R. E. Society's

R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce (Autonomous), Ratnagiri

Department of Physics UG Programme 2023-24 Courses & Syllabus

Under Choice Based Credit System (CBCS)

R. E. SOCIETY'S, R. P. GOGATE COLLEGE OF ARTS & SCIENCE AND R. V. JOGALEKAR COLLEGE OF COMMERCE (AUTONOMOUS), RATNAGIRI

SYLLABI OF COURSES OFFERED BY DEPARTMENT OF PHYSICS OF THE COLLEGE FOR UNDERGRADUATE AND POSTGRADUATE STUDIES

UNDER CHOICE BASED CREDIT SYSTEM (CBCS)

WITH THE EFFECT FROM ACADEMIC YEAR 2023-24

Index

Sr. No.	Table of Content	Page No.
1	Syllabi of Physics Courses offered for FYBSc (Semester I, II) as	02
	<u>per NEP 2020</u>	
2	Syllabi of Open Elective Courses offered for First year of	41
	Bachelor's Program (Semester I, II) as per NEP 2020	
3	Syllabus of Skill Enhancement Course offered for FYBSc	52
	<u>(Semester II) as per NEP 2020</u>	
4	Syllabi of Physics Courses offered for SYBSc (Semester III, IV)	57
5	Syllabi of Physics Courses offered for TYBSc (Semester V. VI)	103
6	Syllabi of Physics Courses offered for MSc (Semester I, II) as per	190
	<u>NEP 2020</u>	
7	Syllabi of Physics Courses offered for MSc (Semester III, IV)	265
	<u>(Specialization: Electronics – I)</u>	

R. E. SOCIETY'S, R. P. GOGATE COLLEGE OF ARTS & SCIENCE AND R. V. JOGALEKAR COLLEGE OF COMMERCE (AUTONOMOUS), RATNAGIRI

SYLLABI OF COURSES OFFERED BY DEPARTMENT OF PHYSICS OF THE COLLEGE IN THE SUBJECT PHYSICS FOR THE FIRST YEAR (SEMESTER I & II) OF PROGRAM BSc AS PER NEP 2020

UNDER CHOICE BASED CREDIT SYSTEM (CBCS)

WITH THE EFFECT FROM ACADEMIC YEAR 2023-24

Program Outcomes of BSc with Physics Major

Name of Program	BSc
Level	UG
Number of Semesters	08
Year of Implementation	2023-24
Program Specific	After successful completion of this program, learners will:
Outcomes (PSO)	 Understand fundamental physics concepts and will be able to apply physics principles to real world problems. Be able to think critically and develop the ability to apply theoretical and mathematical principles to solve complex
	problems in various areas of physics.
	3. Acquire hands-on experience in conducting experiments, using laboratory equipments, analyzing experimental data and will be able to draw meaningful conclusions of experiment and to interpret results.
	 Recognize the interconnections between physics and other disciplines, such as, mathematics, chemistry and engineering and will be able to work effectively in those interdisciplinary fields.
	5. Possess basic programming skills, will be introduced to the field of automation and will be equipped with essential knowledge and skills to work with basic automation systems.
	6. Develop the ability to work individually as well as in collaboration.
	7. Be able to pursue higher studies and will be able to take research opportunities.
Relevance of PSOs to the local, regional, national and global developmental needs	Science graduates with Physics major can go for higher studies and pursue careers directly related to physics, like, research, academics, etc. Other than this, Science graduates with Physics major can also pursue careers in other fields, such as, data science, engineering, IT, automation, government jobs, medical physics and healthcare industry, national security, etc., due to their analytical, problem solving and critical thinking abilities. BSc program with Physics major produces graduates with a diverse skill set capable of addressing various challenges. This can lead to improve research and innovation, economic growth

and s	sustain	able	deve	lopment f	rom l	ocal t	:0 g	lobal	level.	The
releva	ance of	BSc	prog	ram with I	Physic	s majo	or to	o deve	elopme	ental
needs	s enhar	ices	its ov	erall impa	ct on s	society	y and	d mak	kes it n	nore
respo	onsive	to	the	evolving	dem	ands	of	the	scien	tific,
techn	ologica	al and	d soci	etal landsc	ape.					

