General Characteristics of Viruses:	15
		Host Range	
		Viral Structure - Nucleic Acid, Capsid and Envelope General Morphology- Helical, Polyhedral, Enveloped, Complex.	
		Taxonomy of Viruses Viral Multiplication:	
		Multiplication of Bacteriophages and Animal	
		Viruses	
		Isolation, Cultivation, and Identification of	
		Viruses:	
		Growing Bacteriophages and animal viruses in the	
		Laboratory, Viral Identification	
		Case studies- TMV, Influenza COVID-19 (Self	
		learning)	

- 1. Pelczar, Microbiology. (1993). India: McGraw-Hill Education.
- 2. Verma, P. S., & Agarwal, V. K. (2004). Cell Biology, Genetics, Molecular Biology, Evolution and Ecology: Evolution and Ecology. S. Chand Publishing.
- 3. Dubey, R. C. (2014). Advanced biotechnology. S. Chand Publishing
- 4. Cooper, G. M., Hausman, R. E., & Hausman, R. E. (2007). The cell: a molecular approach (Vol. 4). Washington, DC: ASM press.
- 5. Stanier, R. Y. (1987). General Microbiology. Hong Kong: Macmillan.
- 6. Funke, B. R., Case, C. L., Tortora, G. J. (2013). Microbiology: An Introduction. United Kingdom: Pearson.
- 7. Woolverton, C. J., Sherwood, L., Willey, J. (2014). Prescott's Microbiology. India: McGraw-Hill Education

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

Question No.	Unit	Marks
1	Both Units	Do as directed. (Any 10) 10 M
2	Ι	Long Answer Questions 15 M
3	II	Long Answer Questions 15 M
4	Both Units	Short notes (04 out of 06) 20 M

Name of the Course	Biochemistry – Concept of Biomolecules
Course Code	USBT202
Class	F. Y. B. Sc.
Semester	II
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective (Major II)

Course Outcomes:

CO1 – To discuss the basics of carbohydrate and lipid biochemistry.

CO2 - To learn about fundamental structures and functions of amino acids and proteins.

Curriculum:

Unit	Title	Learning Points	No. of
			Lectures
Ι	Basics of	Classification of carbohydrates:	15
	carbohydrate and	Monosaccharides:	
	lipid chemistry	Two Families of Monosaccharides. Aldo series and keto	
		series; (Triose - Glyceraldehyde and Dihydroxyacetone,	
		Tetrose- Erythrose and Erythrulose, Pentose- Xylose,	
		Xylulose, Ribose, Ribulose, Hexose- Glucose, Galactose,	
		Mannose, Heptose- sedoheptose and Sedoheptulose	
		(structures to be taught) Concept of Enantiomers,	
		Mutarotation, Anomeric carbon and Epimers of glucose.	
		Disaccharides:	
		Maltose, Lactose, Sucrose, Cellobiose (structures to be	
		taught, biological significance, structure and bond type)	
		Polysaccharides:	
		Homopolysaccharides and Heteropolysaccharides;	
		Structural and Storage Polysaccharides.	
		E.g., of polysaccharides -: starch (amylose and	
		amylopectin), Glycogen, Peptidoglycan, Cellulose, chitin	
		(structure and bond type)	
		Industrial applications of carbohydrates:	
		Fermentation, Pharmaceutical and Food industry.	
		Classification of Fatty acids:	
		Saturated Fatty Acids:	
		C2-C20 (Examples with trivial name, Biochemical names	
		and Structures)	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 33 | Page

		Unsaturated Fatty Acids:	
		Definition of MUFA and PUFA. C16- C20. Palmitic,	
		Oleic, Linoleic, Linolenic, Arachidonic acid (Structures	
		expected)	
		Storage Lipids:	
		Acyl Glycerols (Simple and Mixed)	
		Mono, Di and Triacylglycerols. (Structures expected)	
		Structural lipids:	
		Phosphatidic acid and Membrane Phospholipids E.g.:	
		Phosphatidylethanolamine, Phosphatidylserine,	
		Phosphatidylcholine, Cardiolipin	
II	Proteins and amino	Amino acids:	15
	acids	General introduction, Classification and	
		structures, properties (physical & chemical)	
		Amino Acids as drugs.	
		Titration Curve of Amino Acids.	
		Concept of Isoelectric pH, Zwitterion	
		Reactions of Amino Acids:	
		Sorenson's Titration, Ninhydrin Test	
		Proteins:	
		Introduction, definition and functional classification.	
		Classification of Proteins:	
		Simple- Fibrous and Globular Conjugated-	
		Nucleoprotein, Lipoprotein, Glycoprotein,	
		Phosphoprotein, Chromoprotein, Metalloprotein	
		Derived- Primary and Secondary	
		Peptide bond:	
		Features Example of Dipeptide, tripeptide, Nonapeptide	
		e.g., Oxytocin, Vasopressin	
		Amino acid composition of Bovine Cytochrome C and	
		Bovine Chymotrypsinogen	
		Three-dimensional Structure of proteins:	
		Concept of Monomeric, dimeric and multimeric	
		proteins Primary structure - Peptide linkage, Native	
		Secondary structure - Alpha Pleat and Beta fold; Spatial	
		arrangements of adjacent amino acid residues	
		Tertiary structure - Three-Dimensional arrangement	
		Quaternary structure Di and Multimeric proteins E.g.,	
		structure of human Insulin	
		Properties of proteins:	
		Solubility, Molecular weight, Shape, Isoelectric pH,	
		Salting out of proteins for purification	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 34 | Page

Protein Denaturation and folding:		
Denaturing agents and properties of denatured p	oroteins	

- 1. Cox, M. M., & Nelson, D. L. (2008). Lehninger principles of biochemistry (Vol. 5). New York: Wh Freeman.
- 2. Conn, E., & Stumpf, P. (2009). Outlines of biochemistry. John Wiley & Sons.
- Satyanarayana U. and Chakrapani U. (2007). Biochemistry. 3rd Edition. Books and Allied (P) Ltd. Mu, P., & Plummer, D. T. (2001). Introduction to practical biochemistry. Tata McGraw-Hill Education.
- 4. Jain, J. L. (2004). Fundamentals of Biochemistry. India: S. Chand Limited.

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

Question No.	Unit	Marks
1	Both Units	Do as directed. (Any 10) 10 M
2	Ι	Long Answer Questions 15 M
3	II	Long Answer Questions 15 M
4	Both Units	Short notes (04 out of 06) 20 M

Name of the Course	Biotechnology Practical II
Course Code	USBT203
Class	F. Y. B. Sc.
Semester	II
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 – To impart knowledge and hands on experience of the various practicals related to cell biology, microbiology and biochemistry.

Curriculum:

Title	Learning Points	No. of
		Lectures
Regular Practicals	1. Microscopic determination of Microbial flora from Yoghurt and Lactic Acid Determination	60
	2. Isolation and characterization of organisms causing Food Spoilage (Using Bergey's Manual)	
	3. Isolation and characterization of food fermenting organism from Idli batter (Using Bergey's Manual)	
	4. Sauerkraut production and to analyze quality parameters during production (odour, color, pH, total acidity)	
	5. Determination of food preservative concentration (salt and sugar) using MIC.	
	6. Detection of Food adulterants in food samples	
	7. Fermentation of Sugarcane juice using yeast.	
	8. Estimation of sugars by Cole's ferricyanide method.	
	9. Estimation of Alcohol by dichromate method	
	10. Study of blood groups ABO in humans	
	11. Study of the structure of important	
	a. Animal viruses (rhabdo, influenza, paramyxo, hepatitis and	
	retroviruses) using electron micrographs/diagrams.	
	b. Plant viruses (caulimo, gemini, tobacco ringspot, cucumber	
	mosaic and alpha-alpha mosaic viruses) using electron	
	micrographs/diagrams.	
	c. ϕ X174, T4,3) using electron micrographs/diagrams.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 36 | Page
12. Isolation and enumeration of bacteriophages (PFU) from
water/sewage sample using double agar layer technique.
13. Motility by hanging drop method/stab culture
14. Study of Growth Curve of <i>E. coli</i>
15. Sterility testing of Vaccine
16. Enumeration by Breed's count
17. Isolation of chromosomal DNA from E. coli and Agarose gel
electrophoresis of the chromosomal DNA
18. Study of Hill's reaction
19. Separation of plant pigments by thin layer chromatography
20. Qualitative detection of plant secondary metabolites using
standard tests - e. g. Tests for tannins, flavonoids, alkaloids,
terpenoids, saponins, steroids.

- 1. Patel H. N., Turakhia S. P., Puniyani S. R. (2018). F. Y. B. Sc. College Practical Chemistry for Biotechnology, Himalaya Publishing House.
- Satyanarayana U. and Chakrapani U. (2007). Biochemistry. 3rd Edition. Books and Allied (P) Ltd. Mu, P., & Plummer, D. T. (2001). Introduction to practical biochemistry. Tata McGraw-Hill Education.
- 3. Conn, E., & Stumpf, P. (2009). Outlines of biochemistry. John Wiley & Sons.

Evaluation Pattern

	No of	Duration	Total Marks	CIE	Total
	Experiments				
Biotechnology	4	06 hrs	60 M (02	40 M	100
Practical II	experiments		Papers)	(20 M for	
	of 1.5 hrs		(02 Major and	Journal, 10 M	
	duration		02 Minor	for viva, 10 M	
			Experiments)	for overall	
	(02 Papers)			performance)	

Name of the Course	Basic Chemistry – III
Course Code	USBT204
Class	F. Y. B. Sc.
Semester	Π
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective (Minor I)

Course Outcomes:

CO1 – To develop an understanding of thermodynamics.

CO2 – To learn about reaction kinetics and order of reaction.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Thermodynamics	Thermodynamics:	15
		System, Surrounding, Boundaries	
		Sign Conventions, State Functions,	
		Internal Energy and Enthalpy:	
		Significance, examples,	
		(Numericals expected.)	
		Laws of Thermodynamics and its	
		Limitations:	
		Mathematical expression.	
		Qualitative discussion of Carnot	
		Cycle for ideal Gas and Mechanical	
		Efficiency.	
		Laws of Thermodynamics as	
		applied to Biochemical Systems.	
		Concept of Entropy, Entropy for	
		Isobaric, Isochoric and	
		Isothermal Processes.	
11	Chemical Kinetics	Reaction Kinetics:	15
		Rate of Reaction, Rate Constant,	
		Measurement of Reaction Rates	
		Order & Molecularity of Reaction,	
		Integrated Rate Equation of First	
		and Second order reactions (with	
		equal initial concentration of	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 38 | Page

reactants). (Numericals expected) Determination of Order of	
Reaction:	
a) Integration Method	
b) Graphical Method	
c) Ostwald's Isolation Method	
d) Half Time Method. (Numericals	
expected)	

- 1. Rao, C. N. R. (1973). University General Chemistry : An Introduction To Chemical Science. India: Macmillan India Limited.
- 2. Chang, R. (2000). Physical Chemistry for the Chemical and Biological Sciences. United Kingdom: University Science Books.
- 3. Lee, J.D., Concise Inorganic Chemistry, 5th ED. (2008). India: Wiley India Pvt. Limited.
- 4. Bajpai, D. N. (2001). Advanced Physical Chemistry. India: S. Chand, Limited.
- 5. Singh, A. K., Singh, N. B., Das, S. S. (2009). Physical Chemistry: Volume II. India: New Age International.

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

B. Semester End Evaluation (Paper Pattern)

Question	Unit	Marks
No.		
1	Both Units	Do as directed. (Any 10) 10 M
2	Ι	Long Answer Questions 15 M
3	II	Long Answer Questions 15 M
4	Both Units	Short notes (04 out of 06) 20 M

Name of the Course	Basic Chemistry – IV
Course Code	USBT205
Class	F. Y. B. Sc.
Semester	П
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective (Minor II)

Course Outcomes:

CO1 - To gain insight into the details of oxidation - reduction reactions.

CO2 - To develop an understanding of enzymology.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Oxidation reduction	Principles of Oxidation &	15
	reactions	Reduction Reactions:	
		Oxidizing and Reducing Agents	
		Oxidation Number, Rules to assign	
		Oxidation Numbers with examples	
		Ions like Oxalate, Permanganate	
		and Dichromate.	
		Balancing Redox Reactions:	
		Ion Electron Method Oxidation,	
		Reduction, Addition and	
		Substitution & Elimination	
		Reactions.	
II	Enzymes	Introduction to biocatalysis:	15
		Properties of Enzymes, Substrate,	
		Optimum conditions, Co-substrate,	
		Coenzyme, Cofactors	
		Classification and Nomenclature	
		(one reaction per class)	
		Mechanism of Enzyme Action,	
		Active Sites, Enzyme Specificity.	
		Factors affecting enzyme activity	
		(Effect of pH, Temperature,	
		Substrate Concentration, Enzyme	
		concentration)	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 40 | Page

Enzyme Kinetics:
Derivation of Michaelis-Menten
Equation, Lineweaver- Burk plot,
Concept of km
Types of Enzyme Inhibitions:
Irreversible & Reversible
(Competitive, Uncompetitive, Non-
Competitive)
Isoenzymes (LDH, Alkaline
Phosphatase, Creatine
Phosphokinase)
Allosteric Modulators, Co-Factors,
Zymogens, Enzyme units
Enzymes as Biomarkers and
diagnostic tools. (SGPT, SGOT,
LDH, CPK)
Industrial Application of
Enzymes

- 1. Rao, C. N. R. (1973). University General Chemistry : An Introduction to Chemical Science. India: Macmillan India Limited.
- 2. Chang, R. (2000). Physical Chemistry for the Chemical and Biological Sciences. United Kingdom: University Science Books.
- 3. Cox, M. M., & Nelson, D. L. (2008). Lehninger principles of biochemistry (Vol. 5). New York: Wh Freeman.
- 4. Conn, E., & Stumpf, P. (2009). Outlines of biochemistry. John Wiley & Sons.
- 5. Satyanarayana U. and Chakrapani U. (2007). Biochemistry. 3rd Edition. Books and Allied (P) Ltd.
- 6. Jain, J. L. (2004). Fundamentals of Biochemistry. India: S. Chand Limited.

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 41 | Page

Question	Unit	Marks
No.		
1	Both Units	Do as directed. (Any 10) 10 M
2	Ι	Long Answer Questions 15 M
3	II	Long Answer Questions 15 M
4	Both Units	Short notes (04 out of 06) 20 M

B. Semester End Evaluation (Paper Pattern)

Name of the Course	Basic Chemistry Practical
Course Code	USBT206
Class	F. Y. B. Sc.
Semester	П
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 – To impart knowledge and hands on experience of the various practicals related to thermodynamics, chemical kinetics and enzymes.

Curriculum:

Title	Learning Points	No. of Lectures
Regular	1. Preparation of Acetate buffer pH 4.6, Carbonate buffer pH	60
Practicals	6.8, Tris buffer pH 8.3	
	2. Qualitative tests for carbohydrates; Molisch test, Benedict's	
	test, Iodine test, Osazone formation	
	3. Estimation of carbohydrates by Lane-Eynon method	
	4. Qualitative tests for lipids.	
	5. Qualitative analysis of amino acids and proteins	
	6. Salowski's test for cholesterol	
	7. To determine enthalpy of dissolution of salt like KNO ₃	
	8. Determine the rate constant for hydrolysis of ester using HCl	
	as a catalyst	
	9. Determine the rate constant for the saponification reaction	
	between ethyl acetate and NaOH by back titration method	
	10. Study the kinetics of reaction between Thiosulphate ion and	
	HCl	
	11. Study reaction between potassium Persulphate and	
	Potassium Iodide kinetically and hence to determine order of	
	reaction	
	12. Study the reaction between $NaHSO_3$ and $KMnO_4$ and	
	balancing the reaction in acidic, alkaline and neutral medium	
	13. Qualitative Assay of enzyme urease. amylase.	
	dehydrogenase, catalase and protease from	
	Plant/Animal/Microbial source	
	14 Enzyme Kinetics: Study of the effect of pH on activity of	
	Amulaça	
	Allylast	
	15. Enzyme Kinetics: Study of the effect of temperature on	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 43 | Page

activity of Amylase	
16. Study of Effect of Substrate Concentration on amylase	
enzyme activity and determination of Vmax and Km	
17. Study of Effect of inhibitors on amylase enzyme activity	
18. Estimation of Protein by Biuret method	
19. Estimation of Protein by Folin – Lowry method.	
20. Quantitative estimation of sugars by DNSA method	

- 1. Rao, C. N. R. (1973). University General Chemistry : An Introduction To Chemical Science. India: Macmillan India Limited.
- 2. Chang, R. (2000). Physical Chemistry for the Chemical and Biological Sciences. United Kingdom: University Science Books.
- 3. Lee, J.D., Concise Inorganic Chemistry, 5th ED. (2008). India: Wiley India Pvt. Limited.
- 4. Bajpai, D. N. (2001). Advanced Physical Chemistry. India: S. Chand, Limited.
- 5. Singh, A. K., Singh, N. B., Das, S. S. (2009). Physical Chemistry: Volume II. India: New Age International.

	No of	Duration	Total Marks	CIE	Total
	Experiments				
Basic	4	06 hrs	60 M (02	40 M	100
Chemistry	experiments		Papers)	(20 M for	
Practical	of 1.5 hrs		(02 Major and	Journal, 10 M	
	duration		02 Minor	for viva, 10 M	
			Experiments)	for overall	
	(02 Papers)			performance)	

Name of the Course	Skill Enhancement Course - Bio-analytical Techniques
Course Code	USBT207
Class	F. Y. B. Sc.
Semester	II
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcome:

- CO1 To develop skills towards the principle, working and applications of different analytical techniques.
- CO2 To impart knowledge and hands on experience of the various practicals related to bioanalytical techniques.

Curriculum:

Unit	Title	Learning Points	No. of
			Lectures
I	Methods of separation and analytical techniques	Methods of Separation:Precipitation, Filtration, Distillation andSolvent ExtractionAnalytical TechniquesChromatography:Definition, Principles, Chromatographic	15
		performance parameters, TypesPaperChromatography,ThinLayerChromatography,ColumnChromatography,Column(Principle and Applications)Spectroscopy - Colorimetry:Properties of electromagnetic radiation, interactionwith matter, lasers	
		Colorimetric assays - Principle, Beer - Lambert's Law, Measurement of Extinction, Derivation of E = kcl, Limitations of Beer-Lambert's Law, Filter Selection Examples of colorimetric and UV absorption assays Electrophoresis: General principles, Factors affecting electrophoresis, Types of support media used, Types	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 45 | Page

		of electrophoresis (Agarose gel electrophoresis,	
		PAGE)	
II	Regular and	1. Determination of absorption maxima of CuSO ₄ /	45
	Demonstration	$K_2Cr_2O_7$	
	Practicals	2. Verification of Beer – Lambert's law	
		3. Separation of amino acids by Paper	
		Chromatography	
		4. Electrophoresis of proteins by native PAGE	
		5. Electrophoresis of proteins by SDS PAGE	
		6. Paper electrophoresis of amino acids	
		7. Western Blotting – Demonstration	
		8. Separation of components from a mixture using	
		Affinity chromatography (Kit may be used for	
		demonstration)	
		9. Separation of components from a mixture using	
		ion exchange chromatography (Kit may be used for	
		demonstration)	
		10. Separation of components from a mixture using	
		size exclusion chromatography (Kit may be used	
		for demonstration)	

- 1. Skoog, D. A., West, D. M., Holler, F. J., Crouch, S. R. (2014). Fundamentals of Analytical Chemistry. India: Brooks/Cole, Cengage Learning.
- 2. Principles and Techniques of Biochemistry and Molecular Biology, 7th Edition, Keith Wilson and John Walker, Cambridge University Press.

	No of	Duration	Total Marks	CIE	Total
	Experiments				
Bio-	2	06 hrs	60 M (02	40 M	100
analytical	experiments		Papers)	(10 M for	
Techniques	of 1.5 hrs		(20 M each for	Assignment,	
	duration		2 Experiments;	10 M for	
			20 M for	Journal, 10 M	
	(02 Papers)		Theory based	for Viva, 10 M	
			questions - 08	for Overall	
			M + 07 M + 05	Performance)	
			M)		

Evaluation Pattern

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 46 | Page

Name of the Course	Ability Enhancement Course – English: Communication Skills - II
Course Code	USBT208
Class	F. Y. B. Sc.
Semester	П
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

By the end of the course, the learner will be able to:

- CO1 Learn about Leadership, ethical values, capacity building, team building, decision making.
- CO2 Learn about the understanding of stress and management of stress.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Professional Skills	Creativity at Workplace:	15
		Introduction, Current Workplaces,	
		Creativity, Motivation, Nurturing	
		Hobbies at Work, The Six Thinking	
		Hat Method	
		Ethical Values: Ethics and Society,	
		Theories of Ethics, Correlation	
		between Values and behavior,	
		Nurturing Ethics, Importance of	
		Work Ethics, Problems in the	
		Absence of Work Ethics	
		Capacity Building: Need and	
		Importance of Capacity Building	
		Elements of Capacity Building	
		Zones of Learning Ideas for	
		Learning Strategies for Capacity	
		Building	
		Leadership and Team Building:	
		Leader and Leadership, Leadership	
		Traits, Culture and Leadership,	
		Leadership Styles and Trends,	
		Team Building, Types of Teams	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 47 | Page

			1
		Decision Making and Negotiation: Introduction to Decision Making, Steps for Decision Making, Decision Making Techniques, Negotiation Fundamentals, Negotiation Styles, Major Negotiation Concept	
II	Understanding and	Understanding Stress and	15
	Managing stress and	Conflict	
	conflict in		
	Contemporary society	Causes of stress and conflict in	
		individuals and society; Agents of	
		them in developing the individual:	
		Significance of values, ethics and	
		prejudices in developing the	
		individual; Stereotyping and	
		prejudice as significant factors in	
		agression and violence as the	
		public expression of conflict	
		Managing Stress and Conflict in Society	
		Types of conflicts and use of coping	
		mechanisms for managing individual	
		actualization; Different methods of	
		responding to conflicts in society;	
		Conflict-resolution and efforts	
		in society	

- 1. Kumar, Sanjay, and Lata, Pushp. Communication Skills, Second Edition. India, Oxford University Press, 2015.
- 2. Chauhan, G. S., Sharma, S. (2016). Soft Skills: An Integrated Approach to Maximize Personality. India: Wiley.
- Mitra, B. K. (2011). Personality development and soft skills (Vol. 156). Oxford University Press.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 48 | Page

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

B. Semester End Evaluation (Paper Pattern)

Question	Unit	Marks
No.		
1	Both Units	Do as directed. (Any 10) 10 M
2	Ι	Long Answer Questions 15 M
3	II	Long Answer Questions 15 M
4	Both Units	Short notes (04 out of 06) 20 M

Name of the Course	Value Education Course – Environmental Education – II
Course Code	USBT209
Class	F. Y. B. Sc.
Semester	Π
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1-To understand the relevance of renewable energy sources and conservation of biodiversity.

CO2 – To study the applications of different life forms in environmental remediation.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Renewable sources of	Introduction:	15
	energy	Renewable and Non-renewable	
		resources. The need for a sustainable	
		lifestyle.	
		Energy resources:	
		Types of energy	
		Nonrenewable energy - Oil, coal	
		and its environmental impacts.	
		Renewable energy:	
		Hydroelectric power, Solar energy,	
		Biomass energy, Biogas, Wind	
		power and Geothermal energy.	
		Biogas technology:	
		Biogas plant & types, biodigester.	
		Biogas- composition, production	
		and factors affecting production and	
		uses.	
		Biofuels:	
		Ethanol production, Microbial	
		hydrogen production, Biodiesel,	
		Petrocrops.	
11	Global environmental	Green House Effect:	15
	problems and issues;	Factors responsible for Green House	
	Bioremediation	Effect; Green House gases.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 50 | Page

Global warming: Ozone depletion;	
Kyoto protocol; UV radiation; Acid	
rain	
Concept of bioremediation.	
Microorganisms in Bioremediation.	
Mycoremediation and	
phytoremediation.	
Bioremediation technologies.	
Measuring bioremediation in the	
field. Bioaugmentation and	
biostimulation. Monitoring the	
efficacy of bioremediation.	

1. Bharucha, E. (2005). Textbook of Environmental Studies for Undergraduate Courses. India: Universities Press (India) Pvt. Limited.

2. Verma, P. S. (2004). Cell Biology, Genetics, Molecular Biology: Evolution and Ecology. India: S. Chand Limited.

3. Khoiyangbam, R. S. (2015). Introduction to Environmental Sciences. India: Energy and Resources Institute.

4. Fulekar, M. H. (2010). Environmental Biotechnology. United Kingdom: CRC Press.

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

B. Semester End Evaluation (Paper Pattern)

Question	Unit	Marks
No.		
1	Both Units	Do as directed. (Any 10) 10 M
2	Ι	Long Answer Questions 15 M
3	II	Long Answer Questions 15 M
4	Both Units	Short notes (04 out of 06) 20 M

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 51 | Page

Name of the Course	Basic computer system
Course Code	USOE203
Class	F. Y. B. Sc.
Semester	II
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective (Open Elective)

Course Outcomes:

By the end of the course, the student will be able to:

CO1 – To develop an understanding of computer networking and internet.

CO2 – To develop skills to use word processing, spreadsheet, presentation software.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Introduction to	Overview and functions of a	15
	computers	computer system, Input and output	
		devices, Storage devices. Modern	
		computers: The workstation, The	
		Minicomputer, Mainframe	
		Computers, Parallel processing	
		Computer & The Super Computer;	
		Introduction to operating systems:	
		Operating System concept,	
		Windows, Unix/Linux & servers	
		Word Processing: Basic Operations,	
		Creating and Editing documents,	
		Formatting documents. Spreadsheet:	
		Creating and editing workbook,	
		Organizing and formatting	
		worksheets; Data analysis and	
		management; Using formulas and	
		functions; Presentation Graphics:	
		Creating and Editing Presentations,	
		Designing and Enhancing	
		Presentation, Delivering Presentation	
		Advanced Presentation Graphics.	
Π	Computer networking	Introduction to networking:	15
		Various terminologies Associated	
		hardware devices, gadgets (Router,	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 52 | Page

Switch) tools, services, and	
resources Network Topologies and	
Protocols, LAN, WAN and MAN	
World Wide Web (WWW) Network	
security: fire walls	
Computer viruses:	
An overview of Computer viruses:	
What is a virus? Virus signs, how do	
they get transmitted? What are the	
dangers?	
General Precautions	
The Internet and Internet Services:	
Introduction, History of Internet,	
Internetworking Protocol. The	
Internet Architecture. Managing the	
Internet. Connecting to Internet.	
Internet Connections: Dial-up	
Access, Leased Line, Integrated	
Services Digital Network (ISDN)	
Digital Subscriber Line (DSL).	
Cable Modem Internet Address	
Internet Services: World Wide Web	
(WWW) Web Browser Uniform	
Resource Locator (URL) Internet	
Search Engines WWW	
Development Languages Uses of	
Internet Electronic Mail: E mail	
Address E mail Massage Format E	
Autress, E-mail Message Formal, E	
-inall Services, How E-inall Works	
File Iransier Protocol (FIP), How	
FIP WORKS, Ierminal Network	
(Telnet), News, Internet Relay Chat	
(IRC), MS Outlook.	

- 1. Sinha, P. K., Sinha, P. (2004). Computer Fundamentals. India: BPB Publications.
- 2. Goel, A. (2010). Computer Fundamentals. India: Pearson Education.
- 3. Wempen, F. (2014). Computing Fundamentals: Introduction to Computers. Germany: Wiley.
- 4. Tanenbaum, A. S., Wetherall, D. (2014). Computer Networks. United Kingdom: Pearson Education.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 53 | Page

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

B. Semester End Evaluation (Paper Pattern)

Question	Unit	Marks
No.		
1	Both Units	Do as directed. (Any 10) 10 M
2	Ι	Long Answer Questions 15 M
3	II	Long Answer Questions 15 M
4	Both Units	Short notes (04 out of 06) 20 M

Name of the Course	Introduction to Bioinformatics
Course Code	USOE206
Class	F. Y. B. Sc.
Semester	П
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective (Open Elective)

Course Outcomes:

By the end of the course, the student will be able to:

- CO1 To develop an understanding of introduction to computers and biological databases.
- CO2 To develop an understanding of BLAST and sequence alignment.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Introduction to	Computer Basics : Basic Computer	15
	computers and	Operations: I/O Units; Computer	
	Biological databases	Memory; Processor; Binary	
		Arithmetic; Logic Circuit;	
		Architecture; Operating Systems and	
		application softwares.	
		Biological Databases :	
		Classification of Databases - Raw	
		and Processed Databases; Primary	
		(NCBI), Secondary (PIR) and	
		Tertiary or Composite (KEGG)	
		Databases; Structure and Sequence	
		Databases.	
		Specialized Databases - Protein	
		Pattern Databases; Protein Structure	
		and Classification Databases	
		(CATH/SCOP).	
		Genome Information Resources:	
		DNA Sequence Databases	
		Specialized Genomic Resources.	
		Protein Databases based on	
		Composition, Motifs and Patterns.	
		Protein Structure Visualization	
		Software.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 55 | Page

II	BLAST and Sequence	BLAST and Sequence Alignment:	15
	alignment	BLAST and its Types; Retrieving	
		Sequence using BLAST. Pairwise	
		Alignment: Identity and Similarity;	
		Global and Local Alignment;	
		Pairwise Database Searching.	
		Multiple Sequence Alignment: Goal	
		of Multiple Sequence Alignment;	
		Computational Complexity; Manual	
		Methods; Simultaneous Methods;	
		Progressive Methods; Databases of	
		Multiple Alignment; Secondary	
		Database Searching; Analysis	
		Packages; MSA.	

- 5. Sinha, P. K., Sinha, P. (2004). Computer Fundamentals. India: BPB Publications.
- 6. Goel, A. (2010). Computer Fundamentals. India: Pearson Education.
- 7. Wempen, F. (2014). Computing Fundamentals: Introduction to Computers. Germany: Wiley.
- 8. Bioinformatics by S. C. Rastogi
- 9. Bioinformatics by Attawood

Evaluation Pattern

C. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

D. Semester End Evaluation (Paper Pattern)

Question	Unit	Marks
No.		
1	Both Units	Do as directed. (Any 10) 10 M
2	Ι	Long Answer Questions 15 M
3	II	Long Answer Questions 15 M
4	Both Units	Short notes (04 out of 06) 20 M

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 56 | Page

Name of the Course	Food Science
Course Code	USOE209
Class	F. Y. B. Sc.
Semester	П
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective (Open Elective)

Course Outcomes:

CO1 – To develop an understanding of the applications of Biotechnology in the food industry.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Introduction to Food Biotechnology	Introduction to food	15
	Diotechnology	biotechnology:	
		History of microorganisms in food	
		science and key developments,	
		Applications of biotechnology in	
		fermented food products	
		Introduction to Unit Operations	
		and Processes:	
		Basic unit operations, food	
		processing & packaging (canning &	
		bottling), Production of cultures	
II	Food Fermentations and	Fermented food products:	15
	Preservation	Bread, Vinegar, Sauerkraut, Single	
		Cell Protein (SCP), Probiotics	
		Food spoilage, food deterioration,	
		food contamination and Food	
		Adulteration	
		Methods of food preservation	
		Indicators of Food Microbial	
		Quality & Safety: HACCP, FSSAI	
		& FDA	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 57 | Page

- 1. Frazier, W. C., & Westhoff, D. C. (1983). Food microbiology 5th Ed.
- 2. Lee, B. H. (2014). Fundamentals of food biotechnology. John Wiley & Sons.
- 3. Jay, J. M., Loessner, M. J., & Golden, D. A. (2008). Modern food microbiology. Springer Science & Business Media.

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

B. Semester End Evaluation (Paper Pattern)

Question	Unit	Marks
No.		
1	Both Units	Do as directed. (Any 10) 10 M
2	Ι	Long Answer Questions 15 M
3	II	Long Answer Questions 15 M
4	Both Units	Short notes (04 out of 06) 20 M

(Rashmi A. Bhave) The Chairperson, BoS

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 59 | Page

Name of Programme	B. Sc. Biotechnology
Level	UG
No. of Semesters	06
Year of Implementation	2023 - 24
Programme Specific	1. To impart hands on skills in preparation of buffers and
Outcomes (PSO)	solutions.
	2. To impart skills in handling the cultures of micro – organisms.
	3. To impart the knowledge of molecular biology techniques.
	4. To impart the skills of Science communication.
	5. To impart knowledge of society and make students aware about
	the Problems in society.
	6. To understand basic principles of research methodology and
	identify a research problem.
	7. To gain critical thinking and analytical skills to understand new
	diagnostic methods.
	8. To write a business plan.
	9. To design strategies for successful implementation of ideas.
Relevance of PSOs to the	Biotechnology is important at Global, Regional and local level. The
local, regional, national,	significance of Biotechnology identified at all these levels and it is
and global	relevant to everyday life. The curriculum design of B. Sc.
developmental needs	Biotechnology programme helps in understanding various concepts
	in detail. This programme includes hands on skills and knowledge
	of the different techniques related to molecular biology, tissue
	culture, basic chemistry and basic microbiology. This also involves
	the knowledge of problems in society. The application part is taken
	care of so that the learner shall be able to connect the phenomena
	around him with the curriculum. This programme also imparts the
	research values among the learners. The hard and softs skills
	acquired during the completion of this programme shall make him
	employable.

The performance of the learners shall be evaluated into two parts. The learner's performance shall be assessed by Internal Assessment with 40 % marks in the first part and by conducting the Semester End Examinations of 60 % marks in the second part.

Standard of Passing

The learner to pass a course shall have to obtain a minimum of 40% marks in aggregate for each course where the course consists of Internal Assessment & Semester End Examination. The learner shall obtain minimum of 40% marks (i. e. 16 out of 40) in the Internal Assessment and 40% marks in Semester End Examination (i. e. 24 out of 60) separately, to pass the course and minimum of Letter Grade "P" in the project component, wherever applicable to pass a particular semester. A learner will be said to have passed the course if the learner passes the Internal Assessment and Semester End Examination together.

Semester GPA/ Program CGPA Semester/Program	% of Marks	Alpha-Sign / Letter Grade Result
9.00-10.00	90.0 -100	0 (Outstanding)
8.00 ≤ 9.00	80.0 ≤ 90.0	A+ (Excellent)
$7.00 \le 8.00$	$70.0 \le 80.0$	A (Very Good)
$6.00 \le 7.00$	$60.0 \le 70.0$	B+ (Good)
$5.50 \le 6.00$	$55.0 \le 60.0$	B (Above Average)
$5.00 \le 5.50$	50.0 ≤ 55.0	C (Average)
4.00 ≤ 5.00	40.0 ≤ 50.0	P (Pass)
Below 4.00	Below 40	F (Fail)
Ab (Absent)	-	Absent

Performance Grading:

Letter Grades and Grade Points

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 61 | Page SMART Criteria for Course Outcomes:

Specific: Each course outcome is specific, outlining the knowledge and skills students are expected to acquire in relation to the specific topics covered.