Scheme of Evaluation

Course Evaluation:

Each course of BSc in the subject Physics will be assessed with Continuous Evaluation and Semester End Evaluation. Continuous Evaluation of each course will be of 40% and Semester End Evaluation of each course will be of 60%.

Passing Scheme:

For each course of BSc in the subject Physics, there will be separate head of passing for Continuous Evaluation and for Semester End Evaluation. Course grade points and course grade will be decided by the aggregate marks obtained by a learner.

	Marks Obtained by a learner in Continuous Evaluation
Aggregate Marks =	+
	Marks obtained by a learner in Semester End Evaluation

In order to earn credits of this course, a learner is required to secure a minimum of 40% marks in Continuous Evaluation and 40% marks in Semester End Evaluation.

```
_____
```

Conversion of Marks:

The Continuous Evaluation for any course of FYBSc Physics will be of 40 marks. In such cases, the marks obtained by a learner in Continuous Evaluation of a course out of 40, will be converted to marks out of 20.

The Semester End Evaluation for any course of FYBSc Physics will be of 60 marks. In such cases, the marks obtained by a learner in Semester End Evaluation of a course out of 60, will be converted to marks out of 30.

Converted marks will be reflected in learner's marksheet.

Credit and Grade Scheme:

% of Aggregate	Course Grade	Course	Performance	Credits
Marks Obtained	Point	Grade	Indicator	Earned
90.0 to 100	10	0	Outstanding	
80 to 89.99	9	A+	Excellent	
70 to 79.99	8	А	Very Good	
60 to 69.99	7	B+	Good	2
55 to 59.99	6	В	Above Average	
50.0 to 54.99	5	С	Average	
40 to 49.99	4	Р	Pass	
Less Than 40	0	F	Fail	0
Absent	0	Ab	Absent	U

Note:

For any course,

		Marks Obtained by a learner in Continuous Evaluation
Aggregate Marks	=	+
		Marks obtained by a learner in Semester End Evaluation

Scheme of Courses Offered by Department of Physics for FYBSc

	Semester I			Semester II	
Course Code	Nomenclature	Credits	Course Code	Nomenclature	Credits
Dis	cipline Specific Course (I	DSC)	Dis	cipline Specific Course (DSC)
Major/Minor				Major/Minor	
USPH101	Classical Physics	02	USPH201	Optics & Acoustics	02
USPH102	Modern Physics	02	USPH202	Electricity &	02
				Electronics	
USPH103	Physics Lab - I	02	USPH203	Physics Lab - II	02
Voc	cational Skill Course (VS	C)			
IISPH104	Experimental Skills in	02			
00111101	Physics				

Syllabi of Courses Offered in the Subject Physics for Semester I

Name of the	Classical Physics
Course	
Course Code	USPH101
Class	FYBSc
Semester	Ι
Number of Credits	02
Nature	Theory
Туре	Major/Minor
Revision of syllabus	Restructuring of syllabus has been done to ensure a smooth and
specific to	logical flow of content throughout the curriculum. It also
employability/	facilitates the logical progression of subjects which allows
entrepreneurship/	learners to build their understanding of subject progressively and
skill development	systematically and to grasp contents more effectively.
	The course includes topics like, Newton's laws of motion, friction,
	work and energy, elasticity, viscosity, fluid mechanics, behavior of
	real gases and thermodynamics.
	In addition to above, the syllabus also focuses on practical
	problem-solving exercises that require learner to apply these
	classical physics theories and principles to real world scenarios.
	This will emphasize skill development among learners and will
	encourage learners to think critically and to analyze physics
	concepts from different perspectives.
	Additionally, some of the topics in this theory course will be
	covered in following physics lab courses which will reinforce
	learners' theoretical understanding to real world applications.

Nomenclature: Classical Physics

Eligibility: --

Course Outcomes:

On successful completion of this course, a learner will:

- 1. Apply Newton's laws for the calculation of the motion of simple systems.
- 2. Be able to use Work and Energy equivalence and its applications through suitable numericals.
- 3. Be able to use the concepts of Elasticity, Viscosity and Fluid dynamics in daily life.
- 4. Understand the concept of real gases and validity of the laws of thermodynamics.
- 5. Demonstrate quantitative problem-solving skills in all the topics covered.

Curriculum:

Unit	Title	Learning Points	No. of
			Lectures
			(60 min)
Ι	Newton's Laws	1. Newton's Laws of Motion: Newton's first,	10
	of Motion,	second and third laws of motion, interpretation and	
	Friction, Work	applications, pseudo forces, inertial and non-	
	and Energy	inertial frames of reference, Worked out examples	
		(with friction present)	
		Reference: HCV	
		2. Friction: Advantages & disadvantages of	
		friction in daily life, Friction as the component of	
		Contact force, Kinetic Friction, Static friction, laws	
		of friction, Understanding friction at atomic level	
		Reference: HCV	
		3. Work and Energy: Kinetic Energy, Work and	
		Work-energy theorem, Potential Energy,	
		Conservative and Non-Conservative Forces,	
		Different forms of Energy, Mass-Energy	
		Equivalence, Worked out Examples	
		Reference: HCV	
II	Elasticity,	1. Elasticity: An introduction to Elasticity,	10
	Viscosity, Fluid	Stress, Strain, Hooke's Law and Modulus of	
	Mechanics	Elasticity and relation between them	

		Reference: HCV	
		2. Viscosity: An introduction to Viscosity, Flow through a Narrow Tube: Poiseuille's Equation, Stoke's Law, Terminal velocity, Measuring Coefficient of Viscosity by Stoke's method, Critical velocity and Reynolds number Reference: HCV	
		3. Fluid Mechanics: Streamline and Turbulent	
		flow, Equation of Continuity, Bernoulli's equation,	
		Applications of Bernoulli's equation	
		Reference: HCV	
III	Behavior of	1. Behavior of Real Gases : An introduction, Van	10
	Real Gases and	der Waals equation of state	
	Laws of	Reference: BSH	
	Thermodynami		
	CS	2. Laws of Thermodynamics: Thermodynamic	
		Systems, Zeroth law of thermodynamics, Concept of	
		heat, Thermodynamic Equilibrium, Work: A Path	
		dependent function, Internal energy, First law of	
		Thermodynamics, Internal Energy as a state	
		function, Specific heat of gases, Applications of First	
		Law of thermodynamics, The indicator diagram,	
		Work done during Isothermal and Adiabatic	
		processes	
		Reference: BSH	

Note: A good number of numerical examples on all units (as far as possible) are expected to be covered during the prescribed lectures.

Learning Resources recommended:

Main References:

1. HCV: H. C. Verma, Concepts of Physics– Part I, Second Reprint of 2020, Bharati Bhavan Publishers and Distributers

2. BSH: Brij Lal, Subrahmanyam and Hemne, Heat Thermodynamics and Statistical Physics, Revised, Multi-coloured Reprint 2019, S. Chand

Additional References:

1. Halliday, Resnick and Walker, Fundamental of Physics (extended), 2007, 6th

Edition, John Wiley & Sons

- 2. D. S. Mathur, P. S. Hemne, Mechanics, 2012, S. Chand
- 3. M. W. Zemansky and R. H. Dittman, Heat and Thermodynamics, 8th Edition, McGraw Hill
- 4. Thornton and Marion, Classical Dynamics, 5th Edition, 2007, Brooks/Cole, Cengage Learning
- 5. D. S. Mathur, Element of Properties of Matter, S. Chand & Co.
- 6. R. Murugeshan and K. Shivprasath, Properties of Matter and Acoustics, S. Chand
- 7. D. K. Chakrabarti, Theory and Experiments on Thermal Physics, 2006 Edition, Central books
- 8. Hans and Puri, Mechanics, 2nd Edition, Tata McGraw Hill