Measurable: Each outcome can be measured through assessments, tests, or projects to determine the level of understanding and proficiency achieved by the students.

Achievable: The outcomes are achievable within the duration of the course, considering the number of lectures allocated to each topic.

Relevant: The outcomes are relevant to the subject of financial services and capital market, addressing important concepts, types, and mechanisms involved.

Time-bound: The outcomes are expected to be achieved by the end of the course, providing a clear timeline for assessment and evaluation.

Name of the Course	Biophysics
Course Code	USBT 301
Class	S. Y. B. Sc.
Semester	III
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

- CO1 To have a firm foundation in the fundamentals and applications of current biophysical theories related to optics and electromagnetic radiations.
- CO2 To have a firm foundation in the fundamentals and applications of current biophysical theories related to heat, sound, magnetism and fluid dynamics.
- CO3 To provide the skills in electrophoretic techniques.

Unit	Title	Learning Points	No. of Lectures
Ι	Optics and	Introduction to Optics and	15
	Electromagnetic	Lasers:	
	radiations	Optics :	
		Properties of Light - Reflection,	
		Refraction, Dispersion,	
		Interference.	
		Lasers :	
		Properties of Lasers, Stimulated	
		Emissions, Laser Action;	
		Applications of Laser.	
		Electromagnetic Radiations:	
		Introduction to Electromagnetic	
		Radiation.	
		Spectroscopy :	
		Types and Properties of Spectra;	
		Basic Laws of Light Absorption.	
		Spectrophotometer:-Principle,	
		Instrumentation and Applications;	
		UV-Vis Spectrophotometer, Single	
		and Dual Beam Spectrophotometer.	

Curriculum:

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 63 | Page

		Microscopy:	
		Types of Microscopy; Electron	
		Optics; Electron Microscopy-	
		Preparation of Specimen, SEM.	
		TEM and Immuno-Electron	
		Microscopy.	
		Fluorescence Microscopy.	
П	Heat, Sound	Heat:	15
	Magnetism and Fluid	Concept of Temperature: Modes of	10
	dynamics	Heat Transfer: Measuring	
		Temperature: Platinum Resistance	
		Thermometer: Thermocouple and	
		Thermistors	
		Sound:	
		Types of Sound Wayes - Audible	
		Ultrasonic and Infrasonic Wayes:	
		Doppler Effect:	
		Applications of Ultrasonic Waves	
		Magnetism:	
		Magnetic Field Magnetism of	
		Earth: Paramagnetism	
		Diamagnetism Ferromagnetism	
		Nuclear Magnetism and	
		Biomagnetism	
		Fluid Dynamics :	
		Viscosity:	
		Definition Flow of Liquids through	
		Capillaries: Stokes' Law: Terminal	
		Velocity.	
		Determination of 'n' by Falling	
		Sphere Method: Viscosity	
		Estimation by Oswald's	
		Viscometer.	
		Surface Tension:	
		Definition - Surface Tension and	
		Surface Energy: Capillary Action:	
		Angle of Contact: Wettability:	
		Temperature Dependence of	
		Surface Tension.	
		Applications in Biology.	
III	Electrophoretic	Electrophoresis:	15
	techniques	Migration of Ions in an applied	
	.1	electric field; Factors affecting	
		Electrophoretic Mobility;	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 64 | Page

Moving Boundary Electrophoresis;	
Principle of Electrophoresis;	
Supporting Matrix; Paper	
Electrophoresis; AGE; Native and	
SDS PAGE (reducing and non-	
reducing, continuous and	
discontinuous); IEF and 2D PAGE.	
Staining and Detection Methods;	
Gel-Documentation.	
Applications in Biology.	

- 1. Brij Lal Subramanium, Chapter 3, 8, 14, 22
- 2. Concepts of modern Physics, Beiser, Topics 2.1 2.2
- 3. TY College analytical Chemistry, Himalaya Publications
- 4. Instrumentation: Devices and systems by C. S. Rangan, TMH Publication
- 5. Biophysical Chemistry Principles and Techniques, Upadhyay and Nath

Evaluation Pattern

C. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

D. Semester End Evaluation (Paper Pattern)

Question	Unit	Marks
No.		
1	Ι	Long Answer Questions 15 M
2	II	Long Answer Questions 15 M
3	III	Long Answer Questions 15 M
4	All Units	Short notes (03 out of 06) 15 M

Name of the Course	Applied Chemistry – I
Course Code	USBT 302
Class	S. Y. B. Sc.
Semester	III
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - To have a firm foundation in the fundamentals of organic chemistry.

CO2 - To impart the knowledge in the synthesis of organic compounds.

CO3 – To explore the fundamentals of green chemistry and synthesis.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Organic Chemistry	Introduction to Types of Organic	15
		Reactions :	
		Addition, Elimination and	
		Substitution	
		Reactions. Essential and Non-	
		essential Elements in Biological	
		Systems.	
		Role of Metal Ions in Biological	
		Systems.	
		Metal Coordination in Biological	
		Systems :	
		Enzymes, Apoenzymes and	
		Coenzymes.	
		Biological Role of Metalloenzymes	
		wrt Myoglobins, Haemoglobin.	
		Biological Role of	
		Carboxypeptidases,	
		Catalases and Peroxidases.	
		Structure and Function :	
		Dioxygen Binding, Transfer and	
		Utilization; Metal Complexes in	
		Medicines.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 66 | Page

II	Synthesis of organic	Synthesis of Organic Compounds :	15
	compounds	Criteria for Ideal Synthesis;	
		Selectivity and Yield. Linear and	
		Convergent Synthesis and	
		Multicomponent Reactions.	
		Microwave Assisted Organic	
		Synthesis, Ultrasound in Synthesis	
		and Polymer supported Synthesis.	
		Retrosynthesis.	
III	Green Chemistry and	Green Chemistry and Synthesis:	15
	synthesis	Introduction to Green Chemistry;	
		Need and Relevance of Green	
		Chemistry; Principles of Green	
		Chemistry.	
		Green Synthesis in Industry: Green	
		Materials, Green Reagents, Green	
		Solvents and Green Catalysts.	

- 1. Advanced organic chemistry, Reinhard Bruckner
- 2. Biochemistry, Satyanarayan 4th edition
- 3. Textbook of Biochemistry, Lehninger 4th edition
- 4. College organic chemistry for T. Y. B. Sc. (Himalaya Publishing House)
- 5. Green Chemistry by Ahluwalia

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

B. Semester End Evaluation (Paper Pattern)

Question	Unit	Marks
No.		
1	Ι	Long Answer Questions 15 M
2	II	Long Answer Questions 15 M
3	III	Long Answer Questions 15 M
4	All Units	Short notes (03 out of 06) 15 M

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 67 | Page

Name of the Course	Immunology
Course Code	USBT 303
Class	S. Y. B. Sc.
Semester	III
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - To familiarize students with the immune effector mechanisms.

- CO2 To provide the information about cell receptors.
- CO3 To impart the details of various immunotechniques.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Effectors of Immune	Haematopoiesis; Cells of the	15
	Response	Immune System; Primary and	
		Secondary Lymphoid Organs.	
		Complement System- Classical,	
		Alternate and Lectin; Regulation	
		and Biological Effects of	
		Complement System; Deficiencies	
		of Complement System	
II	Cell Receptors	T-cell Receptor Complex :	15
		Structure and Activation.	
		MHC Classes - General	
		Organization and Inheritance;	
		Structures and Peptide Interactions;	
		Class I and II Diversity and	
		Polymorphism; Antigen	
		Presentation - Endocytic and	
		Exocytic Pathways; MHC	
		Restriction.	
		B-cell Receptor :	
		Structure, Maturation and	
		Activation	
		B-T Cell Interaction (B-T cell	
		Cooperation).	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 68 | Page

III	Immunotechniques	Precipitation Reactions :	15
		Immunoprecipitation,	
		Immunoelectrophoresis, CIEP,	
		Rocket Electrophoresis and 2-D	
		Immunoelectrophoresis.	
		Agglutination Reactions :	
		Passive, Reverse Passive,	
		Agglutination Inhibition.	
		Coomb's Test; Complement	
		Fixation Tests, RIA, ELISA,	
		ELISPOT, Chemiluminescence,	
		Western Blot,	
		Immunofluorescence, Flow	
		Cytometry.	
		Alternatives to Antigen-Antibody	
		Reactions.	

- 1. Immunology by Janis Kuby, 5th edition
- 2. Textbook of Microbiology by Ananthnarayan and Paniker, 8th edition
- 3. Introduction to immunology by C. V. Rao

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

B. Semester End Evaluation (Paper Pattern)

Question No.	Unit	Marks
1	Ι	Long Answer Questions 15 M
2	II	Long Answer Questions 15 M
3	III	Long Answer Questions 15 M
4	All Units	Short notes (03 out of 06) 15 M

Name of the Course	Cell Biology and Cytogenetics
Course Code	USBT 304
Class	S. Y. B. Sc.
Semester	III
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - To have a firm foundation in the fundamentals of cytoskeleton.

- CO2 To acquire the knowledge about cell membrane.
- CO3 To impart the fundamentals of cytogenetics.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Cytoskeleton	Cytoskeleton :	15
		Overview of the Major Functions of	
		Cytoskeleton.	
		Microtubules: Structure and Composition.	
		MAPs: Functions- Role in Mitosis,	
		Structural Support and Cytoskeleton	
		Intracellular Motility.	
		Motor Proteins: Kinesins, Dynein;	
		MTOCs.	
		Dynamic Properties of Microtubules.	
		Microtubules in Cilia and Flagella.	
		Microfilaments: Structure, Composition,	
		Assembly and Disassembly.	
		Motor Protein: Myosin.	
		Muscle Contractility: Sliding Filament	
		Model.	
		Actin Binding Proteins : Examples of Non-	
		Muscle Motility.	
		Intermediate Filaments :Structure and	
		Composition; Assembly and Disassembly;	
		Types and Functions.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 70 | Page

II	Cell Membrane	Cell Membrane :	15
		Uptake of Nutrients by Prokaryotic Cells;	
		Cell Permeability.	
		Principles of Membrane Transport-	
		Transporters and Channels; Active	
		Transport	
		Passive Transport; Types of Transporters;	
		Types of ATP Driven Pumps - Na+ K+	
		Pump.	
		Cell Junctions; Cell Adhesion and	
		Extracellular Material Microvilli; Tight	
		Junctions, Gap Junctions; Cell Coat and	
		Cell	
		Recognition.	
		Cellular Interactions.	
III	Cytogenetics	Cytogenetics :	15
		Structure of Chromosome -	
		Heterochromatin, Euchromatin, Polytene	
		Chromosomes.	
		Variation in Chromosomal Structure	
		and	
		Number :	
		Deletion, Duplication, Inversion,	
		Translocation, Aneuploidy, Euploidy and	
		Polyploidy and Syndromes- Klinefelter,	
		Turner, Cri-du-Chat, Trisomy -21,	
		Trisomy 18 and Trisomy 13.	
		Sex Determination and Sex Linkage :	
		Mechanisms of Sex Determination (XX-	
		XY, ZZ-ZW, XX-XO)	
		Dosage Compensation and Barr Body.	
		Genetic Linkage, Crossing Over and	
		Chromosomal Mapping:	
		retrau Analysis; Iwo-point Cross; Inree	
		point Cross; Pedigree Analysis.	

- 1. Microbiology, Prescott Harley, 7th edition
- 2. Molecular biology of the cell, Bruce Alberts, 4th edition
- 3. Cell and Molecular biology, De Robertis, 8th edition
- 4. iGenetics A molecular approach, Russell, 3rd edition

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 71 | Page

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

B. Semester End Evaluation (Paper Pattern)

Question	Unit	Marks
No.		
1	Ι	Long Answer Questions 15 M
2	II	Long Answer Questions 15 M
3	III	Long Answer Questions 15 M
4	All Units	Short notes (03 out of 06) 15 M
Name of the Course	Molecular Biology	
--------------------	-------------------	
Course Code	USBT 305	
Class	S. Y. B. Sc.	

Theory/ Practical/ Project/ other (please specify)

Syllabus for S. Y. B. Sc. Biotechnology Autonomous from the year 2023-24

Course Outcomes:

CO1 - To have an insight into mechanism of gene expression.

Core/ Elective

III

02

CO2 – To provide the knowledge about regulation of gene expression.

Curriculum:

Semester

Nature

Type

No. of Credits

Unit	Title	Learning Points	No. of Lectures
Ι	Gene Expression –	Gene Expression- an Overview.	15
	Transcription	Transcription Process in	
		Prokaryotes :	
		RNA Synthesis; Promoters and	
		Enhancers; Initiation of	
		Transcription at Promoters;	
		Elongation and Termination of an	
		RNA Chain.	
		Transcription in Eukaryotes :	
		Eukaryotic RNA Polymerases;	
		Eukaryotic Promoters;	
		Transcription of Protein Coding	
		Genes by RNA Polymerase;	
		Eukaryotic mRNA's; Transcription	
		of other genes;	
		Spliceosomes; RNA editing.	
II	Gene Expression –	Nature of Genetic Code.	15
	Translation	Wobble Hypothesis.	
		Translation :	
		Process of Protein Synthesis	
		(Initiation, Elongation,	
		Translocation, Termination);	
		Post Translation Modifications.	
		Protein sorting.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 73 | Page

III	Regulation of Gene	In Prokaryotes:	15
	Expression	In Bacteria :	
		<i>lac</i> Operon of <i>E. coli</i> ; <i>trp</i> Operon	
		of <i>E. coli</i> .	
		In Viruses :	
		Lytic / Lysogenic Regulation	
		In Eukaryotes :	
		Operons in Eukaryotes; Control of	
		Transcriptional Initiation; Gene	
		Silencing and Genomic Imprinting;	
		Post-Transcriptional Control; RNA	
		Interference.	

- 1. iGenetics A molecular approach, Russell, 3rd edition
- 2. Molecular biology of the cell, Bruce Alberts, 4th edition

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

Question	Unit	Marks
No.		
1	Ι	Long Answer Questions 15 M
2	II	Long Answer Questions 15 M
3	III	Long Answer Questions 15 M
4	All Units	Short notes (03 out of 06) 15 M

Name of the Course	Bioprocess Technology
Course Code	USBT 306
Class	S. Y. B. Sc.
Semester	III
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

- CO1 To understand the basic skills applied in fermentation technology.
- CO2 To build a foundation for more advanced studies in bioprocess technology.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Microorganisms in	Types of Microorganisms used in	15
	industrial processes	Industrial	
		Processes :	
		Bacteria, Actinomycetes, Fungi and	
		Algae.	
		Screening and Maintenance of	
		Strains:	
		Primary Screening and Secondary	
		Screening; Cultivation;	
		Preservation of Industrially	
		Important Microbial Strains.	
II	Fermentor and	Design of a fermentor :	15
	Fermentation processes	Stirred Tank Fermentor- Basic	
		Design; Parts of a Typical Industrial	
		Fermentor.	
		Fermentation Media :	
		Components; Design and	
		Optimization.	
		Sterilization :	
		Sterilization of Fermentor and	
		Fermentation Media.	
		Process Parameters :	
		<i>pH</i> , Temperature, Aeration,	
		Agitation, Foam, etc.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 75 | Page

		Types of Fermentation :	
		Surface and Submerged; Batch and	
		Continuous, Aerobic and	
		Anaerobic.	
		Product Isolation and	
		Purification.	
		Study of Representative	
		Fermentation	
		Processes :	
		Outline of Penicillin and Ethanol	
		Production by Fermentation along	
		with a <i>flow-diagram</i> .	
III	In vivo and in vitro assay	Assay of Industrial Products:	15
	of industrial products	Chemical and Biological; Types	
		and	
		Subtypes; Kinetics. Advantages and	
		Disadvantages.	
		Half-Life Determination of	
		Pharmacological Products.	
		Bioavailability and Bioequivalence	
		Studies	

- 1. Fermentation by Casida
- 2. Fermentation by A. H. Patel

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

B. Semester End Evaluation (Paper Pattern)

Question	Unit	Marks
No.		
1	Ι	Long Answer Questions 15 M
2	II	Long Answer Questions 15 M
3	III	Long Answer Questions 15 M
4	All Units	Short notes (03 out of 06) 15 M

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 76 | Page

Name of the Course	Research Methodology
Course Code	USBT 307
Class	S. Y. B. Sc.
Semester	III
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

- CO1 To develop research aptitude, logical thinking and reasoning.
- CO2 To provide skills in interpretation and report writing.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Introduction to	Meaning of Research; Objectives of	15
	Research Methodology	Research; Motivation in Research;	
	and Research Problem	Types of Research; Research	
		Approaches; Significance of	
		Research; Research Methods versus	
		Methodology; Research	
		Process; Criteria of Good Research;	
		Problems Encountered by	
		Researchers in India; What is a	
		Research Problem? Selecting the	
		Problem; Necessity of Defining the	
		Problem; Technique Involved in	
		Defining a Problem	
II	Research design and	Meaning of Research Design; Need	15
	Data collection	for Research Design; Features of a	
		Good Design; Important Concepts	
		Relating to Research Design;	
		Different Research Designs; Basic	
		Principles of Experimental Designs;	
		Developing a Research Plan-	
		Collection of Primary Data;	
		Observation Method; Interview	
		Method; Collection of Data through	
		Questionnaires; Collection of Data	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 77 | Page

		through Schedules; Other Methods of Data Collection, Collection of Secondary Data, Selection of Appropriate Method for Data Collection, Case Study Method	
III	Interpretation and Report Writing	Meaning of Interpretation, Why Interpretation? Technique of Interpretation, Precautions in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Types of Reports, Oral Presentation, Mechanics of Writing a Research Report, Precautions for Writing Research Reports.	15

1. Research Methodology by C. R. Kothari, 3rd edition

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

Question	Unit	Marks
No.		
1	Ι	Long Answer Questions 15 M
2	II	Long Answer Questions 15 M
3	III	Long Answer Questions 15 M
4	All Units	Short notes (03 out of 06) 15 M

Name of the Course	Practicals of USBT301 and USBT302
Course Code	USBTP301
Class	S. Y. B. Sc.
Semester	III
No of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 – To impart knowledge and hands on experience of the various practicals related to biophysics and applied chemistry.

Curriculum:

Title	Learning Points	No. of Lectures
Regular	1. Study of Absorption Spectra of Coloured Compounds	120
Practicals	(CuSO ₄ , CoCl ₂ , KMnO ₄).	
	2. Verification of Beer-Lambert's Law.	
	3. Extraction of Plasmid DNA and Separation by Agarose Gel	
	Electrophoresis.	
	4. Determination of Purity of Plasmid DNA using UV	
	Spectrophotometry.	
	5. Electrophoresis of Proteins by PAGE and SDS-PAGE.	
	6. Purification of any TWO Organic Compounds by	
	Recrystallization Selecting Suitable Solvent.	
	9. Organic Estimations: Acetone, Amide, Benzoic Acid.	
	10. Organic Preparations :	
	a) Acetylation of Primary Amine (Preparation of Acetanilide).	
	b) Base Catalyzed Aldol Condensation (Synthesis of	
	Dibenzalpropanone).	
Demonstration	1. Study of the Structure and Function of an Electron	
Practicals	Microscope (Visit / Video Demonstration - including Sample	
	Preparation and Staining).	
	2. Demonstration of Structure and Working of a Fluorescence	
	Microscope (Stained Preparation).	

- 1. Advanced organic chemistry, Reinhard Bruckner
- 2. Biochemistry, Satyanarayan 4th edition
- 3. Textbook of Biochemistry, Lehninger 4th edition
- 4. College organic chemistry for T. Y. B. Sc. (Himalaya Publishing House)
- 5. Green Chemistry by Ahluwalia
- 6. TY College analytical Chemistry, Himalaya Publications
- 7. Instrumentation: Devices and systems by C. S. Rangan, TMH Publication
- 8. Biophysical Chemistry Principles and Techniques, Upadhyay and Nath

Evaluation Pattern

	No. of	Duration	Total Marks	CIE	Total
	Experiments				
Practicals	4	06 hrs	60 M	40 M	100
of	experiments		(02 Papers)	(20 M for	
USBTP301	of 1.5 hrs		(02 Major	Journal, 10 M	
	duration		and 02 Minor	for viva, 10	
			Experiments	M for overall	
	(02 Papers)		OR 02 Major	performance)	
			Experiments)		

Name of the Course	Practicals of USBT303 and USBT304
Course Code	USBTP302
Class	S. Y. B. Sc.
Semester	III
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - To impart knowledge and hands on experience of the various practicals related to immunology.

CO2 - To impart knowledge and hands on experience of the various practicals related to cell biology and cytogenetics.

Curriculum:

Title	Learning Points	No. of Lectures
Regular	1. Complement Fixation Test (CFT).	120
Practicals	2. Passive Agglutination- RA Factor Test.	
	3. Immunoelectrophoresis.	
	4. ELISA (Kit-based) - HEPALISA.	
	5. DOT-ELISA.	
	6. Study of Chromosomal Aberrations- Deletion, Duplication,	
	Inversion, Translocation and Syndromes- Trisomy 21 Trisomy	
	13 Trisomy 18, Klinefelter, Turner and Cri-du-Chat.	
	7. Induction of Polyploidy by PDB Treatment using Suitable	
	Plant Material.	
	8. Study of Polytene Chromosomes.	
	9. Mapping based on Tetrad Analysis and Three Point Cross.	
	10. Pedigree Analysis- Autosomal and Sex-Linked.	
Demonstration	Western Blotting - Demonstration.	
Practicals		
Visit	Flow Cytometry - Lab Visit.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 81 | Page

- 1. Microbiology, Prescott Harley, 7th edition
- 2. Molecular biology of the cell, Bruce Alberts, 4th edition
- 3. Cell and Molecular biology, De Robertis, 8th edition
- 4. iGenetics A molecular approach, Russell, 3rd edition
- 5. Immunology by Janis Kuby, 5th edition
- 6. Textbook of Microbiology by Ananthnarayan and Paniker, 8th edition
- 7. Introduction to immunology by C. V. Rao

Evaluation Pattern

	No. of	Duration	Total Marks	CIE	Total
	Experiments				
Practicals	4	06 hrs	60 M	40 M	100
of	experiments		(02 Papers)	(20 M for	
USBTP302	of 1.5 hrs		(02 Major	Journal, 10 M	
	duration		and 02 Minor	for viva, 10	
			Experiments	M for overall	
	(02 Papers)		OR 02 Major	performance)	
			Experiments)	_	

Name of the Course	Practicals of USBT305 and USBT306
Course Code	USBTP303
Class	S. Y. B. Sc.
Semester	III
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - To impart knowledge and hands on experience of the various practicals related to molecular biology.

CO2 - To provide knowledge and hands on experience of the various practicals related to bioprocess technology.

Curriculum:

Title	Learning Points	No. of Lectures		
Regular	1. Study of E. coli Diauxic Growth Curve- (Lactose and	120		
Practicals	Glucose).			
	2. Study of lac Gene Expression using Blue-White Selection.			
	3. Expression of β -galactosidase and Measurement of Activity.			
	4. Screening for an Antibiotic Producing Strain of			
	Microorganism.			
	5. Screening for an Alcohol Producing Strain of Microorganism.			
	6. Lab Scale Production of Penicillin (Static and Shaker).			
	7. Purification of Penicillin from Broth Culture of Penicillium			
	spp. by Solvent Extraction.			
	8. Lab Scale Production of Ethanol.			
	9. Purification of Ethanol from Broth Culture of Saccharomyces			
	spp. by Distillation.			
	10. Estimation of Penicillin from Recovered Broth by Chemical			
	(Iodometric) Method.			
	11. Estimation of Penicillin from Recovered Broth by Biological			
	(Bioassay) Method.			
	12. Estimation of Alcohol from Recovered Broth by Dichromate			
	Method.			

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 83 | Page

- 1. Fermentation by Casida
- 2. Fermentation by A. H. Patel
- 3. iGenetics A molecular approach, Russell, 3rd edition
- 4. Molecular biology of the cell, Bruce Alberts, 4th edition

Evaluation Pattern

	No. of	Duration	Total Marks	CIE	Total
	Experiments				
Practicals	4	06 hrs	60 M	40 M	100
of	experiments		(02 Papers)	(20 M for	
USBTP303	of 1.5 hrs		(02 Major	Journal, 10 M	
	duration		and 02 Minor	for viva, 10	
			Experiments	M for overall	
	(02 Papers)		OR 02 Major	performance)	
			Experiments)		

Name of the Course	Biochemistry
Course Code	USBT401
Class	S. Y. B. Sc.
Semester	IV
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - To gain an insight into the metabolic processes associated with catabolism of carbohydrates. CO2 - To gain an insight into the metabolic processes associated with catabolism of amino acids. CO3 - To gain an insight into the metabolic processes associated with catabolism of lipids and nucleotides.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Carbohydrate	Carbohydrate Metabolism :	15
	metabolism, ETS and	Glycolytic Pathway and its	
	Energy rich compounds	Regulation, Homolactic	
		Fermentation; Alcoholic	
		Fermentation; Energetics of	
		Fermentation; Citric Acid Cycle	
		and its Regulation;	
		Gluconeogenesis; Pentose	
		Phosphate Pathway;	
		Glyoxalate Pathway; Reductive	
		TCA. (Sequence of Reactions,	
		Regulation, Energy Yield and	
		Metabolic Disorders of the above	
		Pathways)	
		Electron Transport System :	
		Electron Transport and Oxidative	
		Phosphorylation. Inhibitors of ETS.	
		Energy Rich Compounds :	
		ATP as Energy Currency, Structure	
		of ATP, Hydrolysis, Other Energy	
		Rich Compounds other than ATP	
		like PEP, Creatine Phosphate, etc.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 85 | Page

II	Amino acid metabolism	Amino Acid Breakdown :	15
		Deamination, Transamination, Urea	
		Cycle, Breakdown of Glucogenic	
		and Ketogenic Amino Acids.	
		Amino Acids as Biosynthetic	
		Precursors :	
		Biosynthesis of Epinephrine,	
		Dopamine, Serotonin, GABA,	
		Histamine, Glutathione. (Sequence	
		of Reactions, Regulation and	
		Metabolic Disorders of the above	
		Pathways)	
III	Lipid and nucleotide	Lipid Metabolism :	15
	metabolism	Mobilization, Transport of Fatty	
		Acids. Beta, Alpha and Omega	
		Oxidation of Saturated Fatty Acids;	
		Oxidation of Unsaturated Fatty	
		Acids; Oxidation of Odd Chain	
		Fatty Acids. Energy Yield, Ketone	
		Body Breakdown to Yield Energy.	
		(Sequence of Reactions,	
		Regulation, Energy Yield and	
		Metabolic Disorders of the above	
		Pathways)	
		Nucleotide Metabolism :	
		Degradation of Purines and	
		Pyrimidines.	

- 1. Biochemistry by Satyanarayan and Chakrapani
- 2. Lehninger Principles of Biochemistry, 4th edition, Nelson and Cox
- 3. Biochemistry, Voet and Voet, 3rd edition
- 4. General Microbiology by Stanier

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 86 | Page

Question No.	Unit	Marks
1	Ι	Long Answer Questions 15 M
2	II	Long Answer Questions 15 M
3	III	Long Answer Questions 15 M
4	All Units	Short notes (03 out of 06) 15 M

Name of the Course	Applied Chemistry – II
Course Code	USBT402
Class	S. Y. B. Sc.
Semester	IV
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - To have a firm foundation in the fundamentals and applications of current chemical theories for the physical world.

CO2 – To provide the knowledge of sampling and separation techniques.

CO3 – To explore polymers and nanomaterials.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Sampling and	Sampling :	15
	separation techniques	Importance of Sampling and	
		Sampling Techniques	
		Types of Sampling - Random and	
		Non-Random Sampling of Solids,	
		Liquids and Gases.	
		Separation Techniques :	
		Types of Separation Techniques -	
		Filtration, Zone Refining,	
		Distillation, Vacuum Distillation.	
		Solvent Extraction – Partition	
		Coefficient and Distribution Ratio,	
		Extraction Efficiency, Separation	
		Factor, Role of Complexing Agents,	
		Chelation, Ion Pair Formation,	
		Solvation, and Soxhlation.	
		Centrifugation - Basic Principles of	
		Sedimentation.	
II	Natural product	Natural Product Chemistry :	15
	chemistry	Primary and Secondary	
		Metabolites.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 88 | Page

			1
		Classification of Natural Products	
		based on Bio-Synthesis.	
		Classification of Natural Products	
		based on Structure- Alkaloids,	
		Phenolics, Essential Oils and	
		Steroids. Structure Determination	
		of Natural Products. Commercial	
		Synthesis of Natural Products.	
		Chromatographic Separation of	
		Natural Products:	
		Gas Chromatography and its	
		Applications.	
		Liquid Chromatography: HPLC and	
		its Applications.	
		HPTLC for Separation and Analysis	
		of Natural Products.	
III	Polymers and	Polymers :	15
	nanomaterials	Introduction to Polymers.	
		Types of Polymers - Monomer,	
		Polymer, Homopolymer,	
		Copolymer, Thermoplastics and	
		Thermosets, Addition and	
		Condensation Polymers (Examples	
		and Uses) Stereochemistry of	
		Polymers. Biodegradable Polymers.	
		Nanomaterials :	
		Introduction to Nanomaterials.	
		Forms of Nanomaterials:	
		Nanoparticles, Nanofilms and	
		Nanotubes Synthesis and	
		Characterization of	
		Nanomaterials. Applications of	
		Nanomaterials.	

- 1. Vogel's Textbook of Quantitative chemical analysis, 6th edition
- 2. Textbook of organic chemistry for T. Y. B. Sc., Himalaya Publishing House
- 3. Nanomaterials by B. Viswanathan
- 4. Polymer Science, V. R. Gowariker, Viswanathan

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 89 | Page

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

Question	Unit	Marks
No.		
1	Ι	Long Answer Questions 15 M
2	II	Long Answer Questions 15 M
3	III	Long Answer Questions 15 M
4	All Units	Short notes (03 out of 06) 15 M

Name of the Course	Medical Microbiology
Course Code	USBT403
Class	S. Y. B. Sc.
Semester	IV
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - To gain insight into disease factors and processes.

CO2 – To provide the knowledge about diseases caused by microorganisms.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Infectious diseases	Host Parasite Relationship:	15
		Normal Flora; Factors Affecting the	
		Course of Infection and Disease;	
		Mechanisms of Infection and	
		Virulence Factors.	
		Infection:	
		Patterns of Infection; Types of	
		Infections; Signs and Symptoms;	
		Epidemiology and Epidemiological	
		Markers.	
		Diseases:	
		Origin of Pathogens; Vectors;	
		Acquisition of Infection; Koch's	
		Postulates.	
II	Medical Microbiology	Skin :	15
	– Causative organisms	S. aureus, S. pyogenes.	
	- I	Respiratory Tract Infections :	
		M. tuberculosis, S. pneumoniae	
		(Characteristics Transmission,	
		Course of Infection, Lab Diagnosis,	
		Management of TB, Prevention and	
		Control, Immuno and	
		Chemoprophylaxis, DOTS and	
		MDR).	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 91 | Page

		Urinary Tract Infections : <i>E. coli</i> : Characteristics, Virulence, Clinical disease, and <i>E. coli</i> Infections. <i>Proteus</i> .	
Π	Medical Microbiology – Causative organisms – II	GI Tract Infections : Salmonella and Shigella spps. (Characteristics, Virulence- Pathogenesis and Immunity, Clinical Disease, Carriers Lab Diagnosis, Phage Typing Prophylaxis and Treatment). Sexually Transmitted Diseases : Syphilis and Gonorrhoea. Nosocomial Infections : Ps. Aeruginosa	15

- 1. Microbiology: An introduction, Tortora, 9th edition
- 2. Microbiology by Pelczar and Chan, 5th edition

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

Question	Unit	Marks
N0.		
1	Ι	Long Answer Questions 15 M
2	II	Long Answer Questions 15 M
3	III	Long Answer Questions 15 M
4	All Units	Short notes (03 out of 06) 15 M

Name of the Course	Environmental Biotechnology
Course Code	USBT404
Class	S. Y. B. Sc.
Semester	IV
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - To gain awareness about different types of environmental pollution.

CO2 – To impart the knowledge of global environmental problems and related issues.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Environmental pollution	Sources of Pollution.	15
		Air Pollution :	
		Types; Sources; Classification of	
		Air Pollutants; Air Pollution	
		Monitoring and Control.	
		Water Pollution :	
		Causes, Types and Classification;	
		Eutrophication; Assessment of	
		Water Quality- Pollutant	
		Monitoring and Control;	
		Soil and Solid Waste Pollution :	
		Characteristics of Wastes, Impacts	
		of Solid Waste on Health,	
		Occupational Hazards and Control.	
		Soil Erosion :	
		Concept, Causes and Effects.	
II	Global environmental	Green House Effect :	15
	problems and issues	Factors Responsible for Green	
		House Effect; Green House Gases.	
		Global Warming; Ozone Depletion;	
		Kyoto Protocol; UV Radiation;	
		Acid Rain.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 93 | Page

III	Bioremediation	Concept of Bioremediation.	15
		Microorganisms in Bioremediation,	
		Mycoremediation and	
		Phytoremediation. Bioremediation	
		Technologies. Measuring	
		Bioremediation in the Field.	
		Bioaugmentation and	
		Biostimulation.	
		Monitoring the Efficacy of	
		Bioremediation.	

- 1. Environmental Biotechnology by Indu Shekhar Thakur, IK International
- 2. Environmental Biotechnology by Allan Scragg Oxford University press

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

Question	Unit	Marks
No.		
1	Ι	Long Answer Questions 15 M
2	II	Long Answer Questions 15 M
3	III	Long Answer Questions 15 M
4	All Units	Short notes (03 out of 06) 15 M

Name of the Course	Biostatistics and Bioinformatics
Course Code	USBT405
Class	S. Y. B. Sc.
Semester	IV
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

- CO1 To learn and understand the basic concepts of bioinformatics.
- CO2 To learn and understand the basic concepts and problem solving skills in biostatistics.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Introduction to	Computer Basics :	15
	computers and	Organization of a Computer; I/O	
	biological databases	Units; Computer Memory;	
		Processor; Binary Arithmetic;	
		Logic Circuit; Architecture;	
		Operating System.	
		Internet Basics :	
		Connecting to the Internet, E-mail,	
		FTP, www, Difference between	
		www and Internet.	
		Biological Databases :	
		Classification of Databases - Raw	
		and Processed Databases; Primary	
		(NCBI), Secondary (PIR) and	
		Tertiary or Composite (KEGG)	
		Databases; Structure and Sequence	
		Databases.	
		Specialized Databases - Protein	
		Pattern Databases; Protein Structure	
		and Classification Databases	
		(CATH/SCOP).	
		Genome Information Resources:	
		DNA Sequence Databases	
		Specialized Genomic Resources.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 95 | Page

		Protein Databases based on	
		Composition, Motifs and Patterns.	
		Protein Structure Visualization	
		Software.	
II	BLAST and sequence	BLAST and Sequence	15
	alignment	Alignment:	
		BLAST and its Types; Retrieving	
		Sequence using BLAST.	
		Pairwise Alignment:	
		Identity and Similarity; Global and	
		Local Alignment; Pairwise	
		Database Searching.	
		Multiple Sequence Alignment:	
		Goal of Multiple Sequence	
		Alignment; Computational	
		Complexity; Manual Methods;	
		Simultaneous Methods; Progressive	
		Methods; Databases of Multiple	
		Alignment; Secondary Database	
		Searching; Analysis Packages;	
		MSA and Phylogenetic Trees.	
III	Biostatistics	Theory and Problems based on-	15
		Coefficient of Correlation and	
		Regression Analysis; Steps in	
		Testing Statistical Hypothesis;	
		Parametric Tests:- Z Test – Single	
		Mean and Two Means, t-Test –	
		Single Mean, Paired and Unpaired;	
		Chi-Square Test.	