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method	Marks	
Unit Test (MCQ / Descriptive – Based on Theory and/or Problems -	20	
Online/Offline – 1 unit test of 20 marks / 2 unit tests of 10 marks		
each / 3 unit tests of 10 marks each and best two out of three will be		
considered)		
Assignments / Seminars	10	
Attendance and active participation in classroom	10	

B. Semester End Evaluation (Paper Pattern) (60 Marks - 2 hours):

Question	Question Type		Marks
No.			
1	A) Long questions with 100% internal option	Т	07
T	B) Short questions with 100% internal option	I	08
2	A) Long questions with 100% internal option	П	07
۷	B) Short questions with 100% internal option	11	08
2	A) Long questions with 100% internal option	III	07
5	B) Short questions with 100% internal option	111	08
	Objective type of questions without internal	Ι	05
4	bojective type of questions without internal	II	05
	option	III	05

Guidelines for paper pattern for Semester End Evaluation:

1. As far as possible, one fifth weightage of the total marks should be given to numerical examples in above paper pattern.

- 2. All questions will be compulsory and may be divided into sub-questions.
- 3. Long and short questions will include descriptive type of questions, derivation-based questions, problem solving / numericals based questions, etc.
- 4. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Name of the	Modern Physics		
Course			
Course Code	USPH102		
Class	FYBSc		
Semester	Ι		
Number of Credits	02		
Nature	Theory		
Туре	Major/Minor		
Revision of syllabus	The curriculum includes topics like, properties of nuclei,		
specific to	radioactivity, radiation detectors, various types of nuclear		
employability/	reactions, X-rays, historical development of quantum theory, etc.		
entrepreneurship/	Modern Physics often overlaps with other scientific disciplines.		
skill development	The syllabus is so designed that it emphasizes on interdisciplinary		
	approach which will help learner to understand the		
	interconnections of those fields, will provide basics about these		
	research fields and will encourage learners to work in these fields.		

Nomenclature: Modern Physics

Eligibility: --

Course Outcomes:

On successful completion of this course, a learner will:

- 1. Understand nuclear properties, nuclear behavior and various types of nuclear reactions.
- 2. Understand the concept of radioactivity, its applications and different types of equilibria, radioactive elements.
- 3. Understand various types of nuclear detectors and their applications.
- 4. Understand concepts of quantum mechanics.
- 5. Demonstrate quantitative problem-solving skills in all topics covered.

Curriculum:

Unit	Title	Learning Points	No. of
			Lectures
			(60 min.)
Ι	Basic	1. Basic properties of nuclei: Composition,	10
	properties of	Charge, Size, Density, Spin and Magnetic dipole	
	nuclei,	moment, Rutherford's experiment and estimation of	
	Radioactivity	nuclear size, Mass defect and binding energy, BE/A vs	
		A plot and its interpretation, Stability of nuclei (N vs Z	
		plot)	
		Reference: SBP	
		2. Radioactivity : (Review: Properties of α , β and γ -	
		rays)	
		Law of Radioactive decay, Hall-life and mean life	
		(derivation required), onits of radioactivity,	
		radioactive disintegration - A to B to C (stable) type	
		Natural radioactive series Radioactive equilibriums	
		Artificial radioactivity Determination of the age of	
		the Earth. Carbon dating. Radio isotopes and its	
		applications. Radiation hazards	
		Reference: SBP	
II	Radiation	1. Radiation Detectors: Interaction between	10
	Detectors,	particles and matter, Plot of variation of ionization	
	Nuclear	current with applied voltage, Gas filled radiation	
	Reactions	detectors- Ionization chamber (qualitative),	

		 Proportional Counter and GM Counter Reference: SNG 2. Nuclear Reactions: Introduction, Types of nuclear reactions, Conservation laws (mass, energy and charge), Concept of compound and direct reaction, Q value equation and solution of the Q equation, Threshold energy Reference: SBP 	
III	Origin of Quantum Theory, X- Rays	 Origin of Quantum Theory: (Review: Photoelectric effect, Black body, Black body spectrum, Wien's displacement law) Matter waves: de Broglie waves, Concept of wave packet, Phase velocity, Group velocity and relation between them, Wave particle duality, Davisson- Germer experiment, Heisenberg's Uncertainty Principle Reference: AB X-Rays: Production and properties, X-Ray spectra, X-Ray Diffraction, Bragg's Law, Compton Effect, Pair production, Photons and Gravity, Gravitational Red Shift, Black holes Reference: AB 	10

Note: A good number of numerical examples on all units (as far as possible) are expected to be covered during the prescribed lectures.