- 1. Bioinformatics by S. C. Rastogi
- 2. Bioinformatics by Attawood
- 3. Methods in Biostatistics by B. K. Mahajan

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 96 | Page

Question No.	Unit	Marks
1	Ι	Long Answer Questions 15 M
2	II	Long Answer Questions 15 M
3	III	Long Answer Questions 15 M
4	All Units	Short notes (03 out of 06) 15 M

Name of the Course	Molecular Diagnostics
Course Code	USBT406
Class	S. Y. B. Sc.
Semester	IV
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

- CO1 To learn and understand the molecular techniques and utilizing these techniques in diagnosis.
- CO2 To provide the importance of various nucleic acid amplification methods.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Basics of molecular	Introduction to Molecular	15
	diagnostics	Diagnostics:	
		Overview of Molecular	
		Diagnostics; History of Molecular	
		Diagnostics; Molecular Diagnostics	
		in Post Genomic Era; Areas used in	
		Molecular Diagnostics; Future	
		Prospects - Commercialising	
		Molecular Diagnostics,	
		Personalized Medicine,	
		Theranostics.	
		Characterisation and analysis of	
		Nucleic – Acids and Proteins:	
		Extraction, Isolation and Detection	
		of DNA, RNA and Proteins;	
		Restriction Endonucleases and	
		Restriction Enzyme Mapping.	
		Hybridisation Techniques:	
		Southern, Northern, Western and	
		FISH; Markers, Probes and its	
		Clinical Applications.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 98 | Page

II	Nucleic acid	Target amplification :	15
	amplification methods	PCR - General Principle;	
		Components of a Typical PCR	
		Reaction; Experimental Design;	
		Primer Designing; Control of PCR	
		Contamination and Mispriming;	
		PCR Product Clean-up and	
		Detection.	
		PCR Types :	
		Reverse Transcriptase and Real	
		Time PCR.	
		Probe amplification :	
-		Ligase Chain Reaction	
III	Molecular Biology	DNA Polymorphism and	15
	based diagnostics	Identification:	
		RFLP and Parentage Testing;	
		RFLP and Sickle-Cell Anaemia.	
		Molecular Diagnostics for	
		Infectious Diseases	
		Molecular Testing for Neisseria,	
		Molecular Diagnosis for HIV-1;	
		Genetic Counselling and	
		Molecular Diagnosis	
		Genetic Testing- Need and Uses;	
		geneur Counsening.	
		for Custic Fibrosic Fracile V	
		Diagnostic and Carrier Testing	
		Ethical Social and Logal Issues to	
		Molecular Constin Testing	
1		Molecular - Generic resully	

- 1. Molecular Diagnostics by George Patrinos
- 2. Molecular Diagnostics: Fundamentals, methods and clinical applications, Lela Buckingham and Maribeth Flaws
- 3. Molecular Diagnostics: For the clinical laboratorian, edited by William B. Coleman, Gregory J. Tsongalis

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

Question	Unit	Marks
No.		
1	Ι	Long Answer Questions 15 M
2	II	Long Answer Questions 15 M
3	III	Long Answer Questions 15 M
4	All Units	Short notes (03 out of 06) 15 M

Name of the Course	Entrepreneurship Development
Course Code	USBT407
Class	S. Y. B. Sc.
Semester	IV
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

- CO1 To develop and systematically apply an entrepreneurial way of thinking.
- CO2 To identify and create the business opportunities.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Introduction to	Concept of Entrepreneur;	15
	Entrepreneurship	Entrepreneurship; Need and	
	Development	Importance; Factors Influencing	
		Entrepreneurship; Essentials of a	
		Successful Entrepreneur	
Π	Setting-up of an	Location of Enterprise; Real Estate	15
	Enterprise and Planning	and Human Resource Planning,	
		Financial Planning; Role of	
		Government and Financial	
		Institutions in Entrepreneurship	
		Development; Raising Money from	
		Venture Capitalists, Government	
		Grants, Product Selection and	
		Ideas; Project Planning and	
		Formulation; Project Feasibility	
		Assessment; Regulatory Affairs,	
		Corporate Laws,	
		Innovation, IPR generation and	
		Protection, Preparation of a	
		Business Plan, Characteristics and	
		Importance of Planning;	
III	Marketing, sales,	Marketing Plan for an	15
	advertising and	Entrepreneur; Strategic Alliances,	
		Advertising and Sales Promotion;	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 101 | Page

Intern	ational market Marke	et Assessment, Need for
resear	ch Intern	ational
	Marke	et Research, Domestic vs.
	Intern	ational Market Research,
	Cost	and Methodology of Market
	Resea	rch, Desk and Field Research

- 1. Towards Entrepreneurship by Dr. M. R. Kurup
- 2. Handbook of Entrepreneurship Development by Basotia and Sharma

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall performance	10

Question	Unit	Marks
No.		
1	Ι	Long Answer Questions 15 M
2	II	Long Answer Questions 15 M
3	III	Long Answer Questions 15 M
4	All Units	Short notes (03 out of 06) 15 M

Name of the Course	Practicals based on USBT401 and USBT402
Course Code	USBTP401
Class	S. Y. B. Sc.
Semester	IV
No of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - To impart knowledge and hands on experience of the various practicals related to biochemistry.

CO2 - To provide the knowledge and hands on experience of the various practicals related to applied chemistry.

Curriculum:

Title	Learning Points	No. of Lectures				
Regular	1. Determination of Lactate Dehydrogenase (LDH) Activity in	120				
Practicals	Blood Serum.					
	2. Determination of Total, LDL and HDL Cholesterol in Serum.					
	3. Organ Function Tests: Liver (SGPT, SGOT); Kidney (Urea					
	from Serum).					
	4. Estimation of Uric Acid and Creatinine in Urine.					
	5. Qualitative Detection of Ketone Body in Urine.					
	6. Isolation of Mitochondria and Demonstration of ETC using a					
	Marker Enzyme.					
	7. Separation of Binary (Solid-Solid) Mixture (Min 4					
	Compounds).					
	8. Identification of Organic Compound of Known Chemical					
	Type (Min 4 Compounds).					
	9. HPLC analysis and Interpretation of any one Secondary					
	Metabolite from Plants					
	10. Analysis of Essential Oils from any Plant Source using GC.					
	11. HPTLC fingerprint analysis of any one Medicinally					
	Important Plant.					
	12. Chemical and Biological Synthesis of Silver Nanoparticles					
	and its Characterisation by UV- VIS Spectrophotometer.					

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 103 | Page

- 1. Vogel's Textbook of Quantitative chemical analysis, 6th edition
- 2. Textbook of organic chemistry for T. Y. B. Sc., Himalaya Publishing House
- 3. Nanomaterials by B. Viswanathan
- 4. Polymer Science, V. R. Gowariker, Viswanathan
- 5. Biochemistry by Satyanarayan and Chakrapani
- 6. Lehninger Principles of Biochemistry, 4th edition, Nelson and Cox
- 7. Biochemistry, Voet and Voet, 3rd edition
- 8. General Microbiology by Stanier

Evaluation Pattern

	No. of	Duration	Total Marks	CIE	Total
	Experiments				
Practicals	4	06 hrs	60 M	40 M	100
of	experiments		(02 Papers)	(20 M for	
USBTP401	of 1.5 hrs		(02 Major	Journal, 10 M	
	duration		and 02 Minor	for viva, 10	
			Experiments	M for overall	
	(02 Papers)		OR 02 Major	performance)	
			Experiments)		

Name of the Course	Practicals based on USBT403 and USBT404
Course Code	USBTP402
Class	S. Y. B. Sc.
Semester	IV
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - To impart knowledge and hands on experience of the various practicals related to medical microbiology.

CO2 - To impart knowledge and hands on experience of the various practicals related to environmental biotechnology.

Curriculum:

Title	Learning Points	No. of Lectures
Regular	1. Identification of <i>S. aureus</i> - Isolation, Catalase, Coagulase Test.	120
Practicals	2. Identification of <i>E. coli</i> - Isolation, Sugar Fermentations, IMViC.	
	3. Identification of Salmonella- Isolation, Sugar Fermentations, TSI	
	Slant.	
	4. Identification of Shigella- Isolation, Sugar Fermentations, TSI	
	Slant.	
	5. Identification of Proteus- Isolation, Sugar Fermentations, IMViC.	
	6. Identification of Pseudomonas - Isolation, Urease test, Oxidase	
	Test, TSI Slant.	
	7. RPR Test (Kit Based).	
	8. Permanent Slide- Mycobacterium.	
	9. Biological Oxygen Demand (BOD).	
	10. Chemical Oxygen Demand (COD).	
	11. Isolation of Bacteria from Air by Gravity Sedimentation	
	Method.	
	12. Most Probable Number (MPN) – Presumptive, Confirmed and	
	Completed Tests.	
	13. Bioremediation of Metal.	
Visit	Visit to STP / CETP	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 105 | Page

- 1. Microbiology: An introduction, Tortora, 9th edition
- 2. Microbiology by Pelczar and Chan, 5th edition
- 3. Environmental Biotechnology by Indu Shekhar Thakur, IK International
- 4. Environmental Biotechnology by Allan Scragg Oxford University press

Evaluation Pattern

	No. of	Duration	Total Marks	CIE	Total
	Experiments				
Practicals	4	06 hrs	60 M	40 M	100
of	experiments		(02 Papers)	(20 M for	
USBTP402	of 1.5 hrs		(02 Major	Journal, 10 M	
	duration		and 02 Minor	for viva, 10	
			Experiments	M for overall	
	(02 Papers)		OR 02 Major	performance)	
			Experiments)	_	

Name of the Course	Practicals based on USBT405 and USBT406
Course Code	USBTP403
Class	S. Y. B. Sc.
Semester	IV
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - To impart knowledge and hands on experience of the various practicals related to biostatistics and bioinformatics.

CO2 - To impart knowledge and hands on experience of the various practicals related to molecular diagnostics.

Curriculum:

Title	Learning Points	No. of Lectures
Regular	1. Familiarization with NCBI, EMBL, DDBJ, PIR, KEGG	120
Practicals	Databases.	
	2. Use of NCBI BLAST Tool.	
	3. Pairwise and Multiple Sequence Alignment and Phylogeny.	
	4. Classification of Proteins using CATH/SCOP.	
	5. Visualization PDB Molecules using Rasmol/Raswin.	
	6. Handling and Calibration of Micropipette.	
	7. Isolation, Quantitative Analysis and AGE of Genomic DNA	
	from Bacteria and Yeast.	
	8. Isolation and Detection of RNA from Bacteria and Yeast.	
	9. Restriction Enzyme Digestion.	
	10. RFLP- Kit Based.	
	11. Primer Designing through Open Online Source NCBI-	
	BLAST.	
	12. DNA Amplification – PCR.	

- 1. Bioinformatics by S. C. Rastogi
- 2. Bioinformatics by Attawood
- 3. Methods in Biostatistics by B. K. Mahajan
- 4. Molecular Diagnostics by George Patrinos
- 5. Molecular Diagnostics: Fundamentals, methods and clinical applications, Lela Buckingham and Maribeth Flaws
- 6. Molecular Diagnostics: For the clinical laboratorian, edited by William B. Coleman, Gregory J. Tsongalis

Evaluation Pattern

	No. of	Duration	Total Marks	CIE	Total
	Experiments				
Practicals	4	06 hrs	60 M	40 M	100
of	experiments		(02 Papers)	(20 M for	
USBTP403	of 1.5 hrs		(02 Major	Journal, 10 M	
	duration		and 02 Minor	for viva, 10	
			Experiments	M for overall	
	(02 Papers)		OR 02 Major	performance)	
			Experiments)		

(Rashmi A. Bhave) The Chairperson, BoS

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 109 | Page

Name of Programme	B. Sc. Biotechnology
Level	UG
No. of Semesters	06
Year of Implementation	2023 – 24
Programme Specific	1. To impart skills in handling the cultures of micro – organisms.
Outcomes (PSO)	2. To impart the knowledge of molecular biology techniques.
	3. To impart the skills of Science communication.
	4. To impart knowledge of society and make students aware about
	the Problems in society.
	5. To understand basic principles of research methodology and
	identify a research problem.
	6. To gain critical thinking and analytical skills to understand new
	diagnostic methods.
	7. To write a business plan.
	8. To design strategies for successful implementation of ideas.
Relevance of PSOs to the	Biotechnology is important at Global, Regional and local level. The
local, regional, national,	significance of Biotechnology identified at all these levels and it is
and global	relevant to everyday life. The curriculum design of B. Sc.
developmental needs	Biotechnology programme helps in understanding various concepts
	in detail. This programme includes hands on skills and knowledge
	of the different techniques related to molecular biology, tissue
	culture, basic chemistry and basic microbiology. This also involves
	the knowledge of problems in society. The application part is taken
	care of so that the learner shall be able to connect the phenomena
	around him with the curriculum. This programme also imparts the
	research values among the learners. The hard and softs skills
	acquired during the completion of this programme shall make him
	employable.

The performance of the learners shall be evaluated into two parts. The learner's performance shall be assessed by Internal Assessment with 40 % marks in the first part and by conducting the Semester End Examinations of 60 % marks in the second part.

Standard of Passing

The learner to pass a course shall have to obtain a minimum of 40% marks in aggregate for each course where the course consists of Internal Assessment & Semester End Examination. The learner shall obtain minimum of 40% marks (i. e. 16 out of 40) in the Internal Assessment and 40% marks in Semester End Examination (i. e. 24 out of 60) separately, to pass the course and minimum of Letter Grade "P" in the project component, wherever applicable to pass a particular semester. A learner will be said to have passed the course if the learner passes the Internal Assessment and Semester End Examination together.

Semester GPA/ Program CGPA Semester/Program	% of Marks	Alpha-Sign / Letter Grade Result
9.00-10.00	90.0 -100	0 (Outstanding)
8.00 ≤ 9.00	80.0 ≤ 90.0	A+ (Excellent)
$7.00 \le 8.00$	$70.0 \le 80.0$	A (Very Good)
6.00 ≤ 7.00	$60.0 \le 70.0$	B+ (Good)
$5.50 \le 6.00$	55.0 ≤ 60.0	B (Above Average)
$5.00 \le 5.50$	50.0 ≤ 55.0	C (Average)
4.00 ≤ 5.00	40.0 ≤ 50.0	P (Pass)
Below 4.00	Below 40	F (Fail)
Ab (Absent)	-	Absent

Performance Grading:

Letter Grades and Grade Points

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 111 | Page SMART Criteria for Course Outcomes:

Specific: Each course outcome is specific, outlining the knowledge and skills students are expected to acquire in relation to the specific topics covered.

Measurable: Each outcome can be measured through assessments, tests, or projects to determine the level of understanding and proficiency achieved by the students.

Achievable: The outcomes are achievable within the duration of the course, considering the number of lectures allocated to each topic.

Relevant: The outcomes are relevant to the subject of financial services and capital market, addressing important concepts, types, and mechanisms involved.

Time-bound: The outcomes are expected to be achieved by the end of the course, providing a clear timeline for assessment and evaluation.

Name of the Course	Cell Biology
Course Code	USBT501
Class	T. Y. B. Sc.
Semester	V
No. of Credits	2.5
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

- CO1 To impart the knowledge of cell cycle.
- CO2 To provide the insight of cell signalling.
- CO3 To gain the knowledge of developmental biology.
- CO4 To impart the knowledge of cancer biology.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Cell cycle	Cell cycle Introduction: Prokaryotic	15
		and Eukaryotic- 3 Lectures;	
		The Early Embryonic Cell Cycle	
		and the Role of MPF-4 Lectures;	
		Yeasts and the Molecular Genetics	
		of Cell-Cycle Control – 4 Lectures ;	
		Apoptosis, Cell-Division Controls	
		in Multicellular Animals- 4	
		Lectures	
II	Cell signalling	Cell signalling and signal	15
		transduction: Introduction General	
		Principles of Cell Signalling - 3	
		Lectures; Signalling via G-Protein-	
		linked Cell-Surface Receptors - 3	
		Lectures; Signalling via Enzyme-	
		linked Cell-Surface Receptors - 3	
		Lectures; Target-Cell Adaptation,	
		The Logic of Intracellular - 3	
		Lectures; Signalling: Lessons from	
		Computer-based "Neural	
		Networks"- 3 Lectures	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 113 | Page

III	Developmental	Overview of how the modern era of	15
	Biology	developmental biology emerged	
		through multidisciplinary	
		approaches - 5 Lectures; Stages of	
		development- zygote, blastula,	
		gastrula, neurula cell fate &	
		commitment – potency- concept of	
		embryonic stem cells, differential	
		gene expression, terminal	
		differentiation ,lineages of three	
		germ layers, fate map - 6 Lectures;	
		Mechanisms of differentiation-	
		cytoplasmic determinants,	
		embryonic induction, concept of	
		morphogen, mosaic and regulative	
		development Pattern formation	
		axis specification, positional	
		identification (regional	
		specification), Morphogenetic	
		movements, Model organisms in	
		Developmental biology – 4	
		Lectures	
IV	Cancer Biology	Cancer: Introduction, Cancer as a	15
		Microevolutionary Process - 4	
		Lectures; The Molecular Genetics	
		of Cancer - 6 Lectures; Cancer and	
		Virus Cancer diagnosis and	
		chemotherapy - 5 Lectures	

1. Molecular Cell Biology. 7th Edition, (2012) Lodish H., Berk A, Kaiser C., K Reiger M., Bretscher A., Ploegh H., Angelika Amon A., Matthew P. Scott M.P., W.H. Freeman and Co., USA

2. Molecular Biology of the Cell, 5th Edition (2007) Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. Garland Science, USA

3. Cell Biology, 6th edition, (2010) Gerald Karp. John Wiley & Sons., USA

4. The Cell: A Molecular Approach, 6th edition (2013), Geoffrey M. Cooper, Robert E. Hausman, Sinauer Associates, Inc. USA

5. Developmental Biology; Scott Gilbert; 9th Edition

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 114 | Page

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall Performance	10

B. Semester End Evaluation (Paper Pattern)

Question No.	Unit	Marks
1	Ι	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

Name of the Course	Medical Microbiology and Instrumentation
Course Code	USBT502
Class	T. Y. B. Sc.
Semester	V
No. of Credits	2.5
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 – To impart the knowledge of medical microbiology.

CO2 – To provide the insight of the various skills and instrumentation.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Virology	Introduction to viruses-Position in	15
		biological spectrum; Virus	
		properties - 2 Lectures;	
		General structure of viruses	
		Baltimore Classification and	
		Taxonomy (ICTV) - 2 Lectures ;	
		Cultivation of viruses - 2 Lectures;	
		Reproduction of ds DNA phages	
		Hepatitis /ss RNA (influenza),	
		animal viruses and plant (TMV)	
		virus – 4 Lectures;	
		Virus purification and assays - 2	
		Lectures; Cytocidal infections and	
		cell damage - 2 Lectures; Viroids	
		and Prions – 1 Lecture	
II	Chemotherapeutic	Discovery and Design of	15
	drugs	antimicrobial agents -1 Lecture;	
		Classification of Antibacterial	
		agents, Selective toxicity, MIC,	
		MLC – 2 Lectures	
		Inhibition of cell wall synthesis	
		(Mode of action for): Beta lactam	
		antibiotics: Penicillin,	
		Cephalosporins; Glycopeptides:	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 116 | Page

15
15

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 117 | Page

	Applications of Tracer techniques	
	in	
	Biology - 1 Lecture	

1. Principles and techniques in biochemistry and molecular biology (2010), Keith Wilson and John Walker, 7th edition, Cambridge University Press

2. Biophysics (2002) Vasantha Pattabhi and N. Gautham, Kluwer Academic Publishers

3. Physical Biochemistry: principles and applications, 2nd edition (2009), David Sheehan, John Wiley & Sons Ltd

4. HPLC method validation for pharmaceuticals: a review (2013), Harshad V. Paithankar, International Journal of Universal Pharmacy and Bio Sciences 2(4): July-August.

5. Mim's Medical Microbiology 5th edition

6. Microbiology by Prescott Harley and Klein 5th edition Mc Graw Hill

7. Medical Microbiology Jawetz, E., Brooks, G.E, Melnick, J.L., Butel, J.S Adelberg E. A 18th edition

- 8. Medical Microbiology by Patrick Murray 5th edition
- 9. Foundations In Microbiology by Talaro and Talaro Third edition W.C Brown
- 10. Understanding Viruses by Teri Shors

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall Performance	10

Question No.	Unit	Marks
1	Ι	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

B. Semester End Evaluation (Paper Pattern)

Name of the Course	Genomes and Molecular Biology
Course Code	USBT503
Class	T. Y. B. Sc.
Semester	V
No. of Credits	2.5
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

- CO1 To impart the knowledge of genetic engineering of plants and animals.
- CO2 To provide the skills in molecular biology tools, gene sequencing and editing.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
I	Genetic engineering of plants	Genetic engineering of plants; Methodology. Plant transformation with the Ti plasmid of <i>A</i> . <i>tumefaciens</i> , Ti plasmid derived vector system - 4 Lectures ; Transgenic plants: Physical methods of transferring genes to plants : electroporation, microprojectile bombardment, liposome mediated, protoplast fusion- 5 Lectures ; Vectors for plant cells - 4 Lectures ; Improvement of seed quality	15
Π	Transgenic animals	protein - 2 Lectures Transgenic mice- methodology- retroviral method, DNA microinjection, ES method - 5 Lectures; genetic manipulation with cre-loxP - 2 Lectures; Vectors for animal cells – 2 Lectures; Transgenic animals recombination system – 2 Lectures;	15

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 120 | Page

		Cloning livestock by nuclear	
		transfor 2 Loctures: Groop	
		Elugrage ant Dratain 1 Lectures, Offen	
		Fluorescent Protein - 1 Lectures;	
		Transgenic fish – I Lectures	
III	Tools in molecular	Cloning vectors-Plasmids (pUC	15
	biology	series), Cosmids, phagemids M13,	
		shuttle vectors, YAC vectors,	
		expression vectors pET - 4	
		Lectures; Gene cloning-Isolation	
		and purification of DNA; Isolation	
		of gene of interest: Restriction	
		digestion, electrophoresis, blotting,	
		cutting, and joining DNA, methods	
		of gene transfer in prokarvotes and	
		eukarvotes - 3 Lectures:	
		Recombinant selection and	
		screening methods genetic	
		immunochemical Southern and	
		Western analysis nucleic acid	
		hybridization HAPT HPT 2	
		Loctures: Expression of cloned	
		DNA molecules and maximization	
		of expression 2 Lectures:	
		Cloping strategies genemic DNA	
		Cloning strategies-genomic DNA	
		indraries, CDINA indraries,	
		chromosome walking and jumping	
	~	- 4 Lectures	
IV	Gene sequencing and	Maxam Gilbert's method, Sanger's	15
	editing	dideoxy method, Automated DNA	
		sequencing, Pyrosequencing - 6	
		Lectures; Human genome mapping	
		and its implications in health and	
		disease - 3 Lectures;	
		RNAi, ZNF(Zinc finger nucleases),	
		TALENS(Transcription Activator	
		Like Effector Nucleases),	
		CRISPER/Cas system(Clustered	
		Regularly Interspersed Repeats) - 6	
		Lectures	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 121 | Page

1. iGenetics A Molecular Approach 3rd Edition Peter J. Russell.

2. Molecular Biotechnology-Principles and Applications of Recombinant DNA Technology 3rd Edition Glick B.R., Pasternak J.J., Patten C.L.

- 3. Principles of Gene Manipulation 7th Edition Primrose S.B., Twyman R.M.
- 4. Biotechnology 3rd Edition S.S. Purohit.
- 5. Genomes 3rd Edition T.A. Brown.
- 6. Biotechnology B.D. Singh.
- 7. Gene Cloning and DNA Analysis 6th Edition T.A. Brown.
- 8. Genomics Cantor C.R., and Smith C.L. John Wiley & Sons. (1999)

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall Performance	10

B. Semester End Evaluation (Paper Pattern)

Question	Unit	Marks
No.		
1	Ι	Unit I questions 12 M
2	Π	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

Syllabus for	T. Y. B	Sc. Biotechno	ology Autonomous	s from the	vear 2023-24
Synabus IVI	I. I. D.		nogy mutunomou	5 II OIII UIIC	ycai 2023-24

Name of the Course	Marine Biotechnology
Course Code	USBT504
Class	T. Y. B. Sc.
Semester	V
No. of Credits	2.5
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 – To impart the knowledge of marine Biotechnology.

- CO2 To acquire the significance of marine functional foods, nutraceuticals, drugs, enzymes.
- CO3 To gain the role of marine bioresources in cosmetics.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Marine Biotechnology	Introduction to Marine	15
	– Introduction and	Biotechnology- 1 lecture;	
	Bioprospecting	The marine ecosystem and its	
		functioning: intertidal, estuarine,	
		salt marsh, mangrove, coral reef,	
		coastal &deep sea ecosystems.	
		Hydrothermal vents- 4 lectures;	
		Bioprospecting, Marine Microbial	
		Habitats and Their	
		Biotechnologically relevant	
		Microorganisms- 2 lectures;	
		Methods for Microbial	
		Bioprospecting in Marine	
		Environments - 2 lectures;	
		Biotechnological Potential of	
		Marine Microbes -1 lecture;	
		Bioactive compounds from other	
		Marine Organisms: fungi,	
		Microalgae, Seaweeds,	
		Actinomycetes, sponges - 5	
		lectures	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 123 | Page

_

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 124 | Page

on Marine Resources, Products	
Based on Marine Resources - 11	
lectures.	

1. Kim, S.K. Springer Handbook of Marine Biotechnology; Springer: Berlin, Germany; Heidelberg, Germany, 2015.

2. Nollet, Leo M. L- Marine microorganisms- extraction and analysis of bioactive compounds-CRC Press_Taylor& Francis (2017)

3. R. S. K. Barnes, R. N. Hughes (auth.)-An Introduction to Marine Ecology, Third Edition Wiley-Blackwell (1999)

4. Blanca Hernández-Ledesma, Miguel Herrero-Bioactive Compounds from Marine Foods-Plant and Animal Sources-Wiley-Blackwell (2013)

5. Fabio Rindi, Anna Soler-Vila, Michael D. Guiry (auth.), Maria Hayes (eds.)-Marine Bioactive Compounds_ Sources, Characterization and Applications-Springer US (2012)

6. W. Evans-Trease and Evans Pharmacognosy 15th ed.-Saunders (2010)

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall Performance	10

B. Semester End Evaluation (Paper Pattern)

Question	Unit	Marks
No.		
1	Ι	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

Name of the Course	Applied Component – Biosafety
Course Code	USACBT501
Class	T. Y. B. Sc.
Semester	V
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 – To impart the knowledge of Biosafety practices.

CO2 – To provide the knowledge about detection and testing of contaminants.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Introduction to	Introduction - 1 lecture Biological	15
	biosafety	Risk Assessment, Hazardous	
		Characteristics of an Agent- 2	
		lectures; Genetically modified	
		agent hazards – 1 lecture; Cell	
		cultures - 1 lecture; Hazardous	
		Characteristics of Laboratory	
		Procedures – 1 lecture; Potential	
		Hazards Associated with Work	
		Practices – 2 lectures; Safety	
		Equipment and Facility Safeguards	
		- 2 lectures; Pathogenic risk and	
		management - 2 lectures	
II	GLP	Concept of GLP- 1 lectures;	15
		Practicing GLP- 1 lecture;	
		Guidelines to GLP - 2 lectures;	
		Documentation of Laboratory work	
		- 1 lectures; Preparation of SOPs -	
		2 lectures; Calibration records - 1	
		lectures; Validation of methods - 1	
		lectures; Documentation of results	
		- 1 lecture; Audits & Audit reports	
		- 1 lecture.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 126 | Page

III	Detection and testing	Microbial Contamination in food	15
	of contaminants	and pharma product - 3 lectures;	
		Some common microbial	
		contaminants - 3 lectures;	
		Microbiological Assays for	
		pharmaceutical products – 4	
		lectures; Regulatory	
		Microbiological testing in	
		pharmaceuticals - 3 lectures.	
IV	Biosafety in	Concepts on biosafety in	15
	Biotechnology	Biotechnology - 2 lectures;	
		Regulating rDNA technology -2	
		lectures;	
		Regulating food and food	
		ingredients -3 lectures;	
		Genetically engineered crops,	
		livestock Bioethics -3 lectures;	
		Contemporary issues in Bioethics -	
		2 lectures.	

1. Pharmaceutical Microbiology - Hugo, W.B, Russell, A.D 6th edition Oxford Black Scientific Publishers.

2. Biosafety in Microbiological and Biomedical Laboratories - 5th Edition, L. Casey Chosewood Deborah E. Wilson U.S. Department of Health and Human Services Centers for Disease Control and Prevention National Institutes of Health.

3. Molecular Biotechnology –Principles and Applications of Recombinant DNA Glick, B.R, Pasternak, J.J Patten, C.L 3rd edition ASM press

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall Performance	10

Question No.	Unit	Marks
1	Ι	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

B. Semester End Evaluation (Paper Pattern)

Name of the Course	Practicals of USBT501 and USBT502
Course Code	USBTP501
Class	T. Y. B. Sc.
Semester	V
No. of Credits	03
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - To impart knowledge and hands on experience of the various practicals related to cell biology.

CO2 - To impart knowledge and hands on experience of the various practicals related to medical microbiology and instrumentation.

Curriculum:

Title	Learning Points	No. of Lectures
Regular	1. Separation of components from a mixture using Affinity	72
Practicals	chromatography (Kit may be used)	
	2. Separation of components from a mixture using ion exchange	
	chromatography (Kit may be used)	
	3. Separation of components from a mixture using Size	
	exclusion chromatography (Kit may be used)	
	4. HPLC method validation.	
	5. MIC and MLC of any one antibiotic	
	6. Antibiotic sensitivity test using agar cup method	
	7. Antibiotic sensitivity test using paper disc method	
	8. Antibiotic sensitivity test using ditch method.	
	9. Book review (Emperor of all Maladies)	
Demonstration	Chick embryo candling and inoculation methods Demonstration	
Practical	experiment	
Visit	Cancer Biology: (Field visit and 2 page report in the journal)	

1. Molecular Biology of the Cell, 5th Edition (2007) Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. Garland Science, USA

2. Cell Biology, 6th edition, (2010) Gerald Karp. John Wiley & Sons., USA

3. The Cell: A Molecular Approach, 6th edition (2013), Geoffrey M. Cooper, Robert E. Hausman, Sinauer Associates, Inc. USA

4. Developmental Biology; Scott Gilbert; 9th Edition

5. Principles and techniques in biochemistry and molecular biology (2010), Keith Wilson and John Walker, 7th edition, Cambridge University Press

6. HPLC method validation for pharmaceuticals: a review (2013), Harshad V. Paithankar, International Journal of Universal Pharmacy and Bio Sciences 2(4): July-August.

- 7. Mim's Medical Microbiology 5th edition
- 8. Microbiology by Prescott Harley and Klein 5th edition Mc Graw Hill

Evaluation Pattern

	No. of	Duration	Total Marks	CIE	Total
	Experiments				
TY	3	06 hrs	60 M (01	40 M	100
Practical	experiments		Paper)	(10 M for	
	of 2 hrs		(20 M for 1	Journal, 10 M	
	duration		Experiment,	for Book	
			25 M for 1	Review, 10	
			Experiment,	M for viva,	
			15 M for 1	05 M	
			Experiment,)	Identification/	
				Spotting, 05	
				M for overall	
				performance)	

Name of the Course	Practicals of USBT503 and USBT504
Course Code	USBTP502
Class	T. Y. B. Sc.
Semester	V
No. of Credits	03
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - To impart knowledge and hands on experience of the various practicals related to genomes and molecular biology.

CO2 - To impart knowledge and hands on experience of the various practicals related to marine Biotechnology.

Curriculum:

Title	Learning Points	No. of Lectures
Regular	1. Transformation in <i>E. coli</i> .	72
Practicals	2. Genomic DNA Extraction: Animal cells.	
	3. Restriction enzyme digestion and ligation (Kit may be used).	
	4. Gradient plate technique	
	5. Bacterial gene expression (Kit may be used).	
	6. Study of any 5 marine bacteria and algae (Macro and micro)	
	7. DPPH assay for antioxidant extracted from marine algae	
	8. Extraction of carotenoids from marine algae/Bacteria/Fungi	
	9. Extraction and estimation of Gelatin / Collagen.	
	10. Extraction of alkaloids from marine organisms and their	
	separation by TLC.	
Demonstration	1. Phage titration: Demonstration	
Practicals	2. Polymerase chain reaction. Demonstration	

Learning Resources recommended:

1. Molecular Biotechnology-Principles and Applications of Recombinant DNA Technology 3rd Edition Glick B.R., Pasternak J.J., Patten C.L.

2. Gene Cloning and DNA Analysis 6th Edition T.A. Brown.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 131 | Page

3. Genomics Cantor C.R., and Smith C.L. John Wiley & Sons. (1999)

4. Kim, S.K. Springer Handbook of Marine Biotechnology; Springer: Berlin, Germany; Heidelberg, Germany, 2015.

5. Nollet, Leo M. L- Marine microorganisms- extraction and analysis of bioactive compounds-CRC Press Taylor & Francis (2017)

6. R. S. K. Barnes, R. N. Hughes (auth.)-An Introduction to Marine Ecology, Third Edition Wiley-Blackwell (1999)

Evaluation Pattern

	No. of	Duration	Total Marks	CIE	Total
	Experiments				
TY	3	06 hrs	60 M (01	40 M	100
Practical	experiments		Paper)	(10 M for	
	of 2 hrs		(20 M for 1	Journal, 10 M	
	duration		Experiment,	for viva, 15	
			25 M for 1	M for	
			Experiment,	Identification/	
			15 M for 1	Spotting, 05	
			Experiment)	M for overall	
				performance)	

Name of the Course	Practicals of USACBT501
Course Code	USACBTP503
Class	T. Y. B. Sc.
Semester	V
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - To impart knowledge and hands on experience of the various practicals related to biosafety.