Learning Resources recommended:

Main References:

- 1. AB: Arthur Beiser, Concepts of Modern Physics, 6th Edition
- 2. SBP: S.B. Patel, Nuclear Physics: An Introduction, New Age International Publishers, 2nd Edition
- 3. SNG: S. N. Ghoshal, Nuclear Physics, S. Chand

Additional References:

- S. L. Kakani and Shubhra Kakani, Nuclear and Particle Physics, Viva Books, 2nd Edition
- 2. Kenneth S. Krane, Modern Physics, 4th Edition, Wiley

- 3. Ronald Gautreau, Schaum's Outline of Modern Physics, 2nd Edition, McGraw Hill
- 4. D. C. Tayal, Nuclear Physics, Himalaya Publishing House, 5th Edition

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method	Marks
Unit Test - (MCQ / Descriptive - Based on Theory and/or Problems -	20
Online/Offline – 1 unit test of 20 marks / 2 unit tests of 10 marks each /	
3 unit tests of 10 marks each and best two out of three will be	
considered)	
Assignments / Seminars	
Attendance and active participation in classroom	10

B. Semester End Evaluation (Paper Pattern) (60 Marks - 2 hours):

Question	Question Type	Unit	Marks
No.			
1	A) Long questions with 100% internal option	Т	07
I	B) Short questions with 100% internal option	1	08
2	A) Long questions with 100% internal option	П	07
2	B) Short questions with 100% internal option	11	08
3	A) Long questions with 100% internal option	Ш	07
	B) Short questions with 100% internal option	111	08
	Objective type of questions without internal	Ι	05
4	objective type of questions without internal		05
	option	III	05

Guidelines for paper pattern for Semester End Evaluation:

- 1. As far as possible, one fifth weightage of the total marks should be given to numerical examples in above paper pattern.
- 2. All questions will be compulsory and may be divided into sub-questions.
- 3. Long and short questions will include descriptive type of questions, derivation-based questions, problem solving / numericals based questions, etc.
- 4. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Name of the	Physics Lab – I		
Course			
Course Code	USPH103		
Class	FYBSc		
Semester	Ι		
Number of Credits	02		
Nature	Practical		
Туре	Major/Minor		
Revision of syllabus	Restructuring of syllabus has been done to ensure a smooth and		
specific to	logical flow of content throughout the curriculum. It also		
employability/	facilitates the logical progression of subjects which allows		
entrepreneurship/	learners to build their understanding of subject progressively and		
skill development	systematically and to grasp contents more effectively.		
	The curriculum is so designed that it offers hands-on approach to		
	learn the subject. The curriculum also demonstrates how physics		
	principles apply to real world scenarios. After completion of this		
	course, learners will develop the skill to handle - measuring		
	instruments, basic physics laboratory equipments, etc. Learners		
	will also learn to perform basic physics experiments, learn to		
	improve the accuracy of measurements, learn to analyze		
	experimental observations / data, learn to draw meaningful		
	conclusions of experiments and to interpret results.		

Nomenclature: Physics Lab – I

Eligibility: --

Course Outcomes:

On successful completion of this course, a learner will be able to:

1. Understand & practice the skills while performing experiments.

- 2. Understand the use of apparatus and their use without fear & hesitation.
- 3. Correlate the physics theory concepts to practical application.
- 4. To learn scientific method of recording of the data, its analysis and result/conclusion of an experiment.