Curriculum:

Title	Learning Points	No. of Lectures
Regular	1.Validation of micropipette, measuring cylinders, colorimeters	48
Practicals	2. Calibration of pH meter and weighing balance	
	3. Vitamin B12 bioassay	
	4. Testing for adulterants in food; ex. Starch in milk	
	5. Making SOP for any 2 major laboratory instruments	
	6. Sterility of injectables	

Learning Resources recommended:

1. Pharmaceutical Microbiology - Hugo, W.B, Russell, A.D 6th edition Oxford Black Scientific Publishers.

2. Biosafety in Microbiological and Biomedical Laboratories - 5th Edition, L. Casey Chosewood Deborah E. Wilson U.S. Department of Health and Human Services Centers for Disease Control and Prevention National Institutes of Health.

3. Molecular Biotechnology –Principles and Applications of Recombinant DNA Glick, B.R, Pasternak, J.J Patten, C.L 3rd edition ASM press

Evaluation Pattern

	No. of	Duration	Total Marks	CIE	Total
	Experiments				
TY	4	6 hrs	60 M	40 M	100
Practical	experiments		(20 M each	(10 M for	
(AC)	of 1.5 hrs		for 2	Journal, 10 M	
	duration		Experiments,	for SOP	
			10 M each for	Writing, 10	
			2	M for Viva,	
			Experiments)	05 M for	
				Identification,	
				05 M for	
				overall	
				performance)	

Name of the Course	Biochemistry
Course Code	USBT601
Class	T. Y. B. Sc.
Semester	V
No. of Credits	2.5
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

- CO1 To impart the knowledge of protein biochemistry and metabolism.
- CO2 To provide the insight of endocrinology and nutrition.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Protein Biochemistry	Protein structure: Protein Tertiary	15
		and Quaternary Structures -2	
		Lectures; Protein Denaturation and	
		Folding – 3 Lectures ; Protein	
		Function: Reversible Binding of a	
		Protein to a Ligand: Oxygen	
		Binding Proteins – 2 Lectures;	
		Complementary Interactions	
		between Proteins and Ligands:	
		Immunoglobulins – 1 Lecture;	
		Protein Interactions Modulated by	
		Chemical Energy: Actin, Myosin,	
		and Molecular Motors -3 Lectures;	
		Protein purification – 4 Lectures.	
II	Metabolism	Carbohydrate biosynthesis and its	15
		regulation: Peptidoglycan in	
		Bacteria -2 Lectures; Starch and	
		sucrose in Plants -4 Lectures;	
		Glycogen in Animals - 4 Lectures;	
		Biosynthesis and regulation of	
		Cholesterol, Atherosclerosis – 5	
		Lectures.	
III	Endocrinology	Mechanism of action of group I and	15
		II hormones- 1 Lecture; Structure,	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 135 | Page

		storage, release, transport, biochemical functions and disorders associated with hormones secreted by Hypothalamus -1 Lecture; Anterior Pituitary gland - GH, stimulating hormones) -1 Lecture; Posterior Pituitary gland – oxytocin and vasopressin -1 Lecture; Thyroid gland – Thyroxine, calcitonin – 2 Lectures; Parathyroid gland – PTH -1 Lecture; Adrenal medulla – epinephrine and norepinehprine -1 Lecture; Adrenal cortex – Glucocortocoids – 1 Lecture; Pancreas – insulin and glucagon – 2 Lectures; Female Gonads – estrogen and progesterone - 2 Lectures; Male gonads –	
		hCG = 1 Lecture	
IV	Nutrition	Minerals and Vitamins; Dietary sources, bioactive form, functions and disorders associated with fat soluble (A D E K) and water soluble vitamins- 7 Lectures; Minerals - physiological and biochemical functions of principal and trace elements. – 7 Lectures; Malnutrition – Over nutrition (obesity) and PEM (Kwashiorkor and Marasmus)- 1 Lecture.	15

1. Lehninger, principles of biochemistry, 4th edition (2005), David Nelson and Michael Cox W.H. Freeman and Company, New York.

2. Biochemistry, 4th edition (2010), Voet and Voet, John Wiley and sons, USA

3. Harper's Illustrated Biochemistry, 27th edition, RK Murray, DK Granner, PA Mayes and VW Rodwell, McGraw Hills publication.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 136 | Page

4. Biochemistry, 4nd edition (2017), Satyanarayana and Chakrapani, Books & Allied (P) Ltd

5. Nutrition Science, 6th edition (2017), Srilakshmi, new age international publishers.

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall Performance	10

B. Semester End Evaluation (Paper Pattern)

Question	Unit	Marks
No.		
1	Ι	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

Name of the Course	Industrial Microbiology
Course Code	USBT602
Class	T. Y. B. Sc.
Semester	V
No. of Credits	2.5
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

- CO1 To impart the knowledge of dairy technology.
- CO2 To gain the detailing of fermentation processes.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Dairy technology	Milk: Normal flora, changes in raw	15
		milk - 2 lectures; Enumeration - 1	
		lecture; Factors affecting	
		bacteriological quality - 1 lecture;	
		Dairy technology Preservation	
		methods - 2 lectures;	
		Pasteurization- 1 lecture; Starter	
		Cultures - 2 lectures; Fermented	
		products-Production process and	
		spoilage of Cheese: Swiss and	
		Cheddar - 2 lectures; Butter - 2	
		lectures; Yogurt - 1 lectures and	
		Buttermilk - 1 lecture.	
II	Down-stream	Introduction of DSP - 2 lectures;	15
	processing (DSP)	Foam separation - 1 lecture; Types	
		of Precipitation - 1 lecture;	
		Filtration 2 lectures, Centrifugation	
		- 1 lecture; Chromatography in	
		DSP - 2 lectures; Cell disruption-	
		physical and chemical methods - 2	
		lectures; Solvent recovery,	
		Membrane processes - 1 lecture;	
		Drying – 1 lecture ;	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 138 | Page

		Crystallization and Whole broth	
		processing - 2 lectures.	
III	Fermentation process	Introduction to Inoculum	15
		development - 2 lectures; Bacterial	
		and fungal inoculum development	
		with one example each - 3	
		lectures, scale up, scale down - 2	
		lectures;	
		Production of: Streptomycin – 1	
		lecture; Protease – 1 lecture;	
		Mushroom - 1 lecture; Glutamic	
		acid - 1 lecture; Lysine – 1 lecture,	
		ethanol production 1 lecture Semi-	
		synthetic Penicillin 1 lecture,	
		Biotransformation - 1 lecture.	
IV	QA-QC	Concept of GMP- 1 Lectures;	15
		Requirements of GMP	
		implementation - 2 Lectures;	
		Documentation of GMP practices –	
		2 Lectures ; Regulatory	
		certification of GMP - 2 Lectures;	
		Quality Control (QC): Concept of	
		QC - 2 Lectures;	
		Requirements for implementing QC	
		- 2 Lectures; QA concepts:	
		Concept of QA - 2 Lectures;	
		Requirements for implementing - 2	

1. Applied Dairy Microbiology Elmer H Marth and James L Steele Mercel Dekker Inc New York, 2nd edition

- 2. Microbial Technology Peppler, H.J and Perlman, D 2nd Academic Press Practicals
- 3. Industrial Microbiology Prescott and Dunn CBS publishers
- 4. Dairy technology by Yadav and Grower
- 5. Fermentation technology by Stanbury and Whittkar
- 6. Pharmaceutical Microbiology by Russel and Hugo

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 139 | Page

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall Performance	10

B. Semester End Evaluation (Paper Pattern)

Question No.	Unit	Marks
1	Ι	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

Name of the Course	Pharmacology and Neurochemistry
Course Code	USBT603
Class	T. Y. B. Sc.
Semester	V
No. of Credits	2.5
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 – To impart the knowledge of general principles of pharmacology.

CO2 – To provide the knowledge of neurochemistry.

CO3 – To gain the knowledge of basic and regulatory toxicology.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	General principles of	Mechanism of drug action - 2	15
	pharmacology	Lectures; drug receptors and	
		biological responses – 2 Lectures;	
		second-messenger systems, the	
		chemistry of drug–receptor binding	
		– 2 Lectures; dose–response	
		relationship: therapeutic index - 3	
		Lectures; ED, LD, - 2 Lectures;	
		Potency and Intrinsic Activity – 2	
		Lectures; Drug antagonism – 2	
		Lectures.	
II	Drug absorption and	Absorption of drugs from the	15
	distillation	alimentary tract - 2 Lectures;	
		factors affecting rate of	
		gastrointestinal absorption – 2	
		Lectures; absorption of drugs from	
		lungs - 1 Lecture; skin - 1 Lecture;	
		absorption of drugs after parenteral	
		administration factors influencing	
		drug distribution – 2 Lectures;	
		binding of drugs to plasma proteins	
		– 2 Lectures; Physiological	
		barriers to drug distribution – 3	
		Lectures.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 141 | Page

III	Basic toxicology and	Background Definitions - 1	15
	regulatory toxicology	Lectures: Causation: degrees of	
	regulatory connectory	certainty Classification - 1	
		Lectures Causes Allergy in	
		response to drugs Effects of	
		prolonged administration: chronic	
		organ toxicity - 2 Lectures:	
		Adverse effects on reproduction 1	
		Adverse effects on reproduction - 1	
		Lecture; Folsons. Denderate and	
		of treatment Deison specific	
		of treatment Poison-specific	
		Ineasures General measures - 2	
		Lectures; Specific poisonings:	
		cyanide, methanol, ethylene glycol,	
		hydrocarbons, volatile solvents,	
		heavy metals, - 3 Lectures;	
		herbicides and pesticides, - 2	
		Lectures; biological substances	
		(overdose of medicinal drugs is	
		dealt with under individual agents)	
		- 1 Lecture; Incapacitating agents:	
		drugs used for torture - 1 Lecture;	
		Nonmedical use of drugs – 1	
		Lecture.	
IV	Neurochemistry	Anatomy and functioning of the	15
		brain – 2 Lectures; Neuronal	
		pathways - 2 Lectures;	
		Propogation of nerve impulses - 2	
		Lectures; Neuronal excitation and	
		inhibition – 3 Lectures; Synapses	
		and gap junctions - 3 Lectures;	
		Action of Neuro toxins and	
		neurotransmitters - 3 Lectures.	

- 1. Textbook of Medical Physiology Guyton, A.C and Hall 11th edition J.E Saunders
- 2. Modern Pharmacology with clinical Applications Craig, C.R, Stitzel, R. E 5th edition
- 3. Clinical Pharmacology Bennet, PN, Brown, M.J, Sharma, P 11th edition Elsevier
- 4. Biochemistry Metzler, D.E Elsevier

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 142 | Page

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall Performance	10

B. Semester End Evaluation (Paper Pattern)

Question No.	Unit	Marks
1	Ι	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

Name of the Course	Environmental Biotechnology
Course Code	USBT604
Class	T. Y. B. Sc.
Semester	V
No. of Credits	2.5
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

- CO1 To impart the knowledge of renewable sources of energy.
- CO2 To understand the industrial effluent treatment.
- CO3 To gain knowledge about wastewater treatments.
- CO4 To provide the understanding of hazardous waste management.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Renewable sources of	Energy sources renewable – solar	15
	energy	energy, wind power, geothermal	
		energy and hydropower, biomass	
		energy - 5 Lectures; Biogas	
		technology- biogas plant & types,	
		biodigester. Biogas- composition,	
		production and factors affecting	
		production, uses – 5 Lectures;	
		Biofuels – ethanol production.	
		Microbial hydrogen production	
		Biodiesel, Petrocrops - 5 Lectures	
II	Industrial effluent	Biological processes for industrial	15
	treatment	effluent treatment, aerobic	
		biological treatment- activated	
		sludge process, CASP, advanced	
		activated sludge processes (any	
		two) Biological filters, RBC, FBR -	
		5 Lectures;	
		Anaerobic biological treatment-	
		contact digesters, packed bed	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 144 | Page
		reactors anaerobic baffled	
		diageters UASD 3 Lectures	
		Galid waste treatment 2 Lectures,	
		Sond waste treatment - 2 Lectures;	
		pollution indicators & biosensors -	
		2 Lectures; biodegradation of	
		xenobiotics- persistent compounds,	
		chemical properties influencing	
		biodegradability, microorganisms	
		in biodegradation - 2 Lectures; Use	
		of immobilized enzymes or	
		microbial cells for treatment - 1	
		Lecture.	
III	Wastewater treatment	Wastewater treatment-	15
		introduction, biological treatment,	
		impact of pollutants on	
		biotreatment, use of packaged	
		organisms and genetically	
		engineered organisms in waste	
		treatment – 5 Lectures: Heavy	
		metal pollution – sources, microbial	
		systems for heavy metal	
		accumulation techniques used for	
		heavy metal removal – 5 Lectures.	
		historphica hybecteria fungi and	
		algoe factors offecting bioserption	
		limitations of hissorition	
		Initiations of biosorption - 5	
11/	Hanandana maata	Lectures.	15
1 V	Hazardous waste	Biodegradation of waste from	15
	management	tanning industry - 2 Lectures;	
		petroleum industry - 2 Lectures;	
		paper & pulp industry - 2 Lectures;	
		Dairy – 2 Lectures; Distillery - 2	
		Lectures; Dye – 1 Lecture;	
		Antibiotic industry - 2 Lectures;	
		Removal of oil spillage & grease	
		deposits – 2 Lectures.	

Learning Resources recommended:

- 1. Environmental Biotechnology Allan Scragg Oxford University press
- 2. Environmental Biotechnology (Basic concepts and applications) Indu Shekar Thakur IK International

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 145 | Page 3. Environmental Biotechnology (Industrial pollution management) S.N. Jogdand Himalaya Publishing House

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall Performance	10

B. Semester End Evaluation (Paper Pattern)

Question No.	Unit	Marks
1	Ι	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

Syllabus for T. Y. B. Sc. Biotechnology Autonomous from the year 2023-24

Name of the Course	Applied Component – Agribiotechnology
Course Code	USACBT601
Class	T. Y. B. Sc.
Semester	V
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 – To impart the knowledge of precision agriculture and agricultural systems.

- CO2 To provide understanding of plant stress biology.
- CO3 To explore the significance of molecular markers in plant breeding.
- CO4 To gain knowledge about the importance of biofertilizers and biopesticides.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Precision agriculture	Introduction to Agriculture and	15
	and agricultural	Agriculture systems- 1 Lecture;	
	systems	Green-house Technology Types	
		of green house, importance,	
		functions and features of green	
		house, Design criteria and	
		calculation -2 Lectures;	
		Construction material, covering	
		material and its characteristics,	
		growing media, green house	
		irrigation system. Nutrient	
		management -3 Lectures;	
		Greenhouse heating, cooling and	
		shedding and ventilation system,	
		Computer controlled environment –	
		3 Lectures ;, Phytotrons, fertigation	
		and roof system -1 Lecture;	
		Precision Cultivation- tools, sensors	
		for information acquisition -2	
		Lectures.	
II	Plant stress biology	Abiotic stress –Physiological and	15
		molecular responses of plants to	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 147 | Page

		water stress salinity stress	
		temperature stress – heat and cold	
		Photooxidative stress stress	
		perception and stress signalling	
		perception and stress signating	
		homoostasis reactive oxygen	
		noneostasis, reactive oxygen	
		Species scavenging- 4 Lectures;	
		Biotic stress - plant interaction with	
		bacterial, viral and fungal	
		patnogens, plant responses to	
		pathogen– biochemical and	
		molecular basis of host-plant	
		resistance, toxins of fungi and	
		bacteria, systemic and induced	
		resistance –pathogen derived	
		resistance, signalling - 8 Lectures.	
III	Molecular markers in	Genetic markers in plant breeding	15
	plant breeding	Classical markers, DNA markers	
		(RFLP, RAPD, AFLP, SSR, SNP)-	
		4 Lectures;	
		Application of Molecular Markers	
		to Plant Breeding [quantitative trait	
		locus (QTL) mapping] - 4	
		Lectures;	
		Plant DNA Barcoding- Barcoding	
		Markers (matK, rbcl, ITS,	
		tmHpsbA), steps, recent advances,	
		Benefits, Limitations - 4 Lectures.	
IV	Biofertilizers and	Biofertilizer: Nitrogen-fixing	15
	biopesticides	Rhizobacteria - Symbiotic Nitrogen	
	I	Fixers -2 Lectures: Non-symbiotic	
		Nitrogen Fixers Plant Growth	
		Promoting Microorganisms-	
		Phosphate- Solubilizing Microbes	
		(PSM). Phytohormones and	
		Cytokining Induced Systemic	
		Resistance- 2 Lectures.	
		Plant Growth Promotion by Fungi-	
		Mycorrhizae Arbuscular	
		Mycorrhizae Ectomycorrhizae -?	
		Lactures: Microbial Incoulants	
		Incoule Corriers and Applications	
		Monopulture and Coordinations,	
		Incontract Ecomputations Discontral	
		Deleminations Biocontrol,	
		Polymicrobial Inoculant	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 148 | Page

Formulations-3 Lectures;	
Biopesticides – types, Bacillus	
thuringiensis, insect viruses and	
entomopathogenic fungi	
(characteristics, physiology,	
mechanism of action and	
application) - 3 Lectures.	

Learning Resources recommended:

- 1. M. Ajmal Ali, G. Gyulai, F. Al-Hemaid -Plant DNA Barcoding and Phylogenetics, LAP Lambert Academic Publishing (2015)
- 2. P. Parvatha Reddy (auth.)-Sustainable Crop Protection under Protected Cultivation-Springer Singapore (2016)
- 3. S.B. Anderson (ed.), Plant Breeding from Laboratories to Fields, InTech, 2013
- 4. Henry Leung, Subhas Chandra Mukhopadhyay (eds.) Intelligent Environmental Sensing (2015, Springer International Publishing)
- 5. Travis R. Glare, Maria E. Moran-Diez Microbial-Based Biopesticides_ Methods and Protocols (2016, Humana Press)
- 6. Altieri, Miguel A.Farrell, John G-Agroecology- The Science of Sustainable Agriculture, Second Edition-CRC Press (2018)
- 7. Arie Altman, Paul Michael Hasegawa-Plant Biotechnology and Agriculture_ Prospects for the 21st Century-Academic Press (2011)

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall Performance	10

Question No.	Unit	Marks
1	Ι	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

B. Semester End Evaluation (Paper Pattern)

Name of the Course	Practicals of USBT601 and USBT602
Course Code	USBTP601
Class	T. Y. B. Sc.
Semester	V
No. of Credits	03
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Syllabus for T. Y. B. Sc. Biotechnology Autonomous from the year 2023-24

Course Outcomes:

CO1 - To impart the knowledge and hands on experience of the various practicals related to biochemistry.

CO2 - To impart the knowledge and hands on experience of the various practicals related to industrial microbiology.

Curriculum:

Title	Learning Points	No. of Lectures	
Regular	1. Estimation of Milk protein-Pynes method	72	
Practicals	2. Microbial analysis of Milk by MBRT and RRT		
	3. Phosphatase test in Milk		
	4. DMC of milk sample		
	5. Isolation of Normal flora from Milk and curd		
	6. Determination of blood glucose levels for detection of		
	diabetes mellitus.		
	7. Determination of serum cholesterol (total, HDL and LDL		
	ratio)		
	8. Estimation vitamin C by DCPIP method from food samples.		

Learning Resources recommended:

1. Harper's Illustrated Biochemistry, 27th edition, RK Murray, DK Granner, PA Mayes and VW Rodwell, McGraw Hills publication.

2. Biochemistry, 4nd edition (2017), Satyanarayana and Chakrapani, Books & Allied (P) Ltd

3. Nutrition Science, 6th edition (2017), Srilakshmi, new age international publishers.

4. Applied Dairy Microbiology Elmer H Marth and James L Steele Mercel Dekker Inc New York, 2nd edition

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 151 | Page

5. Industrial Microbiology Prescott and Dunn CBS publishers

6. Dairy technology by Yadav and Grower

Evaluation Pattern

	No. of	Duration	Total Marks	CIE	Total
	Experiments				
TY	3	06 hrs	60 M (01	40 M	100
Practical	experiments		Paper)	(10 M for	
	of 2 hrs		(20 M for 1	Journal, 10 M	
	duration		Experiment,	for viva, 15	
			25 M for 1	M for	
			Experiment,	Identification/	
			15 M for 1	Spotting, 05	
			Experiment)	M for overall	
				performance)	

Syllabus for T. Y. B. Sc. Biotechnology Autonomous from the year 2023-24

Name of the Course	Practicals of USBT603 and USBT604
Course Code	USBTP602
Class	T. Y. B. Sc.
Semester	V
No. of Credits	03
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - To impart knowledge and hands on experience of the various practicals related to pharmacology, neurochemistry, environmental Biotechnology.

CO2 – To improve skills in writing the research outcomes in the form of thesis dissertation.

Curriculum:

Title	Learning Points	No. of Lectures
Regular	1. LD 50, ED 50 evaluation using suitable models e.g. daphnia	72
Practicals	2. Study the effect of heavy metals on the growth of bacteria.	
	3. Determination of Total Solids from an effluent sample.	
	4. Study of physico-chemical (pH, color, turbidity, BOD, COD)	
	parameters of any one industrial effluent sample	
Demonstration	Estimation of chromium from Effluents (Demonstration)	
Visit	Visit to ETP/ CET	

Learning Resources recommended:

- 1. Textbook of Medical Physiology Guyton, A.C and Hall 11th edition J.E Saunders
- 2. Modern Pharmacology with clinical Applications Craig, C.R, Stitzel, R.E 5th edition
- 3. Clinical Pharmacology Bennet, PN, Brown, M.J, Sharma, P 11th edition Elsevier
- 4. Biochemistry Metzler, D.E Elsevier
- 5. Environmental Biotechnology Allan Scragg Oxford University press
- 6. Environmental Biotechnology (Basic concepts and applications) Indu Shekar Thakur

IK International

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 153 | Page

Evaluation Pattern

	No. of	Duration	Total Marks	CIE	Total
	Experiments				
TY	3	06 hrs	60 M (01	40 M	100
Practical	experiments		Paper)	(10 M for	
	of 2 hrs		(20 M for 1	Journal, 10 M	
	duration		Experiment,	for viva, 15	
			25 M for 1	M for	
			Experiment,	Identification/	
			15 M for 1	Spotting, 05	
			Experiment)	M for overall	
			_	performance)	

Name of the Course	Practicals of USACBT601
Course Code	USACBTP603
Class	T. Y. B. Sc.
Semester	V
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)

Core/ Elective

Syllabus for T. Y. B. Sc. Biotechnology Autonomous from the year 2023-24

Course Outcomes:

Type

CO1 - To impart knowledge and hands on experience of the various practicals related to agribiotechnology.

Curriculum:

Title	Learning Points	No. of Lectures
Regular	1. Isolation of Rhizobium	48
Practicals	2. Isolation of Azotobacter	
	3. Isolation of Phosphate solubilizing bacteria	
	4. Study of effect of abiotic stress on plants.	
	6. Rapid screening tests for abiotic stress tolerance (drought, -	
	PEG, Mannitol & salinity NaCl)	
	7. Estimation of antioxidants and antioxidant enzymes -	
	Ascorbate, Catalase and Peroxidase	
Demonstration	RAPD analysis demonstration experiment	
Visit	Visit to green house facility and submission of field visit report.	

Learning Resources recommended:

- 1. M. Ajmal Ali, G. Gyulai, F. Al-Hemaid -Plant DNA Barcoding and Phylogenetics, LAP Lambert Academic Publishing (2015)
- 2. P. Parvatha Reddy (auth.)-Sustainable Crop Protection under Protected Cultivation-Springer Singapore (2016)
- 3. S.B. Anderson (ed.), Plant Breeding from Laboratories to Fields, InTech, 2013
- 4. Henry Leung, Subhas Chandra Mukhopadhyay (eds.) Intelligent Environmental Sensing (2015, Springer International Publishing)

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 155 | Page

- 5. Travis R. Glare, Maria E. Moran-Diez Microbial-Based Biopesticides_ Methods and Protocols (2016, Humana Press)
- 6. Altieri, Miguel A.Farrell, John G-Agroecology- The Science of Sustainable Agriculture, Second Edition-CRC Press (2018)
- 7. Arie Altman, Paul Michael Hasegawa-Plant Biotechnology and Agriculture_ Prospects for the 21st Century-Academic Press (2011)

Evaluation Pattern

	No. of	Duration	Total Marks	CIE	Total
	Experiments				
TY	4	6 hrs	60 M	40 M	100
Practical	experiments		(20 M each	(10 M for	
(AC)	of 1.5 hrs		for 2	Journal, 10 M	
	duration		Experiments,	for Viva, 10	
			10 M each for	M for	
			2	Identification,	
			Experiments)	10 M for	
				overall	
				performance)	

(Rashmi A. Bhave) The Chairperson, BoS

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 157 | Page

Name of Programme	M. Sc. Biotechnology	
Level	PG	
No. of Semesters	04	
Year of Implementation	2023-24	
Programme Specific	At the end of the Programme, Learner will be able	
Outcomes (PSO)	1. To identify, formulate, review research literature, analyze and design experiments and identify the solutions for complex problems using modern tools.	
	2. To apply the knowledge of basic biotechnology to solve complex problems in society.	
	3. To design experiments to investigate the problems in varied fields of Biotechnology and allied areas.	
	4. To understand and interpret data and derive unique solutions to existing and emerging issue.	
	5. To apply reasoning informed by contextual knowledge to assess societal, health, safety and the consequent responsibilities relevant to the professional biotechnology practices.	
	6. To recognize the need and have the ability to engage in independent and lifelong learning in technological change.	
	7. To function effectively as an individual and as a member or leader in diverse teams and in inter- and multi-disciplinary areas.	
	8. To empower with a knowledge base in processes and applications that would impact and influence existing prototypes of green, blue, red and white Biotechnology.	
	9. To be skilled and equipped with contemporary knowledge in Biotechnology and would be eligible for jobs in varied industrial sectors.	
Relevance of PSOs to the local, regional, national, and global developmental needs	Biotechnology is important at Global, National, Regional and local level. The significance of Biotechnology identified at all these levels and it is relevant to everyday life. The curriculum design of M. Sc. Biotechnology programme helps in understanding various concepts in detail. This programme	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 158 | Page

includes new emerging technologies and their applications. This
also involves the actual working and mechanism required in
industries. The application part is taken care of so that the learner
shall be able to connect the phenomena around him with the
curriculum. This programme also imparts the research values
among the learners. The hard and softs skills acquired during the
completion of this programme shall make him employable.

The performance of the learners shall be evaluated into two parts. The learner's performance shall be assessed by Internal Assessment with 40 % marks in the first part and by conducting the Semester End Examinations of 60 % marks in the second part. The allocation of marks for the Internal Assessment and Semester End Examinations are as shown below-

A) Internal Assessment: 40 % (40 Marks)

Sr.	Particulars	Marks		
No.				
01	One Periodical Class Test / Online Examination/ Assignments/	30		
	Powerpoint presentation to be conducted in the given semester			
02	Active participation in routine class instructional deliveries and	10		
	overall conduct as a responsible learner, mannerism and articulation			
	and exhibit of leadership qualities in organizing related academic			
	activities			
Question Paper Pattern for Periodical Class Test/ Online Examination				
Maxim	Maximum Marks: 30			
Duratio	Duration: 60 Minutes			
Fill in t	Fill in the Blanks / Multiple Choice Questions/ True or False / Answer in One or Two Lines			
(Conce	(Concept based Questions) (1 Marks each)/ Long answer questions (6 Marks each)/ short			
notes (5	Marks each)			

B) Semester End Examination: 60 % (60 Marks)

Duration: The examination shall be of 2 hours' duration.

Question Paper Pattern

- 1. There shall be four questions each of 15 marks.
- 2. All questions shall be compulsory with internal options.
- 3. Question may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 159 | Page

C) Practical Examination: 100 Marks

a) Internal Assessment: 40 % (40 Marks)

Sr. No.	Particulars	Marks
01	Journal	20
02	Viva	10
03	Overall performance	10
Marks in Internal Assessment will be converted into 20 marks.		

b) Semester End Examination: 60 % (60 Marks)

Sr. No.	Particulars	Marks
01	Practical Question 1	20
02	Practical Question 2	20
03	Practical Question 3	20
Marks in SEE will be converted into 30 marks.		

Standard of Passing

The learner to pass a course shall have to obtain a minimum of 40% marks in aggregate for each course where the course consists of Internal Assessment & Semester End Examination. The learner shall obtain minimum of 40% marks (i. e. 16 out of 40) in the Internal Assessment and 40% marks in Semester End Examination (i. e. 24 out of 60) separately, to pass the course and minimum of Letter Grade "P" in the project component, wherever applicable to pass a particular semester. A learner will be said to have passed the course if the learner passes the Internal Assessment and Semester End Examination together.

Performance Grading:

Letter Grades and Grade Points

Semester GPA/ Program CGPA Semester/Program	% of Marks	Alpha-Sign / Letter Grade Result
9.00-10.00	90.0 -100	0 (Outstanding)
$8.00 \le 9.00$	80.0 ≤ 90.0	A+ (Excellent)
$7.00 \le 8.00$	$70.0 \le 80.0$	A (Very Good)
$6.00 \le 7.00$	$60.0 \le 70.0$	B+ (Good)
$5.50 \le 6.00$	55.0 ≤ 60.0	B (Above Average)
$5.00 \le 5.50$	50.0 ≤ 55.0	C (Average)
$4.00 \le 5.00$	$40.0 \le 50.0$	P (Pass)
Below 4.00	Below 40	F (Fail)
Ab (Absent)	-	Absent

Master of Science (M.Sc.) in Biotechnology Programme Under Choice Based Credit System (CBCS) Course Structure

M.Sc. I Biotechnology

(To be implemented from Academic Year 2023-24)

Course Code	Semester I	Credits	Course Code	Semester II	Credits
	Major Mandatory			Major Mandatory	
PSBT101	Biochemistry	4	PSBT201	Bioinformatics and Biostatistics	4
PSBT102	Bioprocess Engineering and Technology	4	PSBT202	Plant and Animal Biotechnology	4
PSBT103	Basics in IPR and Patents	2	PSBT203	Patenting in Biotechnology and Bioethics	2
PSBT104	Biochemistry Practical PSBT101	2	PSBT204	Bioinformatics and Biostatistics Practical PSBT201	2
PSBT105	Bioprocess Engineering and Technology Practical PSBT102	2	PSBT205	Plant and Animal Biotechnology Practical PSBT202	2
	Major Electives (Any C	Dne)		Major Electives (Any One)	
PSBT106	Immunology	2	PSBT206	Bio Entrepreneurship	3
PSBT107	Immunology Practical PSBT106	2	PSBT207	Bio Entrepreneurship Practical PSBT206	1
	OR OR		<u></u>		
PSBT108	Molecular Diagnostics	2	PSBT208	Bioanalytical and Biophysical Techniques	4
PSBT109	Molecular Diagnostics Practical PSBT108	2		1	L
PSBT110	Research Methodology	4	PSBT209	On Job Training/ Field Project	4
Total Credits 22 Total Credits		22			

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 162 | Page SMART Criteria for Course Outcomes:

Specific: Each course outcome is specific, outlining the knowledge and skills students are expected to acquire in relation to the specific topics covered.

Measurable: Each outcome can be measured through assessments, tests, or projects to determine the level of understanding and proficiency achieved by the students.

Achievable: The outcomes are achievable within the duration of the course, considering the number of lectures allocated to each topic.

Relevant: The outcomes are relevant to the subject of financial services and capital market, addressing important concepts, types, and mechanisms involved.

Time-bound: The outcomes are expected to be achieved by the end of the course, providing a clear timeline for assessment and evaluation.

Course Code	Semester I	Credits		
	Major: Mandatory			
PSBT101	Biochemistry	4		
PSBT102	Bioprocess Engineering and Technology	4		
PSBT103	Basics in IPR and Patents	2		
PSBT104	Biochemistry Practicals	2		
PSBT105	Bioprocess Engineering and Technology Practicals	2		
	Major: Elective (Any One from below)			
PSBT106	Immunology	2		
PSBT107	Immunology Practical PSBT106	2		
	OR			
PSBT108	Molecular Diagnostics	2		
PSBT109	Molecular Diagnostics Practical PSBT108	2		
PSBT110	Research Methodology	4		
	Total Credits	22		

Revised Syllabus of Courses of Master of Science (M.Sc.) in Biotechnology Programme at Semester I with Effect from the Academic Year 2023-2024

Name of the Course	Biochemistry
Course Code	PSBT101
Class	M. Sc. I Biotechnology
Semester	Ι
No of Credits	4
Nature	Theory
Туре	Major: Mandatory 1
V I	

Biochemistry

Units at a Glance

Sr.	Units	No. of Lectures
1	Glycobiology and Membrane Biochemistry	15
2	Protein Transport and Membrane Trafficking	15
3	Biochemistry of nucleic acids	15
4	Bioenergetics and regulation of metabolism	15
	Total	60

Course Outcomes:

At the end of the Course, the Learner will be able to -

CO1 – To impart the knowledge of glycobiology and membrane biochemistry.

CO2 – To provide the insight of protein transport and membrane trafficking.

CO3 – To gain the knowledge of nucleic acids biochemistry.

CO4 – To have a firm foundation in bioenergetics and regulation of metabolism.

Curriculum:

Sr. No.	Units
1	Glycobiology and Membrane Biochemistry (15 Lectures)
	 Glycosylation of Biomolecules - Synthesis N-linked, O-linked, and GPI linked glycoproteins and role of glycosylation. Lipid aggregates: micelles, bilayers, and liposomes- structure, types, preparation, characterization, and therapeutic applications of liposomes. Composition and Architecture of membrane: structural lipids in membranes, membrane bound proteins - structure, properties, and function. Membrane Dynamics: lipid movements, flippase, FRAP, Lipid raft, Membrane fusion. Solubilization of the membrane by using different detergents.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 166 | Page

2	Protein Transport and Membrane Trafficking (15 Lectures)
	Translocation of Secretory Proteins across the ER Membrane, Insertion, Protein Modifications, Folding, and Quality Control in the ER, Protein sorting and export from Golgi Apparatus. Sorting of Proteins to Mitochondria and Chloroplasts. Molecular Mechanisms of Vesicular Traffic, early and later Stages of the Secretory Pathway, Receptor-Mediated Endocytosis. Protein degradation: Ubiquitin- proteasome pathway and lysosomal proteolysis.
3	Biochemistry of nucleic acids (15 Lectures)
	Forces stabilizing nucleic acid structures, triple helix. Super helix topology- linking number, Twist and writhing number, measurement of supercoiling and Topoisomerases. Nucleic acid binding protein – Leucine Zipper, Zinc fingers, OB fold, Beta Barrel, Helix-turn-helix, Helix-loop-helix. Biosynthesis of nucleic acids and inborn errors of nucleic acid Metabolism Methodologies for detection: Protein –Protein and DNA –Protein interactions: Gel retardation assay, DNA footprinting, Yeast 2 Hybrid Method advantages and limitations, yeast split-hybrid and reverse two-hybrid systems, Co- Immunoprecipitation (Co-IP) and Far-Western Blot Analysis.
4	Bioenergetics and regulation of metabolism (15 Lectures)
	Biosynthesis of Amino acids; phenylalanine, tyrosine, threonine, and methionine. Bioenergetics- coupled interconnecting reactions in metabolism; oxidation of carbon fuels; recurring motifs in metabolism. Integration of central metabolism; entry/ exit of various biomolecules from central pathways, principles of metabolic regulation. Strategies of energy Metabolism: organ specialization- Brain, Muscle, Adipose Tissue, Liver, Kidney. Metabolic Homeostasis: Regulation of Appetite, Energy Expenditure and Body Weight.