Instructions for learners:

- 1. All measurements and readings should be written with proper units.
- 2. Skill of doing the experiment and understanding physics concepts should be more important than the accuracy of final result.
- 3. In order to appear for Semester End Practical Examination of this course, all 4 skill experiments and minimum 8 experiments (4 from 'General Physics' group and 4 from 'Electricity and Electronics' group) should be completed compulsorily and learners are required to report all these experiments in the journal of this course (Physics practical journal of first semester).
- 4. After completing all required number of experiments of this course and recording them in journal, learner will have to get their journal certified from the head of the Physics department and produce the certified journal at the time of Semester End Practical Examination of this course.
- 5. A learner will be allowed to appear for the Semester End Practical Examination of this course, only if learner submits a certified journal of this course or a certificate from the head of the Physics department that the learner has completed this practical course as per minimum requirements.
- 6. For Semester End Practical Examination, the learner will be examined in 2 experiments (1 from 'General Physics' group and 1 from 'Electricity and Electronics' group) from this course and each experiment will be of two hours duration.
- 7. Evaluation in viva voce will be based on all skill experiments, experiments done from 'General Physics' group and experiments done from 'Electricity and Electronics' group, from this course.
- 8. While evaluating learner's performance at Semester End Practical Examination of this course weightage will be given to circuit / ray diagram, observations, tabular representation, experimental skills and procedure, graph, calculation and result, whichever applicable.

Curriculum:

Group	Title	Learning Points	No. of
			clock
			hours
A	Skill Experiments	 Use of Vernier Callipers, Micrometer Screw Gauge and Travelling Microscope Graph plotting (straight line, curve) Preliminary adjustments and use of spectrometer To determine the resistance using colour code and capacitance using number code and use of digital multimeter for voltage and resistance measurement 	10
В	General Physics	 Torsional Oscillation: To determine modulus of rigidity η of a material of wire by torsional oscillations Moment of inertia of Flywheel Constant volume air thermometer Spectrometer: To determine angle of prism Bifilar Pendulum: Determination of moment of inertia of rectangular and cylindrical bar about an axis passing through its centre of gravity J By electrical method: To determine mechanical equivalent of heat (Radiation correction by graph method) To determine coefficient of viscosity of a given liquid by Poisseuli's method Constant pressure air thermometer 	25
С	Electricity and Electronics	 To study Ex-OR Gate and verification of its truth table To study NOR Gate and verification of its truth table To study Thermistor characteristics: Resistance vs. Temperature To study load regulation of a Bridge Rectifier To study Zener Diode as Regulator To determine frequency of AC mains (Sonometer wire) To verify De Morgan's theorems 	25

8.	Transistor configuration: CE (study of input –	
	output characteristics)	

Learning Resources recommended:

- 1. D. Chattopadhya, P. C. Rakshit & B. Saha, Advanced course in Practical Physics, 6th Edition, Book and Allied Pvt. Ltd.
- 2. B.Sc. Practical Physics Harnam Singh, S. Chand & Co. Ld., 2001
- A test book of advanced practical Physics Samir Kumar Ghosh, New Central Book Agency (3rd edition)
- 4. B.Sc. Practical Physics C. L. Arora (1st Edition) -2001, S. Chand and Co. Ltd.
- 5. Practical Physics C. L. Squires (3rd Edition), Cambridge University
- 6. University Practical Physics D. C. Tayal, Himalaya Publication
- 7. Advanced Practical Physics Worsnop & Flint

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method	Marks	
Performance and engagement during practical sessions:	30	
• Skills, precision, accuracy, safety measures, individual and/or		
collaborative working while performing practical		
• Ability to record proper observations, to analyze data, to plot		
graph and to draw meaningful conclusions of experiments		
• Submission of journal within a week after every practical session		
Based on above criteria, each experiment of this course will be		
assessed for 10 marks during regular practical session and finally		
the total marks obtained by a learner will be converted to marks out		
of 30.		
Overall performance (attendance, punctuality, sincerity for practical	05	
sessions throughout semester)		
Viva	05	

Question	Group	Title	Method	Marks
No.				
1	В	General Physics	Experiment performance as	30
			per practical slip	
2	С	Electricity and	Experiment performance as	30
		Electronics	per practical slip	