Learning Resources recommended:

- 1. Stryer, L. (2015). Biochemistry. (8th edition) New York: Freeman.
- 2. Lehninger, A. L. (2012). Principles of Biochemistry (6th edition). New York, NY: Worth.
- 3. Voet, D., & Voet, J. G. (2016). Biochemistry (5th edition). Hoboken, NJ: J. Wiley & Sons.
- 4. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2008).
- 5. Lodish, H. F. (2016). Molecular Cell Biology (8th Ed.). New York: W.H. Freeman.
- 6. Krebs, J. E., Lewin, B., Kilpatrick, S. T., & Goldstein, E. S. (2014).
- 7. Lewin's Genes XI. Burlington, MA: Jones & Bartlett Learning.
- 8. Cooper, G. M., & Hausman, R. E. (2013). *The Cell: a Molecular Approach* (6th Ed.). Washington: ASM; Sunderland.
- 9. Laouini et.al. Preparation, Characterization and Applications of Liposomes: State of the Art. journal of Colloid Science and Biotechnology Vol. 1, 147–168, 2012

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 167 | Page 10. Watson, James D., Baker, Tania A., Bell, Stephen P. & Gann, Alexander: Molecular biology of the gene. (6th ed.) New York. Pearson Education Inc., 2008. 0-321-50781-9

Evaluation Pattern

A) Internal Assessment: 40 % (40 Marks)

Sr.No.	Particulars	Marks
01	One Periodical Class Test / Online Examination/ Assignments/	30
	Powerpoint presentation to be conducted in the given semester	
02	Active participation in routine class instructional deliveries and	10
	overall conduct as a responsible learner, mannerism and articulation	
	and exhibit of leadership qualities in organizing related academic	
	activities	
Question Paper Pattern for Periodical Class Test/ Online Examination		
Maximum Marks: 30		
Duration: 60 Minutes		
Fill in the Blanks / Multiple Choice Questions/ True or False / Answer in One or Two Lines		
(Concept based Questions) (1 Marks each)/ Long answer questions (6 Marks each)/ short		
notes (5 Marks each)		

B) Semester End Examination: 60 % (60 Marks)

Duration: The examination shall be of 2 hours' duration.

Question Paper Pattern

1. There shall be four questions each of 15 marks.

2. All questions shall be compulsory with internal options.

3. Question may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.

Revised Syllabus of Courses of Master of Science (M.Sc.) in Biotechnology Programme at Semester I with Effect from the Academic Year 2023-2024

Name of the Course	Bioprocess engineering and technology
Course Code	PSBT102
Class	M. Sc. I Biotechnology
Semester	Ι
No of Credits	4
Nature	Theory
Туре	Major: Mandatory II

Bioprocess Engineering and Technology

Units at a Glance

Sr. No.	Units	No. of Lectures
1	Basic principles of biochemical engineering	15
2	Production of proteins from recombinant microorganisms	15
3	Applications of enzyme technology in food processing	15
4	Applications of microbial technology	15
	Total	60

Course Outcomes:

At the end of the Course, the Learner will be able to -

CO1 – To impart the knowledge of basic principles of biochemical engineering.

CO2 – To provide the insight of production of proteins from recombinant.

CO3 – To gain the knowledge of applications of enzyme technology in food processing.

 $\mathrm{CO4}-\mathrm{To}$ have a firm foundation in applications of microbial technology.

Curriculum:

Sr. No.	Units
1	Basic principles of biochemical engineering(15 Lectures)
	Sources of Microorganisms Used in Biotechnology- Literature search and culture collection supply, Isolation de novo of organisms producing metabolites of economic importance. Strain Improvement- Selection from naturally occurring variants, Manipulation of the genome of industrial organisms in strain improvement Bioreactor design and analysis. Media formulation and optimization methods; sterilization of bioreactors aeration and agitation in bioreactors KLa value (factors affecting and methods of determination).

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 170 | Page

Production of proteins from recombinant microorganisms	(15 Lectures)
Principles of Microbial Growth: Batch Fermentation, Fed-Batch Continuous Fermentation Maximizing the Efficiency of the Fermentation Process High-Density Cell Cultures, Increasing Plasmid Stability, Quiescent Protein Secretion and Reducing Acetate Bioreactors: Typical Large-Scale Fermentation Systems Two-Stage Fermentation in Tandem Airlift Reactors, Two-Stage Fermentation in a Single Stirred-Tank Reactor, Batch ver Fermentation, Harvesting Microbial Cells, Disrupting Microbial Cells Processing, Protein Solubilization, Large-Scale Production of plasmid I	Fermentation, <i>E. coli</i> Cells, rsus Fed-Batch s, Downstream DNA
Applications of enzyme technology in food processing	(15 Lectures)
 Introduction and scope 1. Enzymes sourced from animals and plants used in food manufacturin 2. Enzyme usage in food applications. Mechanism of enzyme function and reactions in food processes 1. Starch-processing and related carbohydrates. 2. Lipases for production of food components: interesterified fat 3. Enzymes in protein modification: hydrolyzed protein 4. Enzymes in bread making - flavor, texture and keeping quality 5. Enzymes in dairy product manufacture 6. Enzymes in fruit and vegetable processing and juice extraction 7. Enzymes in fish and meat processing 8. Beer Production using Immobilized Cell Technology 	ig technology
Applications of microbial technology	(15 Lectures)
 Microbial biomass production: mushrooms, SCP Fermented foods from: meat and fish, bread, Vegetables (sauerkra Legumes and Oil, Seeds soya bean fermentations Beverages: a) Stimulant Beverages -coffee, cocoa and tea fermentatio beverages - Cider production Food additives and supplements: a) Lipids, Nucleosides, nucleotic compounds- Vitamins Natural food preservatives- bacteriocins from lactic acid bacteria – applications e. g. Nisin c) Microbial production of colours and flavours. d) Polyhydric alcohols: low-calorie sweetener particularly useful for sy products for diabetics e) Microbial exopolysaccharides - Xanthan gum Frocess Food wastes - for bioconversion to useful products (Component of the system) 	ut, cucumber), ns b) Alcoholic les and related production and weetening food
	 Production of proteins from recombinant microorganisms Principles of Microbial Growth: Batch Fermentation, Fed-Batch Continuous Fermentation Maximizing the Efficiency of the Fermentation Process High-Density Cell Cultures, Increasing Plasmid Stability, Quiescent Protein Secretion and Reducing Acetate Bioreactors: Typical Large-Scale Fermentation Systems Two-Stage Fermentation in Tandem Airlift Reactors, Two-Stage Fermentation in a Single Stirred-Tank Reactor, Batch verfermentation, Harvesting Microbial Cells, Disrupting Microbial Cells Processing, Protein Solubilization, Large-Scale Production of plasmid I Applications of enzyme technology in food processing Introduction and scope Enzymes sourced from animals and plants used in food manufacturin Enzyme usage in food applications. Mcchanism of enzyme function and reactions in food processes Starch-processing and related carbohydrates. Lipases for production of food components: interesterified fat Enzymes in protein modification: hydrolyzed protein Enzymes in bread making - flavor, texture and keeping quality Starymes in fish and meat processing and juice extraction Enzymes in fish and meat processing Beer Production using Immobilized Cell Technology Microbial biomass production: mushrooms, SCP Fermented foods from: meat and fish, bread, Vegetables (sauerkra Legumes and Oil, Seeds soya bean fermentations Beverages: a) Stimulant Beverages -coffee, cocoa and tea fermentatio beverages - Cider production Food additives and supplements: a) Lipids, Nucleosides, nucleotic compounds- Vitamins Natural food preservatives- bacteriocins from lactic acid bacteria – applications e. g. Nisin Microbial production of colours and flavours. Porcess F

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 171 | Page Learning Resources recommended:

- 1. Shuler, M. L., & Kargi, F. (2002). Bioprocess Engineering: Basic Concepts. Upper Saddle River, NJ: Prentice Hall.
- 2. Stanbury, P. F., & Whitaker, A. (2010). Principles of Fermentation Technology. Oxford: Pergamon Press.
- 3. Bailey, J. E., & Ollis, D. F. (1986). Biochemical Engineering Fundamentals. New York: McGraw-Hill.
- 4. El-Mansi, M., & Bryce, C. F. (2007). Fermentation Microbiology and Biotechnology. Boca Raton: CRC/Taylor & Francis.
- 5. Lee, Y. K. (2013). Microbial Biotechnology: Principles and Applications. Hackensack, NJ: World Scientific.
- 6. Alexander N. Glazer and Hiroshi Nikaido -Microbial Biotechnology: Fundamentals of Applied Microbiology, 2nd Edition
- 7. Michael Waites and Morgan, Rockney and Highton -Industrial microbiology: An Introduction
- 8. Robert Whitehurst and Maarten Van Oort Enzymes in food technology 2nd ed
- 9. Nduka Okafor Modern industrial microbiology and biotechnology Science Publishers, Enfield, (2007)

Evaluation Pattern:

Sr.	Particulars	Marks	
No.			
01	One Periodical Class Test / Online Examination/ Assignments/	30	
	Powerpoint presentation to be conducted in the given semester		
02	Active participation in routine class instructional deliveries and	10	
	overall conduct as a responsible learner, mannerism and articulation		
	and exhibit of leadership qualities in organizing related academic		
	activities		
Questio	n Paper Pattern for Periodical Class Test/ Online Examination		
Maxim	um Marks: 30		
Duratio	Duration: 60 Minutes		
Fill in the Blanks / Multiple Choice Questions/ True or False / Answer in One or Two Lines			
(Concept based Questions) (1 Marks each)/ Long answer questions (6 Marks each)/ short			
notes (5 Marks each)			

A) Internal Assessment: 40 % (40 Marks)

B) Semester End Examination: 60 % (60 Marks)

Duration: The examination shall be of 2 hours' duration.

Question Paper Pattern

1. There shall be four questions each of 15 marks.

2. All questions shall be compulsory with internal options.

3. Question may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.

Revised Syllabus of Courses of Master of Science (M.Sc.) in Biotechnology Programme at Semester I with Effect from the Academic Year 2023-2024

Name of the Course	Basics in IPR and Patents
Course Code	PSBT103
Class	M. Sc. I Biotechnology
Semester	Ι
No of Credits	2
Nature	Theory
Туре	Major: Mandatory III

Basics in IPR and Patents

Units at a Glance

Sr. No.	Units	No. of Lectures	
1	Introduction to IPR	15	
2	Basics of Patents	15	
	Total	30	

Course Outcomes:

At the end of the Course, the Learner will be able to -

- CO1 To impart the knowledge of the introduction of IPR.
- CO2 To provide the insight of basics of patents.

Curriculum:

Sr. No.	Units
1	Introduction to IPR (15 Lectures)
	World Intellectual Property Organization (WIPO) – Functions of WIPO – Membership – GATT Agreement – Paris Convention – TRIPS agreement. Types of IP: patents, trademarks, trade secrets, copyright & related rights, industrial design, geographical indications, Biodiversity importance and legislation, plant variety protection and farmers rights act, traditional knowledge.
2	Basics of Patents (15 Lectures)
	Eligibility criteria, concept of novelty, concept of inventive step; Patenting systems- Indian Patent Act and amendments, Process of Patenting, Types of patent applications, Patent Agent, Patent Search, Rights of the patent holder, Assignment and licensing of patents and patent Infringement, case studies.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 175 | Page Learning Resources Recommended:

- 1. Ganguli, P. (2001). Intellectual Property Rights: Unleashing the Knowledge Economy. Tata McGraw-Hill Publishing Company.
- Karen F. Greif, Jon F. Merz Current Controversies in the Biological Sciences_ Case Studies of Policy Challenges from New Technologies (Basic Bioethics)-The MIT Press (2007)
- 3. Padma Nambisan (Auth.) An Introduction to Ethical, Safety and Intellectual Property Rights
- 4. Issues in Biotechnology- Academic Press (2017)
- 5. David Castle The Role of Intellectual Property Rights in Biotechnology Innovation (2011)
- 6. Goel, D., & Parashar, S. (2013). IPR, Biosafety and Bioethics. Pearson Education India.
- 7. Singh, S. S. (2004). The Law of Intellectual Property Rights. Deep and Deep Publications, New Delhi, 96.
- 8. Talwar Shabana; Intellectual Property Rights in WTO and Developing Countries, Edition 2010, Serials Publications, New Delhi.

Evaluation Pattern:

Sr.No.	Particulars	Marks					
01	One Periodical Class Test / Online Examination/ Assignments/	30					
	Powerpoint presentation to be conducted in the given semester						
02	2 Active participation in routine class instructional deliveries and						
	overall conduct as a responsible learner, mannerism and articulation						
	and exhibit of leadership qualities in organizing related academic						
	activities						
Questic	n Paper Pattern for Periodical Class Test/ Online Examination						
Maxim	Maximum Marks: 30						
Duratio	Duration: 60 Minutes						
Fill in t	Fill in the Blanks / Multiple Choice Questions/ True or False / Answer in One or Two Lines						
(Conce	(Concept based Questions) (1 Marks each)/ Long answer questions (6 Marks each)/ short						
notes (5	notes (5 Marks each)						

A) Internal Assessment: 40 % (40 Marks)

B) Semester End Examination: 60 % (60 Marks)

Duration: The examination shall be of 2 hours' duration.

Question Paper Pattern

1. There shall be three questions each of 20 marks.

2. All questions shall be compulsory with internal options.

3. Question may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.

Revised Syllabus of Courses of Master of Science (M.Sc.) in Biotechnology Programme at Semester I with Effect from the Academic Year 2023-2024

Name of the Course	Immunology
Course Code	PSBT106
Class	M. Sc. I Biotechnology
Semester	Ι
No of Credits	2
Nature	Theory
Туре	Major: Elective

Immunology

Units at a Glance

Sr. No.	Units	No. of Lectures
1	Vaccinology	15
2	Antigen – antibody interactions	15
	Total	30

Course Outcomes:

At the end of the Course, the Learner will be able to -

CO1 – To gain the knowledge of vaccinology.

CO2 – To have a firm foundation in antigen – antibody interactions.

Curriculum:

Sr. No.	Units
1	Vaccinology (15 Lectures)
	Active and passive immunization; live, killed, attenuated, subunit vaccines; vaccine technology: role and properties of adjuvants, recombinant DNA and protein based vaccines, plant-based vaccines, reverse vaccinology; peptide vaccines, conjugate vaccines; antibody genes and antibody engineering: chimeric, generation of monoclonal antibodies, hybrid monoclonal antibodies; catalytic antibodies and generation of immunoglobulin gene libraries, idiotypic vaccines and marker vaccines, viral-like particles (VLPs), dendritic cell based vaccine, vaccine against cancer, T cell based vaccine, edible vaccine and therapeutic vaccine.
2	Antigen – antibody interactions (15 Lectures)
	Precipitation, agglutination and complement mediated immune reactions; advanced immunological techniques: RIA, ELISA, Western blotting, ELISPOT assay, immunofluorescence microscopy, flow cytometry and immunoelectron microscopy; surface plasmon resonance, biosensor assays for assessing ligand –receptor interaction; CMI techniques: lymphoproliferation assay, mixed lymphocyte

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 179 | Page

	reaction,	cell	cytotoxicity	assays,	apoptosis,	microarrays,	transgenic	mice,	gene
	knock ou	ts.							

Learning Resources recommended:

- 1. Kindt, T. J., Goldsby, R. A., Osborne, B. A., &Kuby, J. (2006). Immunology. New York: W.H. Freeman.
- 2. Murphy, K., Travers, P., Walport, M., & Janeway, C. (2012). Janeway's Immunobiology. New York: Garland Science.
- 3. An introduction to Immunology C V Rao Narosa Publishing house
- 4. Immunology essential and fundamental, Second edition S Pathak & U P Parveen Publishing House
- 5. Text Book of Medical Biochemistry, Praful Godkar. Bahalani Publishers
- 6. Immunology, An introduction, fourth edition. Ian R Tizard Thomson
- 7. Immunology, fifth Ed Goldsby, T J. Kindt, Osborne, Janis Kuby Freeman and company.
- 8. Immunology, sixth Ed Roitt, Brostoff, Male Mosby, An imprint of Elsevier science Ltd
- 9. Practical immunology, Frank Hay, 4th Edition, Blackwell Science Medical Microbiology, Anantharayan.

Evaluation Pattern

A) Internal Assessment: 40 % (40 Marks)

Sr.No.	Particulars	Marks					
01	One Periodical Class Test / Online Examination/ Assignments/	30					
	Powerpoint presentation to be conducted in the given semester						
02	Active participation in routine class instructional deliveries and						
	overall conduct as a responsible learner, mannerism and articulation						
	and exhibit of leadership qualities in organizing related academic						
	activities						
Questio	Question Paper Pattern for Periodical Class Test/ Online Examination						
Maxim	Maximum Marks: 30						
Duratio	Duration: 60 Minutes						
Fill in t	Fill in the Blanks / Multiple Choice Questions/ True or False / Answer in One or Two Lines						
(Conce	(Concept based Questions) (1 Marks each)/ Long answer questions (6 Marks each)/ short						
notes (5	notes (5 Marks each)						
B) Semester End Examination: 60 % (60 Marks)

Duration: The examination shall be of 2 hours' duration.

Question Paper Pattern

1. There shall be three questions each of 20 marks.

2. All questions shall be compulsory with internal options.

3. Question may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.

Revised Syllabus of Courses of Master of Science (M.Sc.) in Biotechnology Programme at Semester I with Effect from the Academic Year 2023-2024

Name of the Course	Molecular Diagnostics
Course Code	PSBT108
Class	M. Sc. I Biotechnology
~	-
Semester	
No of Credits	2
Nature	Theory
1 (00010	
T	Main Planting
Iype	Major: Elective

Molecular Diagnostics

Units at a Glance

Sr. No.	Units	No. of Lectures
1	Diagnostics Microbiology	15
2	Functional Genomics and Proteomics	15
	Total	30

Course Outcomes:

At the end of the Course, the Learner will be able to -

- CO1 To impart the knowledge of diagnostic microbiology.
- CO2 To have a firm foundation in functional genomics and proteomics.

Curriculum:

Sr. No.	Units	
1	Diagnostics Microbiology	(15 Lectures)
	 Techniques: Molecular amplification techniques Target amplification systems Probe amplification systems Signal amplification PCR in molecular diagnostics; viral and bacterial detection; Quant- internal controls, external standards, calibrators, absolute and rel Identification and classification of organisms using molecular typing/sequencing Detection and identity of microbial diseases I identification of pathogenic organisms/ viruses e.g. TB and HT molecular diagnostics tests (NAAT) for Hepatitis and AIDS. Mol of fungal pathogens; Pharmacogenetics. 	titation of organisms lative quantification; narkers- 16S rRNA Direct detection and V Clinical utility of lecular identification
2	Functional Genomics and Proteomics	(15 Lectures)

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 183 | Page Genomics: Gene expression by SAGE and Functional Microarrays- Construction of microarrays – genomics and genomic arrays, cDNA arrays and oligo arrays and Proteomics its applications, NGS platforms, high and low read sequences
Proteomics: Separation and Identification of Proteins 2D-PAGE, isoelectric focusing, Edmand reaction Protein tryptic digestion and peptide mass fingerprinting mass spectrometry, MALDI-TOF.
Protein Expression Profiling: Protein Microarrays/ Protein chips: Types and applications, Gel-based quantitative proteomics: DIGE 15 (Difference in Gel Electrophoresis)
Clinical and biomedical applications of proteomics, Introduction to metabolomics, lipidomics, metagenomics and systems biology.

Learning Resources recommended:

- 1. Campbell, I. D. (2012). Biophysical Techniques. Oxford: Oxford University Press.
- 2. Serdyuk, I. N., Zaccai, N. R., & Zaccai, G. (2007). Methods in Molecular Biophysics: Structure, Dynamics, Function. Cambridge: Cambridge University Press.
- Phillips, R., Kondev, J., & Theriot, J. (2009). Physical Biology of the Cell. New York: Garland Huang, B., Bates, M., & Zhuang, X. (2009). Super-Resolution Fluorescence Microscopy. Annual Review of Biochemistry, 78(1), 993-1016. doi:10.1146/annurev.biochem.77.061906.092014.
- 4. Lander, E. (2016). The Heroes of CRISPR. Cell, 164(1-2), 18-28. doi: 10.1016/j. cell.2015.12.041.
- 5. Ledford, H. (2016). The Unsung Heroes of CRISPR. Nature, 535(7612), 342-344. doi:10.1038/535342a.
- Molecular Imaging Theranostics, 4(4), 386-398. doi:10.7150/thno.8006 Coleman, W. B., & Tsongalis, G. J. (2010). Molecular Diagnostics: for the Clinical Laboratorian. Totowa, NJ: Humana Press.
- 7. Molecular biology of the cell by Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Rafi, Keith Roberts, and Peter Walter. 5th ed. 2008
- 8. Molecular Microbiology Diagnostic Principles and practice third edition, David H. Persing and Fred C. Tenover Copyright _ 2016 by ASM Press
- 9. Methods in Molecular Biology, Vol. 204: Molecular Cytogenetics: Protocols and Applications, Edited by: Y. S. Fan © Humana Press Inc., Totowa, NJ 2001
- 10. Genome 3 TA Brown Molecular Biotechnology Principles and applications of recombinant technology, Glick 4th edition 2010
- 11. Human Molecular Genetics. Tom Strachan and Andrew Read, 2004, 3rd Edition, Garland

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 184 | Page

12. Introduction to human molecular genetics. Jack Pasternak, 2005, 2nd Edition, Wiley publication.

Evaluation Pattern:

A) Internal Assessment: 40 % (40 Marks)

Sr.No.	Particulars	Marks
01	One Periodical Class Test / Online Examination/ Assignments/	30
	Powerpoint presentation to be conducted in the given semester	
02	Active participation in routine class instructional deliveries and	10
	overall conduct as a responsible learner, mannerism and articulation	
	and exhibit of leadership qualities in organizing related academic	
	activities	
Questio	n Paper Pattern for Periodical Class Test/ Online Examination	
Maxim	um Marks: 30	
Duratio	n: 60 Minutes	
Fill in the Blanks / Multiple Choice Questions/ True or False / Answer in One or Two Lines		
(Concept based Questions) (1 Marks each)/ Long answer questions (6 Marks each)/ short		
notes (5	Marks each)	

B) Semester End Examination: 60 % (60 Marks)

Duration: The examination shall be of 2 hours' duration.

Question Paper Pattern

1. There shall be three questions each of 20 marks.

2. All questions shall be compulsory with internal options.

3. Question may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.

Revised Syllabus of Courses of Master of Science (M.Sc.) in Biotechnology Programme at Semester I with Effect from the Academic Year 2023-2024

Name of the Course	Biochemistry Practical PSBT101
Course Code	PSBT104
Class	M. Sc. I Biotechnology
Semester	Ι
No of Credits	2
Nature	Practical
Туре	Major: Mandatory

Biochemistry Practical PSBT101

Course Outcomes:

At the end of the Course, the Learner will be able to -

CO1 – To impart knowledge and hands on experience of the various practicals related to Biochemistry.

Curriculum: (60 Lectures)

Regular Practicals
1. To prepare Acetate and Phosphate buffers using the Henderson-Hasselbalch
equation.
2. Protein purification by ammonium sulphate fractionation, dialysis and separation
using PAGE - CBB/silver staining, Glycoprotein staining.
3. To determine an unknown protein concentration using Biuret, Folin Lowry and
Bradford method.
4. Isolation of genomic DNA from plant/animal source.
5. Isolation of cholesterol and lecithin from egg yolks.
C Demonstration of Aming with a distriction and a Minhadain

6. Paper chromatography of Amino acids and detection using Ninhydrin.

Learning Resources Recommended:

- 1. Principles and techniques of Biochemistry and molecular biology (7th Ed, 2010) Keith Wilson and John Walker, Cambridge university Press.
- 2. Biochemistry Laboratory (2nd Ed, 2012) Rodney Boyer, Pearson's Publication.
- 3. Biochemical Methods, Sadasivam and Manikam (3rd Ed, 2008) New age international publishers, 2008.
- 4. An Introduction to Practical Biochemistry (3rd Edition), David T Plummer, Tata McGraw Hill Publishing Company Limited, 1992.

Evaluation Pattern:

Sr. No.	Particulars	Marks
01	Journal	20
02	Viva	10
03	Overall performance	10
Marks in Internal Assessment will be converted into 20 marks.		

a) Internal Assessment: 40 % (40 Marks)

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 187 | Page

Sr. No.	Particulars	Marks
01	Practical Question 1	20
02	Practical Question 2	20
03	Practical Question 3	20
Marks in SEE will be converted into 30 marks.		

b) Semester End Examination: 60 % (60 Marks)

Revised Syllabus of Courses of Master of Science (M.Sc.) in Biotechnology Programme at Semester I with Effect from the Academic Year 2023-2024

Name of the Course	Bioprocess engineering and Technology Practical PSBT102
Course Code	PSBT105
Class	M. Sc. I Biotechnology
Semester	Ι
No of Credits	2
Nature	Practical
Туре	Major: Mandatory

Bioprocess Engineering and Technology Practical PSBT102

Course Outcomes:

At the end of the Course, the Learner will be able to

CO1 – To impart knowledge and hands on experience of the various practicals related to bioprocess engineering and technology.

Curriculum: (60 Lectures)

Regular Practicals

1. Microbial pigment/metabolite:

- a. Production Factors affecting pH, temperature, nutrients, static/ shaker conditions, submerged/surface.
- b. Extraction soluble and insoluble pigments organic solvent extraction and purification.
- 2. Immobilize an organism / enzyme and detect the conversion of substrate to product.
- 3. Methods for measurement of cell mass:
- a. Direct physical measurement of dry weight, wet weight, or volume of cells after centrifugation.
- b. Indirect measurement.

c. Turbidity measurements employ instruments to determine the amount of light scattered by cell suspension.

Demonstration Practicals

1. Demonstration of media optimization by Placket Burman test.

2. Demonstration of Analytical techniques like HPLC, FPLC, GC, GC-MS etc. for measurement of amounts of products/substrates.

Visit

Quality Assurance in a Biotechnology/food/beverage industry – Field visit and report.

Report Writing

Method validation for any biochemical test (Accuracy, Limit of Detection, Limit of Quantitation, Specificity, Linearity and range, Ruggedness and Robustness) – Report writing.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 190 | Page Learning Resources Recommended:

- 1. Shuler, M. L., & Kargi, F. (2002). Bioprocess Engineering: Basic Concepts. Upper Saddle River, NJ: Prentice Hall.
- 2. Stanbury, P. F., & Whitaker, A. (2010). Principles of Fermentation Technology. Oxford: Pergamon Press.
- 3. Bailey, J. E., & Ollis, D. F. (1986). Biochemical Engineering Fundamentals. New York: McGraw-Hill.
- 4. El-Mansi, M., & Bryce, C. F. (2007). Fermentation Microbiology and Biotechnology. Boca Raton: CRC/Taylor & Francis.
- 5. Lee, Y. K. (2013). Microbial Biotechnology: Principles and Applications. Hackensack, NJ: World Scientific.
- 6. Alexander N. Glazer and Hiroshi Nikaido -Microbial Biotechnology: Fundamentals of Applied Microbiology, 2nd Edition
- 7. Michael Waites and Morgan, Rockney and Highton -Industrial microbiology: An Introduction
- 8. Robert Whitehurst and Maarten Van Oort Enzymes in food technology 2nd ed
- 9. Nduka Okafor Modern industrial microbiology and biotechnology Science Publishers, Enfield, (2007)

Evaluation Pattern:

Sr. No.	Particulars	Marks
01	Journal	20
02	Viva	10
03	Overall performance	10
Marks in Internal Assessment will be converted into 20 marks.		

a) Internal Assessment: 40 % (40 Marks)

b) Semester End Examination: 60 % (60 Marks)

Sr. No.	Particulars	Marks
01	Practical Question 1	20
02	Practical Question 2	20
03	Practical Question 3	20
Marks in SEE will be converted into 30 marks.		

Revised Syllabus of Courses of Master of Science (M.Sc.) in Biotechnology Programme at Semester I with Effect from the Academic Year 2023-2024

Name of the Course	Immunology Practical PSBT106
Course Code	PSBT107
Class	M. Sc. I Biotechnology
Semester	Ι
No of Credits	2
Nature	Practical
Туре	Major: Elective

Immunology Practical PSBT106

Course Outcomes:

At the end of the Course, the Learner will be able to -

CO1 – To impart knowledge and hands on experience of the various practicals related to Immunology.

Curriculum: (60 Lectures)

Regular Practicals

- 1. Preparation and sterility testing of heat killed vaccines.
- 2. To perform Dot blot technique.
- 3. Latex bead agglutination / precipitation test for detection of rheumatoid factor (RF).
- 4. Separation of lymphocytes on Ficoll Histopaque and viability count.
- 5. Study of precipitation reactions Ouchterlony and Mancini methods.
- 6. Widal test Qualitative and Quantitative.
- 7. RPR (Rapid Plasma Reagin) Kit based
- 8. Determination of ESR.

Demonstration Practical

Demonstration of Western blotting.

Learning Resources Recommended:

- 1. Kindt, T. J., Goldsby, R. A., Osborne, B. A., &Kuby, J. (2006). Immunology. New York: W.H. Freeman.
- 2. Murphy, K., Travers, P., Walport, M., & Janeway, C. (2012). Janeway's Immunobiology. New York: Garland Science.
- 3. An introduction to Immunology C V Rao Narosa Publishing house
- 4. Immunology essential and fundamental, Second edition S Pathak & U P Parveen Publishing House
- 5. Text Book of Medical Biochemistry, Praful Godkar. Bahalani Publishers
- 6. Immunology, An introduction, fourth edition. Ian R Tizard Thomson
- 7. Immunology, fifth Ed Goldsby, T J. Kindt, Osborne, Janis Kuby Freeman and company.
- 8. Immunology, sixth Ed Roitt, Brostoff, Male Mosby, An imprint of Elsevier science Ltd
- 9. Practical immunology, Frank Hay, 4th Edition, Blackwell Science
- 10. Medical Microbiology, Anantharayan.

Evaluation Pattern:

a) Internal Assessment: 40 % (40 Marks)

Sr. No.	Particulars	Marks
01	Journal	20
02	Viva	10
03	Overall performance	10
Marks in Internal Assessment will be converted into 20 marks.		

c) Semester End Examination: 60 % (60 Marks)

Sr. No.	Particulars	Marks
01	Practical Question 1	20
02	Practical Question 2	20
03	Practical Question 3	20
Marks in SEE will be converted into 30 marks.		

Revised Syllabus of Courses of Master of Science (M.Sc.) in Biotechnology Programme at Semester I with Effect from the Academic Year 2023-2024

Name of the Course	Molecular Diagnostics Practical PSBT108
Course Code	PSBT109
Class	M. Sc. I Biotechnology
Semester	Ι
No of Credits	2
Nature	Practical
Туре	Major: Elective

Molecular Diagnostics Practical PSBT108

Course Outcomes:

At the end of the Course, the Learner will be able to -

CO1 – To impart knowledge and hands on experience of the various practicals related to molecular diagnostics.

Curriculum: (60 Lectures)

Regular Practicals	
 Sample collection, storage and processing in molecular diagnostic labs. Photo album of chromosomal abnormalities in normal and disease condition numerical detected by using different probes – centromeric, locus specific, telomeric Structural - Translocations and fusion genes, Detection of inversions and interstitial deletions by SKY, CGH for a disease or cancer. 	
3. Separation of human serum / plasma proteins / egg white using Native PAGE. Demonstration Practicals	
 Antimicrobial sensitivity test and demonstration of drug resistance. Identification of microorganisms using biochemical testing (performing) and 16S rDNA sequencing (demonstration). Demonstration/ video of 2D PAGE. Demonstration of Affinity chromatography. 	
Visit	

Visit to molecular diagnostic lab/ cytogenetic lab: Report.

Learning Resources Recommended:

- 1. Principles and techniques of Biochemistry and molecular biology (7th Ed, 2010) Keith Wilson and John Walker, Cambridge university Press.
- 2. Biochemistry Laboratory (2nd Ed, 2012) Rodney Boyer, Pearson's Publication.
- 3. Biochemical Methods, Sadasivam and Manikam (3rd Ed, 2008) New age international publishers, 2008.
- 4. An Introduction to Practical Biochemistry (3rd Edition), David T Plummer, Tata McGraw Hill Publishing Company Limited, 1992

Evaluation Pattern:

a) Internal Assessment: 40 % (40 Marks)

Sr. No.	Particulars	Marks
01	Journal	20
02	Viva	10
03	Overall performance	10
Marks in Internal Assessment will be converted into 20 marks.		

b) Semester End Examination: 60 % (60 Marks)

Sr. No.	Particulars	Marks
01	Practical Question 1	20
02	Practical Question 2	20
03	Practical Question 3	20
Marks in SEE will be converted into 30 marks.		

Revised Syllabus of Courses of Master of Sciences (M.Sc.) in Biotechnology Programme at Semester I with Effect from the Academic Year 2023-2024

Name of the Course	Research Methodology
Course Code	PSBT110
Class	M.Sc. I Biotechnology
Semester	Ι
No of Credits	4
Nature	Theory
Туре	Research Methodology
Relevance with	Learner will gain the knowledge of Research Methodology in
Employability/	biotechnological application. Further, the learner will be benefited in
Entrepreneurship/	the form of increase in his/her research aptitude, analytical and
Skill development	decision-making skills. Acquisition of the knowledge in the field of
	research will increase the chances of employability and will offer
	better prospects in the corporate sector.

Research Methodology

Units at a Glance

Sr. No.	Units	No. of Lectures
1	Fundamentals of Research Methods	15
2	Research Design and Measurement Concepts and Literature Searching	15
3	Documentation, scientific writing and Academic Integrity	15
4	Data Collection, Data Processing and Statistical Analysis	15
	Total	60

Course Outcomes:

At the end of the Course, the Learner will be able to -

- 1. Demonstrate an understanding of the features and importance of research in business, different types of research, the formulation of research problems, research design and the significance of literature review.
- 2. Apply the knowledge of data collection methods, including primary and secondary data collection techniques, questionnaire designing and factors influencing the choice of data collection methods.
- 3. Analyze data processing techniques, including editing, coding, classification, tabulation, and graphic presentation, as well as perform statistical analysis.
- 4. Evaluate different testing methods for hypotheses, including non-parametric tests (ANOVA, factor analysis, path analysis), considering their applicability and significance in research.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 199 | Page 5. Create well-structured research reports, following the essentials of research report writing, proper referencing and citation methods and adhering to ethical norms and practices in research.

Curriculum:

Sr. No.	Units	
1	Fundamentals of Research Methods(15 Lecture)	
	Definition of research, Role and objectives of research, importance of research, Applications and types of research, Creativity and innovation, Critical thinking, Research process and steps in it, Collecting and reviewing the literature, Conceptualization and Formulation of: research problem, identifying variables, constructing hypothesis and Synopsis. Interpretation of results and discussion.	
2	Research Design and Measurement Concepts and Literature Searching (15 Lectures)	
	Selecting and defining a research problem, Need for research design, Features of a good research design, Different research designs, Scales of measurements, Nominal, Ordinal, Internal and ratio scales, Errors in measurements, Validity and Reliability in measurement, Scale Construction Techniques.	
	Digital: Web sources, E-journals, Journal access, Citation Index, Impact factor, H- index, E-consortium, UGC info net, eBooks, Internet discussion groups and communities, Blogs, preprint servers, Search engines, Scirus, Google Scholar, Scopus.	
3	Documentation, scientific writing and Academic Integrity (15 Lectures)	
	Documentation and scientific writing: Results and Conclusions, Preparation of manuscript for Publication of Research paper, Presenting a paper in scientific seminar, Thesis writing. Structure and Components of Research Report, Types of Report: research papers, thesis, Research Project Reports, Pictures and Graphs, citation styles, writing a review of paper, Bibliography. for illustration, style, publications of scientific work, Research and Academic Integrity: Intellectual property rights (IPRs). Plagiarism, Copyright issues, Ethics in research, and case studies.	
4	Data Collection, Data Processing and Statistical Analysis(15 Lectures)	
	Data Collection: Collection of primary data; Observation method; Interview method; Collection of data through Questionnaires; Collection of data through Schedules; Collection of secondary data, Case study method. Data Processing: Significance in Research, Stages in Data Processing: Editing, Coding, Classification, Tabulation, Graphic Presentation.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 200 | Page

	Statistical analysis: ANOVA, Factor Analysis and Path analysis.
	Interpretation of data: significance and Precautions in data interpretation.

Learning Resources recommended:

Main References:

- 1. Kothari C.R., "Research Methodology, Methods and Techniques" (Second revised edition, New Age International Publication, 2004).
- 2. Saravanavel P., "Research Methodology" (Kitab Mahal, Sixteenth edition, 2007).
- 3. Ranjit Kumar, "Research Methodology, a step-by-step guide for beginners" (Pearson education Australia, Second edition 2005).
- 4. Mark Saunders, Philip Lewis, Adrain Thornhiu, "Research Methods for Business Students" (Pearson Education ltd, Seventh edition, 2016)

Additional References:

- 1. Thesis & Assignment Writing-J Anderson, B.H.Dursten & M.Poole, Wiley Eastern, 1977
- A Hand Book of Methodology of Research P. Rajammal and P. Devadoss, R. M. M. Vidya Press, 1976.
- 3. The Craft of Scientific Writing by Michael Alley, (Springer).
- 4. Research Methodology by R. Panneerselvam, PHI, New Delhi 2005
- 5. Research Methodology- A step by step Guide for Beginners, (2nd ed.) Kumar Ranjit, 2005, Pearson Education.
- 6. How to write and publish by Robert A. Day and Barbara Gastel, (Cambridge University Press).
- 7. S. Gupta, (2005). Research Methodology and Statistical techniques, Deep and Deep Publications (P) Ltd. New Delhi, India.
- 8. R. Kothari, (2008). Research Methodology, New Age International, New Delhi, India.
- 9. Standard /Reputed Journal authors' instructions.
- 10. Web resources: www.sciencedirect.com for journal references,
- 11. www.aip.org and www.aps.org for reference styles.
- 12. Web resources: www.nature.com, www.sciencemag.org,
- 13. www.springer.com, www.pnas.org, www.tandf.co.uk,
- 14. www.opticsinfobase.org for research updates.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 201 | Page

Evaluation Pattern

A) Internal Assessment: 40 % (40 Marks)

Sr.No.	Particulars	Marks	
01	One Periodical Class Test / Online Examination/ Assignments/	30	
	Powerpoint presentation to be conducted in the given semester		
02	Active participation in routine class instructional deliveries and	10	
	overall conduct as a responsible learner, mannerism and articulation		
	and exhibit of leadership qualities in organizing related academic		
	activities		
Questio	n Paper Pattern for Periodical Class Test/ Online Examination		
Maxim	Maximum Marks: 30		
Duratio	Duration: 60 Minutes		
Fill in t	l in the Blanks / Multiple Choice Questions/ True or False / Answer in One or Two Lines		
(Conce	oncept based Questions) (1 Marks each)/ Long answer questions (6 Marks each)/ short		
notes (5	notes (5 Marks each)		

B) Semester End Examination: 60 % (60 Marks)

Duration: The examination shall be of 2 hours' duration.

Question Paper Pattern

1. There shall be four questions each of 15 marks.

2. All questions shall be compulsory with internal options.

3. Question may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.

No. of Courses	Semester II	Credits
PSBT201	Bioinformatics and Biostatistics	4
PSBT202	Plant and Animal Biotechnology	4
PSBT203	Patenting in Biotechnology and Bioethics	2
PSBT204	Bioinformatics and Biostatistics Practical PSBT201	2
PSBT205	Plant and Animal Biotechnology Practical PSBT202	2
	Major Electives (Any One)	
PSBT206	Bio Entrepreneurship	3
PSBT207	Bio Entrepreneurship Practical PSBT206	1
	OR	
PSBT208	Bioanalytical and Biophysical Techniques	4
PSBT209	On Job Training/ Field Project	4
	Total Credits	22

Revised Syllabus of Courses of Master of Science (M.Sc.) in Biotechnology Programme at Semester II with Effect from the Academic Year 2023-2024

Name of the Course	Bioinformatics and Biostatistics
Course Code	PSBT201
Class	M. Sc. I Biotechnology
Semester	Π
No of Credits	4
Nature	Theory
Туре	Major: Mandatory I

Bioinformatics and Biostatistics *Units at a Glance*

Sr. No.	Units	No. of Lectures
1	Basics of Bioinformatics and DNA sequence analysis	15
2	Multiple sequence alignments and protein modelling	15
3	Biostatistics	15
4	Biostatistics	15
	Total	60

Course Outcomes:

At the end of the Course, the Learner will be able to -

CO1 – To impart the knowledge of basics of Bioinformatics and DNA sequence analysis.

CO2 – To provide the insight of multiple sequence alignments and protein modelling.

CO3 – To gain the knowledge of the various concepts of Biostatistics.

Curriculum:

Sr. No.	Units
1	Basics of Bioinformatics and DNA sequence analysis(15 Lectures)
	Bioinformatics basics: Computers in biology and medicine; Introduction to Unix and Linux systems and basic commands; Biological XML DTD's; databases and search tools: biological background for sequence analysis, NCBI - publicly available tools; resources at EBI; DNA sequence analysis: gene bank sequence database; submitting DNA sequences to databases, pairwise alignment techniques: BLAST and FASTA, motif discovery and gene prediction; local structural variants of DNA, their relevance in molecular level processes, and their identification; assembly of data from genome sequencing

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 205 | Page

2	Multiple sequence alignments and protein modelling (15 Lectures)
	Multiple sequence alignment: CLUSTALW and CLUSTALX for multiple sequence alignment, submitting DNA protein sequence to databases: where and how to submit, SEQUIN; submitting aligned sets of sequences, updating submitted sequences; methods of phylogenetic analysis. Protein modelling: Protein structure and classification databases; Protein structure visualization; Protein structure analysis: Secondary, (Chou Fasman algorithm, GOR algorithm, Tertiary (Homology modelling, Threading, Ab initio)
3	Biostatistics (15 Lectures)
	Introduction and scope of statistics in biological studies and basic concepts. Collection of data, by different sampling methods: Simple random sampling, stratified random sampling and systematic sampling and non - random sampling. Measures of central tendency; Mean, Median and Mode. Measures of Dispersion: Variance/ standard deviation, coefficient of variation and standard error. Confidence limits for mean and proportion. Probability and Basic concepts: Normal and binomial distribution. Correlation and regression analysis for a bivariate data: Scatter diagram
4	Biostatistics (15 Lectures)
	Test of Hypothesis: Null hypothesis, alternate hypothesis, test statistics, Type I and Type II errors, level of significance and critical region. Z test: for a single sample, two samples, t-test a single sample, two samples and testing the significance of the correlation. Coefficient: t paired test, Chi-square (x2 test): As a goodness of fit and in 2x2 contingency test

Learning Resources recommended:

1. Lesk, A. M. (2002). Introduction to Bioinformatics. Oxford: Oxford University Press.

2. Mount, D. W. (2001). Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

3. Baxevanis, A. D., & Ouellette, B. F. (2001). Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins. New York: Wiley-Interscience.

4. Pevsner, J. (2015). Bioinformatics and Functional Genomics. Hoboken, NJ.: Wiley-Blackwell.

5. Bourne, P. E., & Gu, J. (2009). Structural Bioinformatics. Hoboken, NJ: Wiley-Liss.

6. Lesk, A. M. (2004). Introduction to Protein Science: Architecture, Function, and Genomics. Oxford: Oxford University Press.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 206 | Page

7. S. P. Gupta, Statistical Methods, (45th Revised Edition), Publisher SCHAND

8. William G. Cochran, Sampling Techniques (3th Edition), Wiley and sons

9. Boris V. Gnedenko, Theory of Probability (6th Edition), CRC Press, 13-May-1998

10. Oscar Kempthorne, Klaus Hinkelmann, Design and Analysis of Experiments, Volume1: Introduction to Experimental Design, 2nd Edition, ISBN: 978-0-471-72756-9 December 2007

11. Acheson Johnston Duncan, Quality Control and Industrial Statistics (5th Edition), Irwin; 5 edition January 1, 1986

12. BK Mahajan, Methods in Biostatistics (7th Edition), Published December 1st 2008 by JP Medical Ltd

Evaluation Pattern

A) Internal Assessment: 40 % (40 Marks)

Sr.	Particulars	Marks
No.		
01	One Periodical Class Test / Online Examination/ Assignments/	30
	Powerpoint presentation to be conducted in the given semester	
02	Active participation in routine class instructional deliveries and	10
	overall conduct as a responsible learner, mannerism and articulation	
	and exhibit of leadership qualities in organizing related academic	
	activities	
Question Paper Pattern for Periodical Class Test/ Online Examination		
Maximum Marks: 30		
Duration: 60 Minutes		
Fill in the Blanks / Multiple Choice Questions/ True or False / Answer in One or Two Lines		
(Concept based Questions) (1 Marks each)/ Long answer questions (6 Marks each)/ short		
notes (5 Marks each)		

B) Semester End Examination: 60 % (60 Marks)

Duration: The examination shall be of 2 hours' duration.

Question Paper Pattern

1. There shall be four questions each of 15 marks.

2. All questions shall be compulsory with internal options.

3. Question may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.

Revised Syllabus of Courses of Master of Science (M.Sc.) in Biotechnology Programme at Semester II with Effect from the Academic Year 2023-2024

Name of the Course	Plant and Animal Biotechnology
Course Code	PSBT202
Class	M. Sc. I Biotechnology
Semester	Π
No of Credits	4
Nature	Theory
Туре	Major: Mandatory II

Plant and Animal Biotechnology

Units at a Glance

Sr. No.	Units	No. of Lectures
1	Plant tissue culture	15
2	Plant genetic manipulations	15
3	Animal cell culture and Animal reproductive Biotechnology	15
4	Molecular mapping and marker assisted selection	15
Total		60

Course Outcomes:

At the end of the Course, the Learner will be able to -

CO1 – To impart the knowledge of plant tissue culture.

CO2 – To provide the insight of plant genetic manipulations.

CO3 – To gain the knowledge of animal cell culture and animal reproductive Biotechnology.

CO4 – To have a firm foundation in molecular mapping and marker assisted selection.

Curriculum:

Sr. No.	Units
1	Plant tissue culture(15 Lectures)
	Historical perspective; totipotency; culture and organogenesis; Somatic embryogenesis; establishment of Animal cell cultures – callus culture, cell suspension culture, media culture preparation – nutrients and plant hormones; sterilization techniques; applications of tissue culture - micropropagation; somaclonal variation; androgenesis and its applications in genetics and plant breeding; germplasm conservation and cryopreservation; synthetic seed production; protoplast culture and somatic hybridization - protoplast isolation; culture and usage; somatic hybridization -

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 210 | Page

	methods and applications; cybrids and somatic cell genetics; plant cell cultures for secondary metabolite production.	
2	Plant genetic manipulations(15 Lectures)	
	Genetic engineering: Agrobacterium-plant interaction; Genetic virulence; Ti and Ri plasmids; opines and their manipulations significance; T-DNA transfer; disarmed Ti plasmid; Genetic transformation - Agrobacterium-mediated gene delivery; cointegrate and binary vectors and their utility; direct gene transfer - PEG-mediated, electroporation, particle bombardment and alternative methods; screenable and selectable markers; characterization of transgenics; chloroplast transformation; marker-free methodologies; advanced methodologies - cisgenesis, intragenesis and genome editing; molecular pharming -concept of plants as biofactories, production of industrial enzymes and pharmaceutically important compounds.	
3	Animal cell culture and Animal reproductive Biotechnology (15 Lectures)	
	Brief history of animal cell culture; ATC media: serum, serum free and plant based serum alternatives and chemically defined media. Application of animal cell culture for virus isolation and in vitro testing of drugs, testing of toxicity of environmental pollutants in cell culture, application of cell culture technology in production of human and animal viral vaccines and pharmaceutical proteins. Novel strategies and advancement in mammalian cell line development, large scale production of animal cells, advances in tissue engineering, use of genetic engineering tools for therapy. Animal reproductive biotechnology: structure of sperms reproductive and ovum; cryopreservation of sperms and ova of biotechnology livestock; artificial insemination; super ovulation, and embryo recovery and in vitro fertilization; culture of Vaccinology embryos; cryopreservation of embryos; embryo transfer technology; transgenic manipulation of animal embryos; applications of transgenic animal technology; animal cloning - basic concept, cloning for conservation for conservation endangered species	
4	Molecular mapping and marker assisted selection (15 Lectures)	
	Molecular markers - hybridization and PCR based mapping and markers RFLP, RAPD, STS, SSR, AFLP, SNP markers; marker DNA fingerprinting-principles and applications; assisted introduction to mapping of genes/QTLs; marker-assisted selection - strategies for Introducing genes of biotic and abiotic stress resistance in plants: genetic basis for disease resistance in animals; molecular diagnostics of pathogens in plants and animals; detection of meat adulteration using DNA based methods.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 211 | Page Learning Resources recommended:

- 1. Biology of plant metabolomics, Robert Hall, Annual Plant Reviews, 43, Chichester, West Sussex; Ames, Iowa: Wiley-Blackwell, 2011
- 2. Plant Biotechnology. Umesha, S. (2013).
- 3. Glick, B. R., & Pasternak, J. J. (2010). Molecular Biotechnology: Principles and Applications of Recombinant DNA. Washington, D.C.: ASM Press.
- 4. Brown, T. A. (2006). Gene Cloning and DNA Analysis: An Introduction. Oxford: Blackwell Publishers.
- 5. Primrose, S. B., & Twyman, R. M. (2006). Principles of Gene Manipulation and Genomics. Malden, MA: Blackwell Pub.
- 6. Slater, A., Scott, N. W., & Fowler, M. R. (2003). Plant Biotechnology: The Genetic Manipulation of Plants. Oxford: Oxford University Press.
- 7. Gordon, I. (2005). Reproductive Techniques in Farm Animals. Oxford: CAB International.
- 8. Levine, M. M. (2004). New Generation Vaccines. New York: M. Dekker.
- 9. Pörtner, R. (2007). Animal Cell Biotechnology: Methods and Protocols. Totowa, NJ: Human a Press.
- 10. Chawla, H. S. (2000). Introduction to Plant Biotechnology. Enfield, NH: Science.
- 11. Razdan, M. K. (2003). Introduction to Plant Tissue Culture. Enfield, NH: Science.
- 12. Slater, A., Scott, N. W., & Fowler, M. R. (2008). Plant Biotechnology: n Introduction to Genetic Engineering. Oxford: Oxford University Press.
- 13. Buchanan, B. B., Gruissem, W., & Jones, R. L. (2015). Biochemistry & Molecular Biology of Plants, Wiley 2002.

Evaluation Pattern

A) Internal Assessment: 40 % (40 Marks)

Sr.	Particulars	Marks
No.		
01	One Periodical Class Test / Online Examination/ Assignments/	30
	Powerpoint presentation to be conducted in the given semester	
02	Active participation in routine class instructional deliveries and	10
	overall conduct as a responsible learner, mannerism and articulation	
	and exhibit of leadership qualities in organizing related academic	
	activities	
Question Paper Pattern for Periodical Class Test/ Online Examination		
Maximum Marks: 30		
Duration: 60 Minutes		
Fill in the Blanks / Multiple Choice Questions/ True or False / Answer in One or Two Lines		
(Concept based Questions) (1 Marks each)/ Long answer questions (6 Marks each)/ short		
notes (5	Marks each)	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 212 | Page

B) Semester End Examination: 60 % (60 Marks)

Duration: The examination shall be of 2 hours' duration.

Question Paper Pattern

1. There shall be four questions each of 15 marks.

2. All questions shall be compulsory with internal options.

3. Question may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.

Revised Syllabus of Courses of Master of Science (M.Sc.) in Biotechnology Programme at Semester II with Effect from the Academic Year 2023-2024

Name of the Course	Patenting in Biotechnology and Bioethics
Course Code	PSBT203
Class	M. Sc. I Biotechnology
Semester	Π
No of Credits	2
Nature	Theory
Туре	Major: Mandatory III

Patenting in Biotechnology and Bioethics Units at a Glance

Sr. No.	Units	No. of Lectures
1	Patenting	15
2	Bioethics	15
	Total	30

Course Outcomes:

At the end of the Course, the Learner will be able to -

CO1 – To impart the knowledge of patenting.

CO2 – To provide the insight of bioethics.

Curriculum:

Sr. No.	Units
1	Patenting (15 Lectures)
	Patentability of Statutory Provisions Regarding Biotechnological; Biotechnology Inventions Under the Current Patent Act 1970 (as Inventions Amended 2005). Interpreting TRIPS in the Light of Biotechnology, Territorial Nature of Patents: From Territorial to Global Patent Regime, Inventions, Feasibility of a Uniform Global Patent, System, Merits and Demerits of Uniform Patent Law, Relevance of the Existing International Patent, Tentative Harmonization Efforts, Implications of Setting up a Uniform World Patent System.
2	Bioethics (15 Lectures)
	Introduction, bioethics in health care- euthanasia, Bioethics artificial reproductive technologies, prenatal diagnosis, genetic screening, gene therapy, organ transplantation. Ethics of clinical research, Bioethics in research – cloning and stem cell research, Human and animal experimentation, Agricultural biotechnology -

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 215 | Page

Genetically	engineered	food,	environmental	risk,	labeling	and	public	opinion.
Bioterrorism	1.							

Learning Resources recommended:

- 1. Ganguli, P. (2001). Intellectual Property Rights: Unleashing the Knowledge Economy. Tata McGraw-Hill Publishing Company.
- Karen F. Greif, Jon F. Merz Current Controversies in the Biological Sciences_ Case Studies of Policy Challenges from New Technologies (Basic Bioethics)-The MIT Press (2007)
- 3. V. Sreekrishna Bioethics and Biosafety in Biotechnology-to New Age International Pvt Ltd. Publishers (2007)
- 4. Padma Nambisan (Auth.) An Introduction to Ethical, Safety and Intellectual Property Rights
- 5. Issues in Biotechnology- Academic Press (2017)
- 6. Kshitij Kumar Singh (auth.) Biotechnology and Intellectual Property Rights_ Legal and Social Implications-Springer India (2015)
- 7. Talwar Shabana; Intellectual Property Rights in WTO and Developing Countries, Edition 2010, Serials Publications, New Delhi.

Evaluation Pattern

A) Internal Assessment: 40 % (40 Marks)

Sr.No.	Particulars	Marks			
01	One Periodical Class Test / Online Examination/ Assignments/	30			
	Powerpoint presentation to be conducted in the given semester				
02	Active participation in routine class instructional deliveries and	10			
	overall conduct as a responsible learner, mannerism and articulation				
	and exhibit of leadership qualities in organizing related academic				
	activities				
Question Paper Pattern for Periodical Class Test/ Online Examination					
Maximum Marks: 30					
Duration: 60 Minutes					
Fill in the Blanks / Multiple Choice Questions/ True or False / Answer in One or Two Lines					
(Concept based Questions) (1 Marks each)/ Long answer questions (6 Marks each)/ short					
notes (5 Marks each)					

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 216 | Page
B) Semester End Examination: 60 % (60 Marks)

Duration: The examination shall be of 2 hours' duration.

Question Paper Pattern

1. There shall be four questions each of 15 marks.

2. All questions shall be compulsory with internal options.

3. Question may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.

Revised Syllabus of Courses of Master of Science (M.Sc.) in Biotechnology Programme at Semester II with Effect from the Academic Year 2023-2024

Name of the Course	Bio Entrepreneurship
Course Code	PSBT206
Class	M. Sc. I Biotechnology
Semester	Π
No of Credits	3
Nature	Theory
Туре	Major: Elective

Bio Entrepreneurship Units at a Glance

Sr.	Units	No. of Lectures
190.		
1	Innovation and Entrepreneurship	15
2	Business strategies	15
3	Finance and Accounting	15
	Total	45

Course Outcomes:

At the end of the Course, the Learner will be able to -

CO1 – To gain the knowledge of innovation and entrepreneurship.

CO2 – To have a firm foundation in business strategies.

CO3 – To provide the insight of finance and accounting.

Curriculum:

Sr. No.	Units	
1	Innovation and Entrepreneurship (15 Lectures)	
	Innovation and entrepreneurship in bio-business Introduction and scope in Bio- entrepreneurship, Types of bio-industries and competitive dynamics between the sub- industries of the bio-sector (e.g. pharmaceuticals vs. Industrial biotech), Strategy and operations of bio-sector firms; Factors shaping opportunities for innovation and entrepreneurship in bio-sectors, and the business implications of those opportunities Alternatives faced by emerging biofirms and the relevant tools for strategic decision Entrepreneurship development programs of public and private agencies (MSME, DBT BIRAC, Make In India), strategic dimensions of patenting & commercialization strategies.	- d d ,, , ,
2	Business strategies (15 Lectures)	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 219 | Page

	Bio markets: business strategy and marketing Negotiating the road from lab to the
	market (strategies and processes of negotiation with financers, government and
	regulatory authorities), Pricing strategy, Challenges in marketing in bio business (market conditions & segments: developing distribution channels, the nature, analysis
	and management of customer needs), Basic contract principles, different types of agreement and contract terms typically found in joint venture and development agreements, Dispute resolution skills.
3	Einspes and Associations (15 Lestures)
5	Finance and Accounting (15 Lectures)

Learning Resources recommended:

- 1. Adams, D. J., & Sparrow, J. C. Enterprise for Life Scientists: Developing Innovation and Entrepreneurship in the Biosciences Scion
- 2. Shimasaki, C. D. Biotechnology Entrepreneurship: Starting, Managing, and Leading Biotech Companies Academic Press Latest Edition
- Onetti, A., & Zucchella, A. Business Modeling for Life Science and Biotech Companies: Creating Value and Competitive Advantage with the Milestone Bridge Routledge Latest Edition
- 4. Jordan, J. F. Innovation, Commercialization, and Start-Ups in Life Sciences CRC Press Latest Edition.

Evaluation Pattern

A) Internal Assessment: 40 % (40 Marks)

Sr.	Particulars	Marks
No.		
01	One Periodical Class Test / Online Examination/ Assignments/	30
	Powerpoint presentation to be conducted in the given semester	
02	Active participation in routine class instructional deliveries and	10
	overall conduct as a responsible learner, mannerism and articulation	
	and exhibit of leadership qualities in organizing related academic	
	activities	
Question Paper Pattern for Periodical Class Test/ Online Examination		

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 220 | Page

Maximum Marks: 30 Duration: 60 Minutes Fill in the Blanks / Multiple Choice Questions/ True or False / Answer in One or Two Lines (Concept based Questions) (1 Marks each)/ Long answer questions (6 Marks each)/ short notes (5 Marks each)

B) Semester End Examination: 60 % (60 Marks)

Duration: The examination shall be of 2 hours' duration.Question Paper Pattern1. There shall be four questions each of 15 marks.2. All questions shall be compulsory with internal options.

3. Question may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.

Revised Syllabus of Courses of Master of Science (M.Sc.) in Biotechnology Programme at Semester II with Effect from the Academic Year 2023-2024

Name of the Course	Bioanalytical and Biophysical Techniques
Course Code	PSBT208
Course Code	
Class	M. Sa. I. Diotachnology
Class	M. Sc. I Biotechnology
G (TT
Semester	
No of Credits	4
Nature	Theory
1 (uturo	
Type	Major: Elective
Type	Major. Elective

Bioanalytical and Biophysical Techniques Units at a Glance

Sr. No.	Units	No. of Lectures
1	Microscopic Techniques	15
2	Chromatography	15
3	HPTLC Principles and Instrumentation	15
4	Spectroscopy	15
	Total	60

Course Outcomes:

At the end of the Course, the Learner will be able to -

CO1 – To impart the knowledge of microscopic techniques.

CO2 – To provide the insight of chromatography.

 $\rm CO3-To$ gain the knowledge of HPTLC principles and instrumentation.

CO4 – To have a firm foundation in spectroscopy.

Curriculum:

Sr. No.	Units
1	Microscopic Techniques (15 Lectures)
	Confocal microscopy, Scanning Probe microscope, AFM, cryotomy scanning and transmission microscopes, different fixation and staining techniques for EM, freeze- etch and freeze- fracture methods for EM, image processing methods in microscopy, single cell imaging. Environmental SEM and its advantages, Immunoelectron microscopy.
2	Chromatography (15 Lectures)

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 223 | Page

	HPLC and GC: Specialized columns & detectors in HPLC, Ultra Performance Liquid
	Chromatography (UPLC), Fast protein liquid chromatography (FPLC), 2D-HPLC and
	preparative HPLC, Universal and specific Detectors in GC (FID, TCD, ECD, FPD and
	NPD), Derivatization for GC and Applications.
3	HPTLC Principles and Instrumentation (15 Lectures)
	HPTLC vs TLC, Densitometry & quantitation in HPTLC, HPTLC in fingerprinting &
	QC, Troubleshooting, Applications of HPTLC, Method Development and validation,
	Preparative HPTLC
4	Spectroscopy (15 Lectures)
	Introduction and principle of: fluorescence spectroscopy, Light scattering
	spectroscopy, Luminometry, circular dichroism, NMR and ESR spectroscopy,
	Molecular structure determination using X-ray diffraction, X ray crystallography and
	NMR, Molecular analysis using light scattering, IR, Atomic absorption Spectroscopy.

Learning Resources recommended:

- 1. Douglas A. Skoog, Principles of Instrumental Analysis, Saunders College Publishing
- 2. Chung Chow Chan, Y. C. Lee, Analytical Method Validation and Instrumental Performance Verification, Wiley Interscience o Raymond P. W. Scott,
- 3. Chromatographic Detectors Design Function Function and Operation, Marcel Dekker Inc
- 4. D. J. David, Gas Chromatographic Detectors, John Wiley & Sons
- 5. G. Subramanian, Preparative and Process Scale Liquid Chromatography, Ellis Horwood
- 6. W. M. A. Niessen, Liquid Chromatography Mass Spectrometry 2nd Ed., Marcel Dekker Inc.
- 7. Dr. P. D. Sethi, HPTLC High Performance Thin Layer Chromatography

Evaluation Pattern

A) Internal Assessment: 40 % (40 Marks)

Sr.	Particulars	Marks
No.		
01	One Periodical Class Test / Online Examination/ Assignments/	30
	Powerpoint presentation to be conducted in the given semester	
02	Active participation in routine class instructional deliveries and	10
	overall conduct as a responsible learner, mannerism and articulation	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 224 | Page

	and exhibit of leadership qualities in organizing related academic	
	activities	
Questio	on Paper Pattern for Periodical Class Test/ Online Examination	
Maxim	num Marks: 30	
Duration: 60 Minutes		
Fill in the Blanks / Multiple Choice Questions/ True or False / Answer in One or Two Lines		
(Concept based Questions) (1 Marks each)/ Long answer questions (6 Marks each)/ short		
notes (5 Marks each)		

B) Semester End Examination: 60 % (60 Marks)

Duration: The examination shall be of 2 hours' duration.

Question Paper Pattern

1. There shall be four questions each of 15 marks.

2. All questions shall be compulsory with internal options.

3. Question may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.

Revised Syllabus of Courses of Master of Science (M.Sc.) in Biotechnology Programme at Semester II with Effect from the Academic Year 2023-2024

Name of the Course	Bioinformatics and Biostatistics Practical PSBT201
Course Code	PSBT204
Class	M. Sc. I Biotechnology
Semester	Ш
No of Credits	2
Nature	Practical
Туре	Major: Mandatory

Bioinformatics and Biostatistics Practical PSBT201

Course Outcomes:

At the end of the Course, the Learner will be able to -

CO1 – To impart knowledge and hands on experience of the various practicals related to Bioinformatics and Biostatistics.

Curriculum: (60 Lectures)

Regular Practicals

1. Using NCBI and Uniprot web resources.

- 2. Introduction and use of various genome databases.
- 3. Sequence information resources: Using NCBI, EMBL, GenBank, Entrez, Swissprot/ TrEMBL, UniProt.
- 4. Similarity searches using tools like BLAST and interpretation of results.
- 5. Multiple sequence alignment using ClustalW.
- 6. Phylogenetic analysis of protein and nucleotide sequences.
- 7. Homology modeling.
- 8. Use of various primer designing and restriction site prediction tools.
- 9. Use of different protein structure prediction databases (PDB, SCOP, CATH).
- 10. Measures of central tendency: Mean, median and mode for grouped and ungrouped data.

11. Measures of dispersion: Standard deviation for grouped and ungrouped data: standard value for the mean and proportion.

12. Confidence limits for the mean and proportion.

13. Probability: Normal distribution and Binomial distribution use of normal tables.

14. Correlation and Regression: Estimation of correlation coefficient, to fit regression equations from bivariate data.

15. Test of hypothesis: a) Z-test b) t-test c) x2 test

Demonstration Practical

Use of gene prediction methods (GRAIL, Genscan, Glimmer).

Learning Resources Recommended:

1. Lesk, A. M. (2002). Introduction to Bioinformatics. Oxford: Oxford University Press.

2. Mount, D. W. (2001). Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

3. Baxevanis, A. D., & Ouellette, B. F. (2001). Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins. New York: Wiley-Interscience.

4. Pevsner, J. (2015). Bioinformatics and Functional Genomics. Hoboken, NJ.: Wiley-Blackwell.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 227 | Page

5. Bourne, P. E., & Gu, J. (2009). Structural Bioinformatics. Hoboken, NJ: Wiley-Liss.

6. Lesk, A. M. (2004). Introduction to Protein Science: Architecture, Function, and Genomics. Oxford: Oxford University Press.

7. S. P. Gupta, Statistical Methods, (45th Revised Edition), Publisher SCHAND

8. William G. Cochran, Sampling Techniques (3th Edition), Wiley and sons

9. Boris V. Gnedenko, Theory of Probability (6th Edition), CRC Press, 13-May-1998

10. Oscar Kempthorne, Klaus Hinkelmann, Design and Analysis of Experiments, Volume1: Introduction to Experimental Design, 2nd Edition, ISBN: 978-0-471-72756-9 December 2007

11. Acheson Johnston Duncan, Quality Control and Industrial Statistics (5th Edition), Irwin; 5 edition January 1, 1986

12. BK Mahajan, Methods in Biostatistics (7th Edition), Published December 1st 2008 by JP Medical Ltd

Evaluation Pattern:

Sr. No.	Particulars	Marks		
01	Journal	20		
02	Viva	10		
03	Overall performance	10		
Marks in Internal Assessment will be converted into 20 marks.				

a) Internal Assessment: 40 % (40 Marks)

b) Semester End Examination: 60 % (60 Marks)

Sr. No.	Particulars	Marks		
01	Practical Question 1	20		
02	Practical Question 2	20		
03	Practical Question 3	20		
Marks in SEE will be converted into 30 marks.				

Revised Syllabus of Courses of Master of Science (M.Sc.) in Biotechnology Programme at Semester II with Effect from the Academic Year 2023-2024

Name of the Course	Plant and Animal Biotechnology Practical PSBT202
Course Code	PSBT205
Class	M. Sc. I Biotechnology
Semester	П
No of Credits	2
Nature	Practical
Туре	Major: Mandatory

Plant and Animal Biotechnology Practical PSBT202

Course Outcomes:

At the end of the Course, the Learner will be able to -

CO1 – To impart knowledge and hands on experience of the various practicals related to plant and animal Biotechnology.

Curriculum: (60 Lectures)

Regular Practicals

Plant tissue culture -

1. Prepare culture media with various supplements for plant tissue culture.

- 2. Prepare explants from suitable plants for inoculation under aseptic conditions.
- 3. Isolate plant protoplast by enzymatic and mechanical methods and attempt fusion by PEG.

4. Culture Agrobacterium tumefaciens and attempt transformation of any dicot species.

5. Undertake plant genomic DNA isolation by CTAB method and its quantitation by visual as well as spectrophotometric methods.

Animal cell culture -

6. Count cells of an animal tissue and check their viability.

7. Prepare culture media with various supplements for plant and animal tissue culture.

8. Prepare single cell suspension from spleen and thymus.

9. Isolate DNA from animal tissue by SDS method.

10. Attempt animal cell fusion using PEG.

Learning Resources Recommended:

- 1. Biology of plant metabolomics, Robert Hall, Annual Plant Reviews, 43, Chichester, West Sussex; Ames, Iowa: Wiley-Blackwell, 2011
- 2. Plant Biotechnology. Umesha, S. (2013).
- 3. Glick, B. R., & Pasternak, J. J. (2010). Molecular Biotechnology: Principles and Applications of Recombinant DNA. Washington, D.C.: ASM Press.
- 4. Brown, T. A. (2006). Gene Cloning and DNA Analysis: An Introduction. Oxford: Blackwell Publishers.
- 5. Primrose, S. B., & Twyman, R. M. (2006). Principles of Gene Manipulation and Genomics.Malden, MA: Blackwell Pub.
- 6. Slater, A., Scott, N. W., & Fowler, M. R. (2003). Plant Biotechnology: The Genetic Manipulation of Plants. Oxford: Oxford University Press.
- 7. Gordon, I. (2005). Reproductive Techniques in Farm Animals. Oxford: CAB International.
- 8. Levine, M. M. (2004). New Generation Vaccines. New York: M. Dekker.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 230 | Page

- 9. Pörtner, R. (2007). Animal Cell Biotechnology: Methods and Protocols. Totowa, NJ: HumanaPress.
- 10. Chawla, H. S. (2000). Introduction to Plant Biotechnology. Enfield, NH: Science.
- 11. Razdan, M. K. (2003). Introduction to Plant Tissue Culture. Enfield, NH: Science.
- 12. Slater, A., Scott, N. W., & Fowler, M. R. (2008). Plant Biotechnology: n Introduction to Genetic Engineering. Oxford: Oxford University Press.
- 13. Buchanan, B. B., Gruissem, W., & Jones, R. L. (2015). Biochemistry & Molecular Biology of Plants, Wiley 2002.

Evaluation Pattern:

a) Internal Assessment: 40 % (40 Marks)

Sr. No.	Particulars	Marks		
01	Journal	20		
02	Viva	10		
03	Overall performance	10		
Marks in Internal Assessment will be converted into 20 marks.				

b) Semester End Examination: 60 % (60 Marks)

Sr. No.	Particulars	Marks		
01	Practical Question 1	20		
02	Practical Question 2	20		
03	Practical Question 3	20		
Marks in SEE will be converted into 30 marks.				

Revised Syllabus of Courses of Master of Science (M.Sc.) in Biotechnology Programme at Semester II with Effect from the Academic Year 2023-2024

Name of the Course	Bio Entrepreneurship Practical PSBT206
Course Code	PSBT207
Class	M. Sc. I Biotechnology
Semester	Π
No of Credits	1
Nature	Practical
Туре	Major: Elective

Bio Entrepreneurship Practical PSBT206

Course Outcomes:

At the end of the Course, the Learner will be able to -

CO1 – To impart knowledge and hands on experience of the various practicals related to bio entrepreneurship.

Curriculum: (30 Lectures)

Case Study
Case study - Successful Entrepreneurship in Biotechnology/Pharma industry -
Presentation.
Project and Report Writing
Project submission on startup ideas and validation, presentation and report writing.
MOOC
Any MOOC related to Biotechnology.

Learning Resources Recommended:

- 1. Coursera
- 2. Swayam https://swayam.gov.in
- 3. NPTEL https://nptel.ac.in/noc/
- 4. Udemy

Evaluation Pattern:

a) Internal Assessment: 40 % (40 Marks)

Sr. No.	Particulars	Marks		
01	MOOC Report	15		
02	Case Study Report	15		
03	Overall performance	10		
Marks in Internal Assessment will be converted into 20 marks.				

Sr. No.	Particulars	Marks		
01	Project work	20		
02	Project Report	20		
03	Project Presentation	20		
Marks in SEE will be converted into 30 marks.				

b) Semester End Examination: 60 % (60 Marks)

Revised Syllabus of Courses of Master of Science (M.Sc.) in Biotechnology Programme at Semester II with Effect from the Academic Year 2023-2024

Name of the Course	On Job Training/ Field Project
Course Code	PSBT209
Class	M.Sc. I Biotechnology
Semester	II
No of Credits	4
Nature	Practical
Туре	On Job Training/ Field Project
Relevance with	The learners will be able to think critically, organize ana analyze scientific
Employability/	data; to develop advanced scientific writing skills to write research articles,
Entrepreneurship/	reviews, thesis and proposals and to make oral, poster or Powerpoint
Skill development	presentations; to understand the best practices of scientific writing by adhering to research ethics and by avoiding plagiarism.

Guidelines and Evaluation pattern for On Job Training/ Field Project (100 Marks)

Introduction:

Inclusion of On Job Training/ Field Project in the course curriculum of the M.Sc. in Biotechnology programme is one of the ambitious aspects in the programme structure. The main objective of inclusion of On Job Training/ Field Project is to inculcate ability to interpret particular aspect of the study in his/ her own words.

Guidelines for On Job Training

On-the-Job Training/Field Project: Students will be required to undertake a designated project or tasks in an organization or industry relevant to their field of study. The course aims to provide students with practical exposure and hands-on experience in a professional work environment related to their field of study.

Course Objectives:

By the end of the course, students should be able to -

- 1. Gain exposure to real-world insights and apply theoretical knowledge to practical situations
- 2. Enhance his/her skills regarding problem-solving, decision-making, and communication skills.
- 3. Understand organizational dynamics and work culture.
- 4. Build industry connections and networking opportunities.

Course Duration:

Minimum 20 days / 120 hours of On Job Training with an Organization/ NGO/ Charitable Organization/ Private firm.

- The theme of the internship should be based on any study area of the Major course.
- Project Report should be of minimum 50 pages.
- Experience Certificate is Mandatory.

Report Structure:

The students will be required to submit a comprehensive report at the end of the On-the-Job Training/Field Project. A project report has to be brief in content and must include the following aspects:

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 236 | Page

a) Title Page:

Mentioning the title of the report, name of the student, program, institution and the period of training.

b) Certificate of Completion:

A certificate issued by the organization or supervisor confirming the successful completion of the training.

c) Declaration:

A statement by the student declaring that the report is their original work and acknowledging any assistance or references used.

d) Acknowledgment:

Recognizing individuals or organizations that provided support, guidance or resources during the training.

e) Table of Contents:

Providing a clear outline of the report's sections and page numbers.

f) Executive Summary:

A bird's eye view of your entire presentation has to be precisely offered under this Category.

g) Introduction on the Company:

A Concise representation of company/ organization defining its scope, products/services, etc.

h) Your Role in the Organization during the On Job Training:

The key aspects handled, the department under which you were deployed and brief Summary report duly acknowledged by the reporting head.

i) Challenges:

The challenges confronted while churning out theoretical knowledge into practical world.

j) Conclusion:

A brief overview of your experience and suggestions to bridge the gap between theory and practice.

Course Outcomes:

- 1. Apply theoretical knowledge and concepts acquired during the academic program to realworld work scenarios.
- 2. Develop practical skills and competencies necessary for successful professional engagement.
- 3. Demonstrate effective problem-solving, decision-making and critical thinking abilities in a work environment.
- 4. Adapt to and navigate organizational dynamics and work culture in the chosen industry/ institute.
- 5. Prepare a comprehensive report documenting the training/project experience, findings and recommendations.

Guidelines for Field Project

The Field Project for Master of Science in Biotechnology is designed to provide students with hands-on learning experiences in understanding different methods and techniques. The project aims to expose students to development-related issues in both rural and urban settings. It offers opportunities for students to observe and study actual field situations related to Biotechnology and programmes that guide the development process. Additionally, students will explore innovative practices to address complex problems in the society.

Course Objectives:

By the end of the course, students should be able to -

1. Think critically, organize and analyze scientific data.

2. Develop advanced scientific writing skills to write research articles, reviews, thesis and proposals and to make oral, poster or Powerpoint presentations.

3. Understand the best practices of scientific writing by adhering to research ethics and by avoiding plagiarism.

Course Duration: One Semester Minimum 20 days / 120 hours of field project work.

Course Outline:

1. Introduction to Field Project (10 Hours)

Understanding the significance of field-based learning in societal development. Identifying the objectives and expected outcomes of the field project.

Selecting suitable rural and urban settings for the project.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 238 | Page

2. Field Visits and Observations (30 Hours)

Organizing field visits to selected rural and urban areas. Observing and documenting the societal conditions, challenges and opportunities in the community.

Engaging with local stakeholders and understanding their perspectives.

3. Research and Data Collection (20 Hours)

Designing research methodologies and data collection tools. Collecting primary and secondary data related to development issues. Analyzing and interpreting the data to identify key challenges and potential solutions.

4. Understanding Policies and Programmes (20 Hours)

Exploring government policies and programmes related to societal development. Studying the role of various organizations in implementing development initiatives.

5. Identifying Innovative Solutions (20 Hours)

Brainstorming and ideating innovative practices to address identified societal problems. Developing action plans for implementing proposed solutions.

6. Preparing Project Report and Presentations (20 Hours)

Preparing a detailed project report as per the format and making presentations for the same. Developing Report writing and presentation skills among the learner.

Rubrics for Field Project Report Evaluation:

1. Content (40 Marks):

Criteria	Excellent (5)	Good (4)	Satisfactory (3)	Needs Improvement (2)	Unsatisfactory (1)
Introduction and Objectives	Clear and well- defined	Clearly stated	Adequately stated	Vaguely stated	Not stated or unclear
Literature Review	Comprehensiv e and relevant	Relevant and adequate	Limited relevance	Inadequate or missing	Not included

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 239 | Page

Criteria	Excellent (5)	Good (4)	Satisfactory (3)	Needs Improvement (2)	Unsatisfactory (1)
Field Visits and Observations	Thorough and detailed	Adequate information	Limited data collection	Incomplete or lacking detail	No field observations made
Data Analysis	In-depth analysis	Analyzed effectively	Some analysis performed	Superficial or incomplete	No data analysis conducted
Understanding of Policies and Programmes	Strong understanding	Adequate understanding	Limited understanding	Inadequate or inaccurate	No understanding displayed
Identified Socio- Economic Problems	Comprehensiv e and clear	Clearly identified	Some problems identified	Inadequate or vague	No problems identified
Conclusion	Concise and conclusive	Clear and summarized	Somewhat conclusive	Unclear or missing	No conclusion provided
Recommendations	Well- developed and feasible	Feasible and relevant	Partially feasible	Infeasible or lacking detail	No recommendations given

2. Presentation (20 Marks):

Criteria	Excellent (5)	Good (4)	Satisfactory (3)	Needs Improvement (2)	Unsatisfactory (1)
Structure and Organization	Well-structured and logical	Clear organization	Adequate organization	Lacks structure	Disorganized and unclear

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 240 | Page

Criteria	Excellent (5)	Good (4)	Satisfactory (3)	Needs Improvement (2)	Unsatisfactory (1)
Language and Clarity	Clear, concise, and fluent	Fluent language	Some clarity issues	Difficult to understand	Incoherent and unclear
Visual Presentation	Professional and engaging	Neat and presentable	Some visual aids used	Minimal use of visuals	No visuals used
Grammar and Spelling	No errors in grammar/spelling	Minor errors	Some errors	Frequent errors	Numerous errors

3. Research Methodology (10 Marks):

Criteria	Excellent (5)	Good (4)	Satisfactory (3)	Needs Improvement (2)	Unsatisfactory (1)
Appropriate Method Selection	Highly appropriate	Mostly appropriate	Adequate method choice	Inappropriate methods	No clear method used
Data Collection and Analysis	Thorough data collection	Adequate data analysis	Limited analysis	Incomplete or weak analysis	No data analysis done

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 241 | Page

4. Creativity and Innovation (20 Marks):

Criteria	Excellent (10)	Good (8)	Satisfactory (6)	Needs Improvement (4)	Unsatisfactory (2)
Innovation in Problem Solving	Highly innovative	Innovative solutions	Some creativity shown	Lacks creativity	No innovative solutions

5. Overall Impression (10 Marks):

Criteria	Excellent (5)	Good (4)	Satisfactory (3)	Needs Improvement (2)	Unsatisfactory (1)
Overall Quality	Exceptional quality	High quality	Acceptable quality	Below acceptable	Poor quality
Contribution and Learning	Outstanding contribution	Significant contribution	Some contribution	Limited or no learning	No contribution or learning

Conclusion:

The Field Project for Master of Science in Biotechnology provides students with invaluable experiences in understanding societal contexts and development-related issues. Through field visits, research and innovative thinking, students gain practical insights into addressing complex challenges and contributing to the societal development of communities. The rubrics for evaluation ensure a comprehensive assessment of students' learning and contributions during the project.

a) Title Page:

Mentioning the title of the report, name of the student, program, institution and the period of training/project.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 242 | Page

b) Certificate of Completion:

A certificate issued by the organization or guide confirming the successful completion of the project.

c) Declaration:

A statement by the student declaring that the report is their original work and acknowledging any assistance or references used.

d) Acknowledgment:

Recognizing individuals or organizations that provided support, guidance or resources during the project.

e) Table of Contents:

Providing a clear outline of the report's sections and page numbers.

f) Executive Summary:

A bird's eye view of your entire presentation has to be precisely offered under this

Category. A brief overview of the project, its objectives, and key findings should be mentioned.

g) Introduction:

Background information about the field project and its significance. Objectives and scope of the project.

h) Literature Review:

Overview of relevant literature and studies related to the chosen field and development issues.

i) Methodology:

Description of the research methods used for data collection, such as interviews, surveys, or observations. Explanation of the data analysis techniques employed.

j) Field Visits and Observations:

Detailed accounts of the field visits including locations, dates and observations made during the visits. Photographs or visual aids to support the observations.

k) Data Analysis:

Presentation and interpretation of the data collected during the field visits. Charts, graphs, or tables to illustrate the findings.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 243 | Page

i) Understanding Policies and Programmes:

Explanation of relevant government policies and programmes related to the identified development issues. Assessment of how these policies will be implemented in the field context.

ii) Identified Societal Problems:

Detailed description of the complex societal problems observed in the community. Analysis of the root causes and implications of these problems.

I) Innovative Solutions:

Presentation of innovative practices proposed to address the identified problems.

Description of the action plans to implement these solutions.

m) Conclusion & Recommendations:

Summary of the key findings and outcomes of the field project. Reflections on the overall experience and learning during the project. Specific recommendations for policymakers, organizations, or stakeholders to address the identified issues.

n) References & Appendices:

List of all sources cited in the project report. Additional supporting materials, such as interview transcripts, survey questionnaires, or field visit notes can be attached as appendices.

The project report based on 'On Job Training/ Field Project' shall be prepared as per the broad guidelines given below:

- ➢ Font type: Times New Roman
- ➢ Font size: 12-For content, 14-for Title
- ▶ Line Space: 1.5-for content and 1-for in table work
- ➢ Paper Size: A4
- ▶ Margin: in Left-1.5, Up-Down-Right-1
- ➤ The Project Report shall be bounded.

Format

1st page (Main Page)

Title of the problem of the Project

A Project Submitted

to

R. P. Gogate college of Arts & Science and

R.V. Jogalekar College of Commerce, Ratnagiri (Autonomous)

under

University of Mumbai

for partial completion of the degree

of

Master in Science

in special Group Biotechnology

Under the Faculty of Science

By

Name of Student

Under the Guidance of

Name of the Guiding Teacher

R. P. Gogate college of Arts & Science and

R.V. Jogalekar College of Commerce, Ratnagiri (Autonomous)

Near District Court

Month and Year

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 245 | Page

On separate page Index

Chapter	Title of the Chapter	Page No.
No.		
01		
02		
03		
04		
05		

On separate page

Declaration by learner

I the undersigned Miss/Mr.

[Name of the learner] here by, declare that work embodied in this project work titled ______ forms my own contribution to the research work carried out under the guidance of [Name of the guiding teacher] ______ is a result of my own research work and has not been previously submitted to any other University for any other Degree/ Diploma to this or any other University.

Wherever reference has been made to previous works of others, it has been clearly indicated as such and included in the bibliography.

I, here by further declare that all information of this document has been obtained and presented in accordance with academic rules and ethical conduct.

Name and Signature of the learner

Certified by Name and signature of the Guiding Teacher

On separate page

Acknowledgment

(Model structure of the acknowledgement)

To list who all have helped me is difficult because they are so numerous and the depth is so enormous.

I would like to acknowledge the following as being idealistic channels and fresh dimensions in the completion of this project.

I thank the **R. P. Gogate college of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) & University of Mumbai** for giving me opportunity to do this project.

I would like to thank my Principal, ______for providing the necessary facilities required for completion of this project.

I take this opportunity to thank our Head ______, for his moral support and guidance.

I would also like to express my sincere gratitude towards my project guide ______ whose guidance and care made the project successful.

I would like to thank my College Library, for having provided various reference books and magazines related to my project.

Lastly, I would like to thank each and every person who directly or indirectly helped me in the completion of the project especially my Parents and Peers who supported me throughout my project.

(Rashmi A. Bhave) The Chairperson, BoS

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 249 | Page

Name of Programme	M. Sc. Biotechnology
Level	PG
No of Semesters	04
Year of Implementation	2023-24
Programme Specific Outcomes (PSO)	 At the end of the Programme, Learner will be able 1. To identify, formulate, review research literature, analyze and design experiments and identify the solutions for complex problems using modern tools. 2. To apply the knowledge of basic biotechnology to solve complex problems in society. 3. To design experiments to investigate the problems in varied fields of Biotechnology and allied areas. 4. To understand and interpret data and derive unique solutions to existing and emerging issue. 5. To apply reasoning informed by contextual knowledge to assess societal, health, safety and the consequent responsibilities relevant to the professional biotechnology practices. 6. To recognize the need and have the ability to engage in independent and lifelong learning in technological change. 7. To function effectively as an individual and as a member or leader in diverse teams and in inter- and multi-disciplinary areas.
	8. To empower with a knowledge base in processes and applications that would impact and influence existing prototypes of green, blue, red and white Biotechnology.9. To be skilled and equipped with contemporary knowledge in Biotechnology and would be eligible for jobs in varied industrial sectors.
Relevance of PSOs to the local, regional, national, and global developmental needs	Biotechnology is important at Global, National, Regional and local level. The significance of Biotechnology identified at all these levels and it is relevant to everyday life. The curriculum design of M. Sc. Biotechnology programme helps in understanding various concepts in detail. This programme includes new emerging technologies and their applications. This

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 250 | Page

also involves the actual working and mechanism required in
industries. The application part is taken care of so that the learner
shall be able to connect the phenomena around him with the
curriculum. This programme also imparts the research values
among the learners. The hard and softs skills acquired during the
completion of this programme shall make him employable.

The performance of the learners shall be evaluated into two parts. The learner's performance shall be assessed by Internal Assessment with 40 % marks in the first part and by conducting the Semester End Examinations of 60 % marks in the second part.

Standard of Passing

The learner to pass a course shall have to obtain a minimum of 40% marks in aggregate for each course where the course consists of Internal Assessment & Semester End Examination. The learner shall obtain minimum of 40% marks (i. e. 16 out of 40) in the Internal Assessment and 40% marks in Semester End Examination (i. e. 24 out of 60) separately, to pass the course and minimum of Letter Grade "P" in the project component, wherever applicable to pass a particular semester. A learner will be said to have passed the course if the learner passes the Internal Assessment and Semester End Examination together.

Performance Grading:

Letter Grades and Grade Points

Semester GPA/ Program CGPA Semester/Program	% of Marks	Alpha-Sign / Letter Grade Result
9.00-10.00	90.0 -100	0 (Outstanding)
8.00 ≤ 9.00	80.0 ≤ 90.0	A+ (Excellent)
$7.00 \le 8.00$	$70.0 \le 80.0$	A (Very Good)
$6.00 \le 7.00$	$60.0 \le 70.0$	B+ (Good)
$5.50 \le 6.00$	$55.0 \le 60.0$	B (Above Average)
$5.00 \le 5.50$	50.0 ≤ 55.0	C (Average)
$4.00 \le 5.00$	$40.0 \le 50.0$	P (Pass)
Below 4.00	Below 40	F (Fail)
Ab (Absent)	-	Absent

SMART Criteria for Course Outcomes:

Specific: Each course outcome is specific, outlining the knowledge and skills students are expected to acquire in relation to the specific topics covered.

Measurable: Each outcome can be measured through assessments, tests, or projects to determine the level of understanding and proficiency achieved by the students.

Achievable: The outcomes are achievable within the duration of the course, considering the number of lectures allocated to each topic.

Relevant: The outcomes are relevant to the subject of financial services and capital market, addressing important concepts, types, and mechanisms involved.

Time-bound: The outcomes are expected to be achieved by the end of the course, providing a clear timeline for assessment and evaluation.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 252 | Page
Name of the Course	Applied Virology and Microbiology
Course Code	PSBT 301
Class	M. Sc. II Biotechnology
Semester	III
No. of Credits	04
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 – Students will understand epidemiological principles in prevention, control and management of pandemic disease. They will acquire understanding of antimicrobial resistance for management of drug resistance in population.

CO2 - Students will understand the different aspects of biofilm and their management. They will also get insights into latest development of diagnostics & therapeutics for such diseases.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
I	Pandemic diseases, pathogenesis, diagnosis and treatment	Introduction to Pandemic diseases and causative agent like H1N1, MERS, SARS, Swine flu, COVID- 19, Nipah virus, Ebola virus. Structure of these viruse-coat and envelope protein, genome composition Pathogenesis (Mechanism of infection) and Acute Clinical manifestations (Signs and symptoms) of H1N1, MERS, SARS, Swine flu, COVID-19, Nipah virus,	15

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 253 | Page

		Ebola virus Diagnosis, and Treatment for H1N1, MERS, SARS, Swine flu, COVID-19, Nipah virus, Ebola virus Economic and Social loss due to t Viruses	
Π	Epidemiology of infectious diseases	Concept of Host, Reservoir, Source of infection, Carrier, Epidemic, Endemic, Pandemic, Outbreak History, Definition scope, importance of epidemiology Epidemiology, Health & Public Health Epidemiological principles in prevention & control of disease Measures of disease frequency – Concept of incidence, prevalence, Incidence rate, cumulative incidence, case fatality Epidemiological studies Organizations in disease control & Research – WHO, CDC, UNICEF, NACO, ICMR, NARI, NIV & NGOs	15
III	Medical Microbiology	Emerging Pathogens / Infections: Diseases caused by Bacteria / parasites/ viruses Name of causative agent, Name of disease caused, History, Antigenic structure, virulence factors, source of infection, Transmission, Pathogenesis, Clinical manifestations, Laboratory diagnosis, Treatment, Prophylaxis, vaccines , Current research and developments Bacteria as emerging pathogens / Diseases caused by bacteria: MOTT, Legionella, Conditions caused by <i>Helicobacter</i> <i>pylori</i> Viruses as emerging	15

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 254 | Page

		pathogens / Diseases caused by viruses : HIV (AIDS), Chikungunya, Dengue, Parasites as emerging pathogens / Diseases caused by parasites : Malaria , <i>Entamoeba</i> <i>histolytica</i> (Amoebic dysentery)	
IV	Biofilms and Antimicrobial activity	Structure of Biofilm – Extracellular polymeric substances, Biofilm architecture. Stages in formation of Biofilm. Microbial interactions in Biofilms (Quorum sensing) Need for formation of Biofilms by microorganisms	15
		Microorganisms commonly associated with biofilms on indwelling medical devices	
		Response of biofilms to host defense mechanisms & antimicrobial agents	
		Recent advances in biofilm management.	
		Conventional methods of drug susceptibility testing (Kirby-Bauer disc diffusion, Stoke's method, E test)	
		Advanced methods- Macro & Micro broth dilution methods, Time kill curves, serum killing curves, checker-board assays. Detection of drug resistance in Staphylococci, Streptococci, Enterococci. Automated methods of sensitivity testing. Concept of CLSI standards	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 255 | Page

- 1. Microbiology An introduction 10th edition Gerald Tortora, Burdell Funke, Christine Case, pearson Education Inc. Publication 2010
- 2. Basic Epidemiology R. Bonita, Bealglehole, T. Kjellstrom, 2nd Edition, 2006, WHO
- 3. Principles of Epidemiology in Public Health Practice, Third edition, US Department of Health & Human Services, CDC, 2012
- 4. Martin Rusnák, Viera Rusnáková, Georges Kamtoh, RELATIONS BETWEEN EPIDEMIOLOGY AND PUBLIC HEALTH, 2018 https://www.researchgate.net/publication/323964710
- 5. Evaluation and use of Epidemiological evidence for environmental health risk assessment guideline document World Health Organization 2000 eur/00/5020369
- 6. Ananthanarayan and Paniker's Textbook of Microbiology, by Reba Kanungo, 10th ed Universities Press; Tenth edition, 2017
- 7. Koneman's Colour Atlas & Textbook of Diagnostic microbiology, 7th edition, 2017, Lippincott, Williams & Wilkins.
- 8. Mackie & McCartney Medical Microbiology, J. G. Collee, J. P.Duguid, A. G. Fraser, B. P. Marmion, Thirteenth edition, Churchill Liviingston
- 9. Bailey and Scotts Diagnostic Microbiology Forbes, Sahem et al 12th ed, Moshby

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Assignment/ Powerpoint presentation/ Class Test	30
Active participation in routine class instructional deliveries	05
Overall performance	05

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 256 | Page

Question No.	Unit	Marks
1	Ι	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

B. Semester End Evaluation (Paper Pattern)

Name of the Course	Environmental Biotechnology
Course Code	PSBT 302
Class	M. Sc. II Biotechnology
Semester	III
No. of Credits	04
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - At the end of the course, students will be able to understand various concepts of environmental biotechnology, latest development in the area and use of microbiological, molecular and analytical methods in environmental biotechnology.

Curriculum:

UnitTitleLearning PointsNo	lo. of Lectures
IAirAir pollution & air Quality15Monitoring, Sampling, Source Apportionment. Air Pollution Management in Urban Settlement & Rural Areas, Integrated Air Pollution Management, Green Belt. Biofilters/15Bioscrubber. Catalytic Systems. Green Technology. Ozone Layer Depletion Atmospheric Brown Cloud, Impact on Flora and Fauna Impact on Crop Yield, concept of carbon credit, footprint.	5

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 258 | Page

Π	Soil	Causes of soil salinity; Chemical and	15
		metallic pollution of agricultural	
		soil: Mining and soil pollution: Soil	
		pollution and air quality:	
		Bioleaching of metals	
		bioaugmentation &	
		biomagnification for soil	
		remediation	
		Phytostabilization – Contaminant	
		removal, Soil cover, Rhizosphere	
		modification, Geotextile capping	
		solid waste; Industrial solid waste;	
		Domestic solid waste; Agricultural	
		solid waste; Municipal solid waste;	
		Major sources of solid wastes;	
		Effects of solid waste generation on	
		quality of air, water and public	
		health; solid waste management,	
		Disposal of organic and medical	
		waste; Recovery and recycling of	
		metallic waste; Disposal of plastic	
		waste and hazardous wastes.	
111	XX7 4		15
111	water	Biofilms in treatment of waste water;	15
		Biofilm development and biofilm	
		Kinetics; Aerobic Biofilms. Marine	
		pollution-major pollutants (heavy	
		metal, pesticide, oil, thermal,	
		radioactive, plastics, litter and	
		microbial, microplastics); Biological	
		indicators (Marine microbes, algae	
		and crustaceans) and accumulators:	
		Biotechnological application of	
		hazardous waste management of	
		water; Use of microbial systems,	
		Phytoremediation strategies in	
		constructed wetlands, Designing	
		constructed wetlands, Substrate,	
		Hydraulic loading rate, Hydraulic	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 259 | Page

		retention time, The selection of plant species, Surface area of wetland, Mechanisms to remove pollutants from constructed wetlands	
IV	Biodiversity and Environmental Monitoring	Introducing biodiversity informatics, Global patterns of distribution of biodiversity, biomes, Composition and distribution of biodiversity in India, Taxonomic Database Working Group (TDWG) standards, compatibility and interoperatability, taxonomically intelligent systems, Global biodiversity information system-Overview of the UNEP/GEF biodiversity data management project (BDM), Biosensors in Environmental Monitoring – Working & its application for monitoring environment pollutants, Application of protein biomarkers; Biosensors and biochips. IOT for water quality monitoring – General working, Application, water Parameters	15

- 1. Chandrappa, R., & Kulshrestha, U. C. (2015). Sustainable air pollution management: theory and practice. Springer.
- 2. Karl B. Schnelle & Charles A. Brown, (2002) Air pollution control technology Handbook. CRC Press
- 3. Singh, R. L. (Ed.). (2017). Principles and applications of environmental biotechnology for a sustainable future. Springer Singapore.
- 4. Enger, E. D., Smith, B. F., & Bockarie, A. T. (2000). Environmental science: A study of interrelationships (p. 434). Boston, MA: McGraw-Hill.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 260 | Page

5. Rittmann, B. E., & McCarty, P. L. (2012). Environmental biotechnology: principles and applications. Tata McGraw-Hill Education.

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Assignment/ Powerpoint presentation/ Class Test	30
Active participation in routine class instructional deliveries	05
Overall performance	05

B. Semester End Evaluation (Paper Pattern)

Question	Unit	Marks
No.		
1	Ι	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

Name of the Course	Biologics and Regulatory Affairs
Course Code	PSBT 303
Class	M. Sc. II Biotechnology
Semester	III
No. of Credits	04
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - At the end of the course, the learner will be: Familiar with the basic concepts and significance of Biologics/Biosimilar in addition to having knowledge about its therapeutic applications.

CO2 - Knowledgeable in the steps involved in the production of Biologics/Biosimilars. Aware of the protocols/techniques required for characterization of the Biosimilar relative to the Reference Biologic Acquainted with the regulatory aspects of approval of a Biosimilars.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Introduction to	Definition: Drugs, Small molecules,	15
	Biologics and	Large molecules/Biologics	
	Biosimilars	Categories of Biologics: protein-	
		based hormones, enzymes,	
		monoclonal antibodies, vaccines,	
		blood products, and gene/ cellular	
		therapies. Similarities and	
		Differences: Small molecules versus	
		generics, Biologics versus	
		Biosimilars.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 262 | Page

		USFDA Approved Small Molecules and USFDA Approved Generics USFDA Approved Biologics and USFDA Approved Biosimilars Indian Regulatory Scenario in relation to Small Molecules and Biologics Therapeutic uses of some of the Biologics/Biosimilars Acceptable	
		quality differences between approved Biosimilar and innovator's product	
Π	Production of Biologics and Biosimilars	ReferenceBiologicanditssignificance,Choice of expressionsystem/s and stability of cell linesDevelopmentof upstreamanddownstreamprocesses and scale uptomanufacturing,Majorfactorscontributing to the maintenance ofproductquality:rawmanufacturingconditions,virusfiltration,mycoplasmaremoval,ultrafiltrationExample:Production of Monoclonalantibody,downstreamprocessing ofMabIntroductiontotheIntroductiontotheconceptBiobettersVsBiosimilars	15
III	Characterization of Biologics and Biosimilars	Appearance,particulates,pH,osmolality,particle size,MolecularWeight,ProteinSequence and/oraminoacidcompositionGlycosylation,Sialylation,Phosphorylation,Acetylation,Myristoylation,if anySulfhydryl	15

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 263 | Page

		groups(s) and di-sulphide bridges.	
		Size and Purity on HPLC/ MALDI	
		Isoform pattern. Gel electrophoresis	
		(IEF, SDS PAGE and Native	
		PAGE). Western blot Fluorescence	
		spectrum FTIR spectrum and NMR	
		spectrum Bioassays, characterization	
		using Monoclonal Antibody as an	
		example	
		r r	
IV	Quality assurance and	Introduction to Regulatory Affairs	15
	regulatory affairs of	and approvals of Biosimilars,	
	Biologics and	Products approved under the FD&C	
	Biosimilars	.PHS/BCPI Act 2009: Innovator	
		Biologics Approval, Biosimilar	
		Pathway, Totality of Evidence,	
		Information required to demonstrate	
		biosimilarity, Interchangeability,	
		Product Switching, Product Naming	
		Global regulatory framework	

- Biosimilars: Regulatory, Clinical and Biopharmaceutical Development, Editors: Hiten J. Gutka

 Harry Yang
 Shefali Kakar, AAPS Advances in the Pharmaceutical, Sciences Series, Volume 34.
- 2. https://www.fda.gov/drugs/drug-approvals-and-databases/approved-drug-products-therapeutic-equivalence-evaluations-orange-book.
- 3. https://www.fda.gov/drugs/therapeutic-biologics-applications-bla/purple-book-lists-licensed-biological-products-reference-product-exclusivity-and-biosimilarity.
- 4. http://nib.gov.in/ NIB-DBT2016.pdf.
- 5. Biosimilars of Monoclonal Antibodies, A Practical Guide to Manufacturing, Preclinical, and Clinical Development. Edited by Cheng Liu, Ph.D.,K. John Morrow, Jr., Ph.D., Copyright c 2017 by John Wiley & Sons, Inc. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 264 | Page

- 6. Introduction to Biologic and Biosimilar Product Development and Analysis, Karen M. Nagel, AAPS Introductions in the Pharmaceutical Sciences, Editor-in-Chief: Robin M. Zavod, Midwestern University, Downers Grove, IL, USA.
- 7. Regulatory Requirements of 'Similar Biologics' for Marketing Authorization in India. Review Article. Sharmila et al., International Journal of Drug Regulatory Affairs; 2017, 5(1), 20-24.

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Assignment/ Powerpoint presentation/ Class Test	30
Active participation in routine class instructional deliveries	05
Overall performance	05

B. Semester End Evaluation (Paper Pattern)

Question	Unit	Marks
No.		
1	Ι	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

Name of the Course	Molecular Enzymology and Enzyme Technology
Course Code	PSBT 304
Class	M. Sc. II Biotechnology
Semester	III
No. of Credits	04
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - Enzyme deficiencies and use of enzymes as therapeutics.

At the end of the course the student will be aware of the enzyme kinetics, the catalytic power of an enzyme, changes in the active site, and the importance of the transition state. The importance of obtaining enzymes in their pure form and the ways it can be achieved.

CO2 - The need for and methods for enzyme engineering to enhance its activity or half - life. The significance of enzymes as diagnostic tools, in therapy, industrial application and as biosensors; and the outcome of enzyme deficiencies.

Unit	Title	Learning Points	No. of Lectures
I	Basic concepts	Brief history and introduction; chemical nature and properties of enzymes; how enzymes work mechanism of action; catalytic power and specificity of enzymes; types of catalysis; active site; transition state and evidence for enzyme transition state complementarity; enzyme kinetics –	15

Curriculum:

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 266 | Page

		factors affecting enzyme activity; enzyme inhibition; enzyme specificity; regulatory enzymes, regulation of enzyme activity; allosteric enzymes and their kinetic properties; units of enzymes; non protein enzymes; coenzymes and cofactors; isoenzymes; enzyme pattern in diseases.	
Π	Techniques of enzyme purification and studies/enzyme engineering	Based on molecular size (Dialysis/ ultrafiltration, density gradient centrifugation, size exclusion chromatography); based on solubility of proteins (Isoelectric precipitation, salting out); based on electric charge (Ion exchange chromatography, Electrophoresis capillary electrophoresis, 2D electrophoresis); based on adsorption properties (Adsorption and Affinity chromatography). Other techniques: Immobilized metal ion affinity chromatography, Hydrophobic interaction chromatography, Reversed phase chromatography and Chromatofocusing. Enzyme engineering – Introduction, Objectives, Principles, Examples and Steps involved in enzymes engineering. Random mutagenesis and molecular breeding of DNA. Recent advances in Rational approaches for Enzyme engineering. Applications of enzyme engineering.	15

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 267 | Page

III	Industrial and medical	Textile Industry, Detergent Industry,	15
	application of enzymes	Pulp and Paper Industry, Animal Feed Industry: Enzyme Technology	
		for Detoxification of Mycotoxins in	
		Animal Feed, Phytases for Feed Applications and Leather Industry.	
		Enzyme Applications for Human and	
		Animal Nutrition.	
		Biosensors – Introduction, instrumentation, Types and examples. Enzymes based sensors as	
		diagnostic tools- Biosensors for Blood Glucose, Biosensors for Urea	
		in Blood and Urine, Biosensors for Uric Acid, Biosensors for Arginine, Biosensors for Asparagine, Biosensors for Creatinine, Biosensors for Cholesterol, Allosteric enzyme based biosensors.	
IV	Enzyme deficiencies/diagnostic enzymes/therapeutics	Disorders of amino acid metabolism- Phenylketonuria, Alkaptonuria, Homocystinuria. Disorders of carbohydrate metabolism – Galactosemia, Hereditary fructose intolerance, Hereditary lactose intolerance. Disorder of lipid metabolism - Gaucher disease, Fabry disease. Disorders of purine and pyrimidine metabolism- HGPRT deficiency, Adenosine deaminase deficiency, Orotic aciduria. Enzymes in diagnosis of diseases- Liver disorders, Cancer, Cardiac disorders.	15

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 268 | Page

	Role of Other enzymes- Lysozyme,	
	Butyrylcholinesterase and Lipases.	
	Therapeutic uses of enzymes -	
	enzymes in replacement therapy,	
	enzymes in cancer treatment,	
	enzymes for fibrinolysis, enzymes	
	used for various treatments and	
	enzyme gene therapy.	

- 1. Lehninger Principles of Biochemistry (4th Ed. Nelson, D., and Cox, M.; W.H. Freeman and Company, New York, 2005.
- 2. Satyanarayan and Chakrapani, Biochemistry. New Delhi, Elsevier Health Sciences APAC, 2013.
- 3. Berg JM, Tymoczko JL, Stryer L (2002): Biochemistry, 5th ed., Freeman WH and Co., New York.
- 4. https://shodhganga.inflibnet.ac.in/ bitstream/10603/100595/7/07_chapter%201.pdf General Introduction to enzymes.
- 5. https://iopscience.iop.org/ book/978-0-7503-1302-5/chapter/bk978-0-7503-1302-5ch1 Introduction to enzymes and their applications.
- 6. Biochemistry by Lehninger, 2nd Ed, Kalyani publication 2008.
- 7. Understanding enzymes (3rd edition). Edited by Trevor Palmer, Ellis Horwood, Chichester, 1991.
- 8. Protein purification principles, High Resolution Methods, and Applications, 3rd Edition, Jan-Christer Janson, John Wiley & Sons, Inc., Hoboken, New Jersey.
- 9. https://www.biotecharticles.com/ Applications-Article/Methods-of-Purification-of-Enzymes-583.html
- 10. https://www.creative-enzymes.com/service/enzyme-purification_307.html Enzyme purification.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 269 | Page

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Assignment/ Powerpoint presentation/ Class Test	30
Active participation in routine class instructional deliveries	05
Overall performance	05

B. Semester End Evaluation (Paper Pattern)

Question No.	Unit	Marks
1	Ι	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

Name of the Course	Practical I
Course Code	PSBTP301
Class	M. Sc. II Biotechnology
Semester	III
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - To impart knowledge and hands on experience of the various practicals related to applied virology and microbiology.

Curriculum:

Title	Learning Points	No. of Lectures
Regular Practicals	1. Viral Titering – Plaque Assay, Tissue Culture	60
	Infectious Dose (TCID), Chicken Embryo Infectious	
	Dose (CEID)	
	2. Immunoassays: For detection of the virus antigens by ELISA / RIA	
	3. Detection techniques for COVID like RT- PCR and various RAPID tests	
	4. Diagnosis of dengue (kit method)	
	5. Diagnosis of Chikungunya (kit method)	
	6. Antibiotics susceptibility testing by broth Macro dilution method & Micro broth dilution method	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 271 | Page

	7. Study of microbial biofilm formation on various surfaces & Biofilm visualization by staining
Demonstration Practicals	Demonstration of minimum biofilm inhibition concentration of antibiotics/ disinfectants.

- 1. Microbiology An introduction 10th edition Gerald Tortora, Burdell Funke, Christine Case, pearson Education Inc. Publication 2010
- 2. Basic Epidemiology R. Bonita, Bealglehole, T. Kjellstrom, 2nd Edition, 2006, WHO
- 3. Ananthanarayan and Paniker's Textbook of Microbiology, by Reba Kanungo, 10th ed Universities Press; Tenth edition, 2017
- 4. Koneman's Colour Atlas & Textbook of Diagnostic microbiology, 7th edition, 2017, Lippincott, Williams & Wilkins.

Evaluation Pattern

	No. of	Duration	Total Marks	CIE	Total
	Experiments				
Practical I	4 experiments of 1.5 hrs duration	6 hrs	60 M (01 Paper) (2 Major Experiments, 2 Minor Experiments)	40 M (20 M for Journal, 10 M for Viva, 10 M for overall performance)	100
Practical I examination marks will be converted into 50 marks.					

Name of the Course	Practical II
Course Code	PSBTP302
Class	M. Sc. II Biotechnology
Semester	III
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - To impart knowledge and hands on experience of the various practicals related to environmental Biotechnology.

Curriculum:

Title	Learning Points	No of Lectures
Regular Practicals	1. Soil and water quality assessment (temp, pH, salinity, water holding capacity of soil etc.)	60
	2. Study of metal tolerance of microorganisms isolated from soil/water	
	3. Soil ecosystem analysis/ analysis of microorganisms of soil	
	4. Analysis of compost	
	5. Detection of heavy metals concentration in soil/ water	
	6. Study and comparison of different air samplers	
	7. Growth curve of metal tolerant organism isolated from soil/ water.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 273 | Page

- 1. Chandrappa, R., & Kulshrestha, U. C. (2015). Sustainable air pollution management: theory and practice. Springer.
- 2. Karl B. Schnelle & Charles A. Brown, (2002) Air pollution control technology Handbook. CRC Press
- 3. Singh, R. L. (Ed.). (2017). Principles and applications of environmental biotechnology for a sustainable future. Springer Singapore.
- 4. Enger, E. D., Smith, B. F., & Bockarie, A. T. (2000). Environmental science: A study of interrelationships (p. 434). Boston, MA: McGraw-Hill.
- 5. Rittmann, B. E., & McCarty, P. L. (2012). Environmental biotechnology: principles and applications. Tata McGraw-Hill Education.

Evaluation Pattern

	No. of	Duration	Total Marks	CIE	Total
	Experiments				
Practical II	4 experiments of 1.5 hrs duration	6 hrs	60 M (01 Paper) (2 Major Experiments, 2 Minor Experiments)	40 M (20 M for Journal, 10 M for Viva, 10 M for overall performance)	100
Practical II examination marks will be converted into 50 marks.					

Name of the Course	Practical III
Course Code	PSBTP303
Class	M. Sc. II Biotechnology
Semester	III
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - To impart knowledge and hands on experience of the various practicals related to biologics and regulatory affairs.

Curriculum:

Title	Learning Points	No. of Lectures
Regular Practicals	 Electrophoresis {PAGE (native, SDS, reducing, non- reducing)} to characterize the protein with regard to its molecular weight, structure/subunits/SS bonds etc., or for detection of impurities in the product Concentration of protein with Folin Lowry HPLC /FTIR/NMR spectrum based theory questions may be asked for interpretation 	60
Demonstration Practicals	Western blot/dot blot for purity of product demonstration/ dummy sandwich preparation of semi- dry or wet western blot sandwich.	
Visit	Visit to a facility manufacturing Biosimilar	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 275 | Page

- Biosimilars: Regulatory, Clinical and Biopharmaceutical Development, Editors: Hiten J. Gutka

 Harry Yang
 Shefali Kakar, AAPS Advances in the Pharmaceutical, Sciences Series, Volume 34.
- 2. https://www.fda.gov/drugs/drug-approvals-and-databases/approved-drug-products-therapeutic-equivalence-evaluations-orange-book.
- 3. https://www.fda.gov/drugs/therapeutic-biologics-applications-bla/purple-book-lists-licensed-biological-products-reference-product-exclusivity-and-biosimilarity.
- 4. http://nib.gov.in/ NIB-DBT2016.pdf.
- 5. Regulatory Requirements of 'Similar Biologics' for Marketing Authorization in India. Review Article. Sharmila et al., International Journal of Drug Regulatory Affairs; 2017, 5(1), 20-24.

Evaluation Pattern

	No. of	Duration	Total Marks	CIE	Total
	Experiments				
Practical III	4 experiments of 1.5 hrs duration	6 hrs	60 M (01 Paper) (2 Major Experiments, 2 Minor Experiments)	40 M (20 M for Journal, 10 M for Viva, 10 M for overall performance)	100
Practical III examination marks will be converted into 50 marks.					

Name of the Course	Practical IV
Course Code	PSBTP304
Class	M. Sc. II Biotechnology
Semester	III
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - To impart knowledge and hands on experience of the various practicals related to molecular enzymology and enzyme technology.

Curriculum:

Title	Learning Points	No. of Lectures
Regular Practicals	1. Microbial Enzyme production:	60
	a. Partial purification using ammonium sulphate precipitation.	
	b. Dialysis of the salt-precipitated protein.	
c. Assessing the enzyme activity and the protein content.		
	2. Effect of inhibitors/ chemicals on enzyme activity.	
	3. Extraction of enzymes from plant sources.	
	4. Measurement of Enzymatic Activity by Using a Colorimetric Assay.	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 277 | Page

5. Purification of Acid Phosphatase from Wheat Germ.	
6. Enzyme Immunoassays.	
a. Methods for Enzyme Immunoassays.	
b. Non-competitive Solid-phase Enzyme Immunoassay.	
c. Competitive, Solid-phase Enzyme Immunoassay.	
7. Determining of Alkaline Phosphatase (ALP) Concentration in Blood Plasma.	
8. Measuring Lactase Enzymatic Activity.	
9. Screening of new microbial strains for production of enzymes and perform its activity staining (zymogram).	
10. To determine Specific activity of α Amylase from different sources.	

- 1. Satyanarayan and Chakrapani, Biochemistry. New Delhi, Elsevier Health Sciences APAC, 2013.
- 2. https://shodhganga.inflibnet.ac.in/ bitstream/10603/100595/7/07_chapter%201.pdf General Introduction to enzymes.
- 3. Understanding enzymes (3rd edition). Edited by Trevor Palmer, Ellis Horwood, Chichester, 1991.
- 4. Protein purification principles, High Resolution Methods, and Applications, 3rd Edition, Jan-Christer Janson, John Wiley & Sons, Inc., Hoboken, New Jersey.
- 5. https://www.biotecharticles.com/ Applications-Article/Methods-of-Purification-of-Enzymes-583.html
- 6. Enzyme purification.

https://www.creative-enzymes.com/service/enzyme-purification_307.html

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 278 | Page

Evaluation Pattern

	No. of	Duration	Total Marks	CIE	Total
	Experiments				
Practical IV	4 experiments of 1.5 hrs duration	6 hrs	60 M (01 Paper) (2 Major Experiments, 2 Minor Experiments)	40 M (20 M for Journal, 10 M for Viva, 10 M for overall performance)	100
Practical IV examination marks will be converted into 50 marks.					

Name of the Course	Nanobiotechnology
Course Code	PSBT 401
Class	M. Sc. II Biotechnology
Semester	IV
No of Credits	04
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - Students should be able to understand the basic science behind the properties of nanomaterials and the principles behind advanced experimental techniques for studying nanomaterials.

CO2 - Also understand the different aspects and applications of nanomaterials.

Curriculum:

UnitTitleLearning Points	No. of Lectures
I Introduction to nanotechnology and nanomaterials Introduction: Nanotechnology, Nature's biological pathway, Examples of nanomaterials and nanostructures found in nature. Nanometer-scale materials: Nanometer-Scale Metals Nano Metal Oxides, Nanopolymers, Quantum Dots, Carbon nanostructures. Nanorobotiocs devices of nature ATP synthase, the kinesin, myosin, dynein, flagella modulated motion.	15

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 280 | Page

Π	Synthesis of nanomaterials	Synthesis of nanometer-scale materials- Top down and Bottom up approaches. Self-Assembly of nanoparticles and its mechanism. Bio-directed synthesis and assembly of nanomaterials Synthesis and Assembly of Nanoparticles and Nanostructures Using Bio-Derived Templates	15
III	Nanotechnology in drug delivery	Biological Barriers to Nanocarrier- Mediated Delivery of Therapeutic and Imaging Agents, Nano-Sized Carriers for Drug Delivery, nano enabled drug delivery system, nanorobotics in medicine, Nanomedicine: biopharmaceutics, implantable materials, implantable chemicals, surgical aids	15
IV	Applications of nanotechnology and Nanotoxicology	Applications of Nanomaterials. Nanotoxicology: Unique Properties, Toxicity of Nanomaterials, Factors Responsible for the Nanomaterial Toxicity, Routes of Exposure, Mechanisms of Nanoparticle Toxicity, In Vitro Testing Methods for Nanomaterials, Ecotoxicity Analyses of Nanomaterials	15

- 1. Poinern, Gerrard Eddy Jai. A laboratory course in nanoscience and nanotechnology. CRC Press, 2014.
- 2. Guozhong, Cao. Nanostructures and nanomaterials: synthesis, properties and applications. World scientific, 2004.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 281 | Page

- Sulabha K. Kulkarni (auth.) Nanotechnology_ Principles and Practices-Springer International Publishing (2015)
- 4. Crookes-Goodson, W. J., Slocik, J. M., & Naik, R. R. (2008). Bio-directed synthesis and assembly of nanomaterials. Chemical Society Reviews, 37(11), 2403-2412
- 5. Chad A. Mirkin, Christof M. Niemeyer Nanobiotechnology II_ More Concepts and Applications-Wiley-VCH (2007)
- 6. Christof M. Niemeyer, Chad A. Mirkin (Editors) Nanobiotechnology_ Concepts, Applications and Perspectives-Wiley-VCH (2004)
- 7. Chad A. Mirkin, Christof M. Niemeyer Nanobiotechnology II_ More Concepts and Applications-Wiley-VCH (2007)
- 8. Oded Shoseyov, Ilan Levy NanoBioTechnology_ BioInspired Devices and Materials of the Future (2008, Humana Press)
- 9. Textbook of Nanoscience and Nanotechnology by B.S. Murty, P. Shankar, Baldev Raj, B B Rath, James Murday
- 10. Arun Kumar Nanomedicine in drug delivery-CRC Press _ Taylor & Francis (2013).
- 11. Yuliang Zhao, Zhiyong Zhang, and Weiyue Feng Toxicology of Nanomaterials-Wiley-VCH (2016)
- 12. Diwan, Parag, and Ashish Bharadwaj, eds. The Nanoscope: Encyclopedia of Nanoscience and Nanotechnology. Pentagon Press, 2005. (Vol 1-6)

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Assignment/ Powerpoint presentation/	30
Class Test	
Active participation in routine class	05
instructional deliveries	
Overall performance	05

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 282 | Page

Question No.	Unit	Marks
1	Ι	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

B. Semester End Evaluation (Paper Pattern)

Name of the Course	OMICS and Systems Biology
Course Code	PSBT 402
Class	M. Sc. II Biotechnology
Semester	IV
No. of Credits	04
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - At the end of the course learners will be able to understand how the data is generated by OMICS technologies to contribute to different databases.

CO2 - Understand, compare and contrast the techniques involved in Genomics, Proteomics, transcriptomics, Lipidomics and Metabolomics; Will be able to apply the different technologies of OMICS to the screening, testing and treatment of human diseases. Understand the structure and dynamics of a systems as a whole. Apply the different approaches to study systems biology by top down and bottom up approach.

CO3 - Introduction to concepts of knowledge discovery process and data mining methods. Understand the application of data mining in genomics, proteomics and development of tools in bioinformatics. Have the knowledge of applications of systems biology in development of personalized medicine, drug development.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
I	OMICS – the OMICS technology, a broad outlook	Tools of Omics. Introduction to Epigenomics Human genome project- goals, conclusions and application. Structural and functional proteomics protein - protein interaction and identification of	15

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 284 | Page

		 interactions by various methods. Application of Proteomics and Genomics in human diseases, screening, testing and treatment of diseases. Metagenomics: concept, strategies, and applications in environmental biotechnology, agriculture and health 	
Π	Transcriptomics, Lipidomics and Metabolomics	Introduction to Transcriptomics, Lipidomics And Metabolomics, Glycomics, Pharmacogenomics Techniques used in Lipidomics- Mass Spectroscopy, TLC, HPLC, GC and Capillary electrophoresis, MALDI. Technique used in Metabolomics- Mass Spectroscopy, Electrophoresis, chromatography- GC, LC & NMR. Technique used in Transcriptomics- next generation sequencing, northern blotting, DDRTPCR, microarrays, gel free assays like biolayer interference, SPR. Applications of transcriptomics metabolomics and lipidomics in human diseases –screening, testing and treatment of diseases.(in clinical applications, personalised medicine, infectious diseases)	15
III	Introduction to systems biology	Systems biology towards systems level understanding of biological systems, Systems structure, systems dynamics, systems design and control, systems project Models and	15

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 285 | Page

		Modelling systems in systems biology What is a model? Key properties of models, Basic of computational models, networks, data integration, standards, and model organism Perturbation of biological systems and 'Omics' as Quantitative high throughput experimental tools for systems biology	
		Standards and formats for systems biology Computational Databases and software tools in systems biology. Biological networks: metabolic networks, gene regulatory networks, PPI networks, genetic interaction (GI) networks, and signalling networks	
IV	Data mining and application of systems biology	Introduction to Knowledge of discovery in databases (KDD) What is knowledge, need for KDD, KDD process outline, concept and goals. Data Mining methods: Statistics – classification, correlation, association analysis, regression, and clustering; Machine learning – Symbolic and statistical approaches. Text mining, and Pattern evaluation. Data mining in scientific applications Application of systems biology: 1. Systems biology to systems medicine.	15

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 286 | Page

2. Application of systems biology in drug discovery and development		
	3. Systems biology and synthetic biology	

- 1. Bioinformatics and functional genomics (2003), Jonathan Pevsner, John Wiley and sons Publications
- 2. Omic technologies: genomics, transcriptomics, proteomics and metabolomics, Richard P. Horgan and Louise C. Kenny, Scientific advisory committee (sac), the obstetrician and gynaecologist.
- 3. Systems Biology a textbook, second edition, Edda Klipp, Wolfram Liebermeister, Christoph Wierling AAxel Kowald, Wiley wch publications
- 4. Analysisof biological networks (2008), Bjorn Junker, Falk Schreiber, Wiley Interscience
- 5. Introduction to biological networks, Alpan Ravaland, Animesh Ray, CRC Press (2013).

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Assignment/ Powerpoint presentation/ Class Test	30
Active participation in routine class instructional deliveries	05
Overall performance	05

Question No.	Unit	Marks
1	Ι	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

B. Semester End Evaluation (Paper Pattern)
Name of the Course	Drug Discovery and Clinical Study
Course Code	PSBT 403
Class	M. Sc. II Biotechnology
Semester	IV
No. of Credits	04
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

By the end of the course the student will:

CO1 - Able to learn about drug discovery-design pathway using some in-silico tools.

CO2 - Able to understand the clinical trial design set up as well as they will gain information on rules-regulation and responsibilities in clinical studies.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Clinical research	Introduction to the drug discovery &	15
	discovery	development	
		• Source of drugs	
		• Structural effects on drug action	
		• Drugs derived from natural	
		products	
		• General principles of	
		pharmacology	
		• Drug development and testing	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 289 | Page

		process	
		Approaches to new drug discovery	
		• Computer-aided drug design	
		• Identification of novel drug candidates and drug targets	
		• Construction the signalling network of a drug using integer linear programming	
		• Identification for druggable targets	
		of a disease	
II	Clinical trial design and	Clinical Trial Design	15
	Indian regulations	• Basic framework of clinical trial	
		• Randomized clinical trials and different phases	
		• Adaptive randomization methods	
		• Seamless design	
		• Internal pilot design	
		• Design selection factors	
		Regulations	
		• The national regulatory body	
		• Key documents in clinical research	
		• Regulatory requirements for the	
		conduct of clinical trials in India	
		The Roles and Responsibilities of	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 290 | Page

		Stakeholders in the Sharing of	
		Clinical Trial Data	
		• Participants in clinical trials	
		• Investigators,	
		• Research institutions and	
		universities	
		• Journals and Professional societies	
III	Pharmacovigilance	Scope and purposes of pharmacovigilance	15
		• Adverse Drug Reactions (ADR)	
		• ADR classification	
		• Nature and mechanism of ADR	
		• Concept of safety	
		• Phases and types of DATA	
		The process of Pharmacovigilance	
		• Signal detection, evaluation and	
		investigation,	
		Communication	
		MethodsofevaluatingeffectivenessofactionInternationalregulatorycollaboration• WHO, CIOMS, ICH, ISoP, ISPE	
IV	Clinical data science	Data management in clinical research: An overview	15

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 291 | Page

	• Data Sources and Data Types	
	• Standards in Healthcare Data	
	• Research Data Stewardship for Healthcare Professionals	
	• Preparing Data for Prediction Model Development	
	• Prediction Modelling Methodology	
	• Clinical Decision Support System	

- Fundamentals of Clinical Data Science, Pieter Kubben, Michel Dumonier, Andre Dekker, ISBN 978-3-319-99712-4 ISBN 978-3-319-99713-1 (eBook).
- Experimental designs for small randomized clinical trials: an algorithm for choice, Orphanet J. Rare Dis. 2013; 8: 48, Catherine Cornu et. al.
- 3. Molecular docking studies, Chapter 5, Shodhganga
- Basic and clinical pharmacology, 2017, Fourteenth Edition, Section I, Chapter I, Bertram G. Katzung, Editor, ISSN 0891 – 2033.
- An introduction to Pharmacovigilance, second edition, Patrick Waller and Mira Harrison Woolrych.

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Powerpoint presentation of a clinical case/trial study report/ Class Test	30
Active participation in routine class instructional deliveries	05
Overall performance	05

B. Semester End Evaluation (Paper Pattern)

Question No.	Unit	Marks
1	Ι	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

Name of the Course	Scientific Writing and Food Biotechnology
Course Code	PSBT 404
Class	M. Sc. II Biotechnology
Semester	IV
No. of Credits	04
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

On completion of the course students will be able to:

CO1 - Think critically, organize and analyze scientific data.

CO2 - Develop advanced scientific writing skills to write research articles, reviews, thesis, and proposals and to make oral, poster or power point presentations.

CO3 - Understand the best practices of scientific writing by adhering to research ethics and by avoiding plagiarism.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
Ι	Basic scientific writing and plagiarism	Introduction to scientific writing. Basic scientific writing skills: style and language, spelling, grammar, syntax, jargon and sentence structure. Elements of a scientific paper: abstract, introduction, materials & methods, results, discussion, references and drafting titles.	15

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 294 | Page

		Scientific writing process: thinking, planning, rough draft, revision of content. Processing data & application of statistics, Displaying data: text, table, graph and defining terms and abbreviations. Statistical analysis and tools for experimental data. Referencing software: Mendeley, Endnote.	
		Plagiarism: Definition, Common types of plagiarism, Intentional and Unintentional plagiarism, Detection of plagiarism by antiplagiarism tools (Turnitin, Duplichecker, Viper, Copyleaks), Penalties for plagiarism, Avoiding plagiarism.	
Π	Advanced scientific writing	Guidelines for Medical writing. Scientific writing skills: Writing a research paper for biomedical journal, Writing science research papers and articles, Writing a research proposal, Writing a research report, Writing popular reports, Writing thesis and dissertation, Writing clinical study reports. Presentation skills: Oral presentation, Poster Preparation & presentation, Powerpoint presentations. Research ethics, Scientific misconduct.	15
III	Food Biotechnology – Nutraceuticals	Nutraceuticals and functional foods Definition, characteristic features,	15

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 295 | Page

		and classification, phytonutraceuticals, Prebiotics and Probiotics, Sources (with examples e.g. microbes, plants, algae, animals), blue biotechnology, food security, food preservation, Chemopreservation; Food	
		processing (animal and sea food), food packaging	
IV	Food Biotechnology in management of health and disease	Applications of nutraceuticals in human health and nutrition- health effects of commonly used nutraceuticals and functional foods (case studies), Safety and Regulatory guidelines Nutraceuitcals in management of health and disease Development of designer foods for specific chronic diseases	15
		Nutraceutical adjuvants	

- 1. Thomas, C George. (2019). Research Methodology and Scientific Writing 2nd edition.
- 2. Kumar, Ranjeet. (2011). Research methodology: a step-by-step guide for beginners 3rd edition.
- 3. Jennifer Peat, Elizabeth Elliott, Louise Baur, and Victoria Keena. (2002). Scientific Writing (BMJ Books).
- 4. J.R. Mathews & R.W.Mathews (2008) Successful Scientific Writing, 3rd Ed. Cambridge University Press.
- 5. https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e-3-structure-contentclinical-study-reports-step-5_en.pdf
- 6. https://www.emwa.org/documents/about_us/EMWAguidelines.pdf
- 7. https://www.otago.ac.nz/hedc/otago615367.pdf
- 8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510958/
- 9. http://medind.nic.in/iad/t02/i1/iadt02i1p21.pdf

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 296 | Page

- 10. https://intranet.birmingham.ac.uk/as/registry/policy/conduct/plagiarism/interactivecourse.aspx
- 11. https://www.bowdoin.edu/dean-of-students/judicial-board/academic-honesty-and-plagiarism/common-types-of-plagiarism.html
- 12. https://www.ox.ac.uk/students/academic/guidance/skills/plagiarism?wssl=1

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Online Course	20
Research Proposal	20

B. Semester End Evaluation (Paper Pattern)

Question No.	Unit	Marks
1	Ι	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

Name of the Course	Practical I
Course Code	PSBTP401
Class	M. Sc. II Biotechnology
Semester	IV
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - To impart knowledge and hands on experience of the various practicals related to nanobiotechnology.

Curriculum:

Regular Practicals 1. Biosynthesis and characterization of eco-friendly silver nanoparticles by using plant/leaf extracts/green tea 60 2. Synthesis and characterization of zinc sulfide nanoparticles by A reverse micelle method 3. Synthesis and characterization of Fluorescent Carbon Nanoparticles from Candle Soot and its separation of using the Thin-Layer Chromatographic Method	Title	Learning Points	No. of Lectures
 4. Synthesis of alginate beads and investigation of citric acid release from a nanoshell coating of polymer 5. Antimicrobial activity testing of Nanoparticles/nanocomposites 	Regular Practicals	 Biosynthesis and characterization of eco-friendly silver nanoparticles by using plant/leaf extracts/green tea Synthesis and characterization of zinc sulfide nanoparticles by A reverse micelle method Synthesis and characterization of Fluorescent Carbon Nanoparticles from Candle Soot and its separation of using the Thin-Layer Chromatographic Method Synthesis of alginate beads and investigation of citric acid release from a nanoshell coating of polymer Antimicrobial activity testing of Nanoparticles/nanocomposites 	60

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 298 | Page

- 1. Poinern, Gerrard Eddy Jai. A laboratory course in nanoscience and nanotechnology. CRC Press, 2014.
- 2. Guozhong, Cao. Nanostructures and nanomaterials: synthesis, properties and applications. World scientific, 2004.
- 3. Sulabha K. Kulkarni (auth.) Nanotechnology_ Principles and Practices-Springer International Publishing (2015)
- 4. Textbook of Nanoscience and Nanotechnology by B.S. Murty, P. Shankar, Baldev Raj, B B Rath, James Murday

Evaluation Pattern

	No. of	Duration	Total Marks	CIE	Total
	Experiments				
Practical I	4	6 hrs	60 M (01 Paper)	40 M	100
	of 1.5 hrs		(2 Major	(20 M for	
	duration		Experiments, 2	Journal, 10 M	
			Minor Experiments)	for Viva, 10	
				M for overall	
				performance)	
Practical I examination marks will be converted into 50 marks.					

Name of the Course	Practical II
Course Code	PSBTP402
Class	M. Sc. II Biotechnology
Semester	IV
No of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - To impart knowledge and hands on experience of the various practicals related to OMICS and systems biology.

Curriculum:

Title	Learning Points	No. of Lectures
Regular Practicals	1. Gel electrophoresis of lipids (lipoproteins extracted from various sources) to separate and identify the lipid fraction	60
Demonstration Practicals	 Detection assay for gene expression using micro array and qRT –PCR (demonstration) Identification of protein using analytical technique Mass spectroscopy (demonstration) 	
Report Writing	1. Preparation of report based on - Databases and data repositories used in systems Biology	

1. Bioinformatics and functional genomics (2003), Jonathan Pevsner, John Wiley and sons Publications

2. Systems Biology a textbook, second edition, Edda Klipp, Wolfram Liebermeister, Christoph Wierling AAxel Kowald, Wiley wch publications

3. Analysis of biological networks (2008), Bjorn Junker, Falk Schreiber, Wiley Interscience

4. Introduction to biological networks, Alpan Ravaland, Animesh Ray, CRC Press (2013).

Evaluation Pattern

	No. of	Duration	Total Marks	CIE	Total
	Experiments				
Practical II	4 experiments of 1.5 hrs duration	6 hrs	60 M (01 Paper) (2 Major Experiments, 2 Minor Experiments)	40 M (20 M for Journal, 10 M for Viva, 10 M for overall performance)	100
Practical II examination marks will be converted into 50 marks.					

Name of the Course	Practical III and Practical IV
Course Code	PSBTP403 and PSBTP404
Class	M. Sc. II Biotechnology
Semester	IV
No. of Credits	04
Nature	Theory/ Practical/ Project/ other (please specify)
Туре	Core/ Elective

Course Outcomes:

CO1 - To impart knowledge and hands on experience of the various practicals related to scientific writing.

Curriculum:

Title	Learning Points	No. of
		Lectures
Regular Practicals	 A finding of a drug-gene interaction or potentially druggable category using The Drug Gene Interaction Database (DGIdb) Recognition of binding patterns common to set of protein structures using ProBiS Recognition of common spatial chemical binding patterns to a Set of Protein Structures using Multiple Alignment of Protein Binding Sites (MultiBind) tool and analysis using RasMol/Jmol Estimation of total sugars from food products (dairy, fruit juices, bakery) 	60

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 302 | Page

	5. Determination of acid value of natural fats and oils.	
	6. Determination of iodine number of fats and oils.	
	7. Study of nutraceuticals important plants like Zinziber, Curcuma, Alovera, Asparagus, Ocimum etc.	
	8. Estimation of antioxidant property of phytochemical by DPPH.	
	9. Qualitative test for tannins, phenols, isoflavones, alkaloids using TLC.	
	10. Estimate Cholesterol contents in given sample by Zak's methods.	
	11. Estimation of bio-burden by viable counts.	
	12. Estimation of gluten from food sample.	
	13.To study nutritional components (protein, carbohydrate, secondary metabolites, lipids, vitamin C) of following: Bee honey, Mushrooms, Lentils, Soya, Dairy product, Amla, Papaya, Spinach.	
Demonstration	1. Computational protein-ligand docking using AutoDock.	
Practicals	2. Estimation of vitamin B by HPLC.	
	3. Estimation of food preservatives/additives (Parabens) from food sample by HPLC.	
Online Course	1. Exploration of various learning platforms in online courses listed below :	
	a. Online courses in fundamentals of Neuroscience from Harvard University https://online-	
	learning.harvard.edu/course/fundamentals-neuroscience-part- 1-electrical-properties-	
	neuron?delta=0	

	b. Molecular Biology from MIT	
	https://ocw.mit.edu/courses/biology/7-28-molecular-biology-	
	spring-2005/	
	c. Introduction to Bioethics from Georgetown	
	https://bioethicsarchive.georgetown.edu/phlx101- 02/course.html#units/introduction	
	2. Complete an online course (Minimum 1 week) on the topic	
	related to the biotechnology. Write a comprehensive report on the studied course contents.	
	a. Swayam https://swayam.gov.in/	
	b. NPTELhttps://nptel.ac.in/noc/	
	c. MOOC	
	https://www.it.iitb.ac.in/frg/wiki/images/7/7b/Demo-PPT.pdf	
	d. E-learning	
	https://www.bellevuecollege.edu/elearning/start/intro/	
Research	Write a research proposal on any topic of your interest from	
Proposal	the MSc syllabus. For research proposal contents and format refer to NSF guidelines.	
	https://www.nsf.gov/pubs/policydocs/pappg19_1/nsf19_1.pdf	
	For reference work use Mendeley Desktop.	
	https://www.mendeley.com/guides/desktop	

- Fundamentals of Clinical Data Science, Pieter Kubben, Michel Dumonier, Andre Dekker, ISBN 978-3-319-99712-4 ISBN 978-3-319-99713-1 (eBook).
- Experimental designs for small randomized clinical trials: an algorithm for choice, Orphanet J. Rare Dis. 2013; 8: 48, Catherine Cornu et. al.

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 304 | Page

- 3. Molecular docking studies, Chapter 5, Shodhganga
- Basic and clinical pharmacology, 2017, Fourteenth Edition, Section I, Chapter I, Bertram G. Katzung, Editor, ISSN 0891 – 2033.
- 5. An introduction to Pharmacovigilance, second edition, Patrick Waller and Mira Harrison Woolrych.
- 6. Thomas, C George. (2019). Research Methodology and Scientific Writing 2nd edition.
- 7. Kumar, Ranjeet. (2011). Research methodology: a step-by-step guide for beginners 3rd edition.
- 8. Jennifer Peat, Elizabeth Elliott, Louise Baur, and Victoria Keena. (2002). Scientific Writing (BMJ Books).
- 9. https://www.bowdoin.edu/dean-of-students/judicial-board/academic-honesty-and-plagiarism/common-types-of-plagiarism.html

Evaluation Pattern

Project Dissertation - 100 M

For semester IV it is mandatory for students to undergo Hands-on Project training in an established research laboratory or college laboratory for 4-6 months; this should involve one or more relevant instrumentation techniques. Thesis on the same to be evaluated by the guide alternatively by an internal examiner for 40 M based on the student's performance, written matter and experimentation. A certificate must be appended with the thesis. Another examiner will assess for 60 M as a Presentation during practical exams.

(Rashmi A. Bhave) The Chairperson, BoS