B. Semester End Evaluation (Exam Pattern) (60 Marks - 4 hours):

Name of the	Experimental Skills in Physics		
Course			
Course Code	USPH104		
Class	FYBSc		
Semester	Ι		
Number of Credits	02		
Nature	Practical		
Туре	Vocational Skill Course		
Revision of syllabus	Restructuring of syllabus has been done to ensure a smooth and		
specific to	logical flow of content throughout the curriculum. It also		
employability/	facilitates the logical progression of subjects which allows		
entrepreneurship/	learners to build their understanding of subject progressively and		
skill development	systematically and to grasp contents more effectively.		
	The curriculum is so designed that it offers hands-on approach to		
	learn the subject. After completion of this course, learners will		
	enhance their ability to apply physics principles to real world		
	scenarios, especially in the field of mechanics, electricity and		
	electronics. The course also equips learners the necessary skills to		
	use measuring instruments and basic physics laboratory		
	equipments effectively. The course also encourages learners to		
	perform basic physics experiments, learn to improve the accuracy		
	of measurements, learn to analyze experimental observations /		
	data, learn to draw meaningful conclusions of experiments and to		
	interpret results.		

Nomenclature: Experimental Skills in Physics

Eligibility: --

Course Outcomes:

On successful completion of this course, a learner will:

1. Understand & practice the skills while performing experiments.

- 2. Understand the use of apparatus and their use without fear & hesitation.
- 3. Correlate the physics theory concepts to practical application.
- 4. Learn scientific method of recording of the data, its analysis and result/conclusion of an experiment.
- 5. Apply skills, knowledge, physics principles effectively to real world situations.

Instructions for learners:

- 1. All measurements and readings should be written with proper units.
- 2. Skill of doing the experiment and understanding physics concepts should be more important than the accuracy of final result.
- 3. In order to appear for Semester End Practical Examination of this course, all 4 skill experiments and minimum 8 experiments (4 from 'Applied Physics I' group and 4 from 'Applied Physics II' group) should be completed compulsorily and learners are required to report all these experiments in the journal of this course.
- 4. After completing all required number of experiments of this course and recording them in journal, learner will have to get their journal certified from the head of the Physics department and produce the certified journal at the time of Semester End Practical Examination of this course.
- 5. A learner will be allowed to appear for the Semester End Practical Examination of this course, only if learner submits a certified journal of this course or a certificate from the head of the Physics department that the learner has completed this practical course as per the minimum requirements.
- For Semester End Practical Examination, the learner will be examined in 2 experiments (1 from 'Applied Physics - I' group and 1 from 'Applied Physics -II' group) from this course and each experiment will be of two hours duration.
- 7. Evaluation in viva voce will be based on all skill experiments, experiments done from 'Applied Physics I' group and experiments done from 'Applied Physics II' group, from this course.
- 8. While evaluating learner's performance at Semester End Practical Examination of this course weightage will be given to circuit / ray diagram, observations, tabular representation, experimental skills and procedure, graph, calculation and result, whichever applicable.

· · ·

Curriculum:

Group	Title	Learning Points	No. of
			clock
			hours
A	Skill Experiments	 Use of Vernier Calliper, Micrometer Screw Gauge and Travelling Microscope Graph plotting (straight line, curve) Preliminary adjustments and use of spectrometer To determine the resistance using colour code and capacitance using number code and use of digital multimeter for voltage and resistance measurement 	10
В	Applied Physics – I	 Helmholtz resonator Young's modulus of metal bar by the method of vibration Torsional Oscillation: To determine modulus of rigidity η of a material of wire by torsional oscillations Spectrometer: To determine angle of prism Flat spiral spring: Determination of Young's modulus Flat spiral spring: Determination of modulus of rigidity Moment of inertia of flywheel Constant volume air thermometer 	25
С	Applied Physics – II	 To study NAND Gate and verification of its truth table To study Ex-OR Gate and verification of its truth table To study Thermistor characteristics: Resistance vs. Temperature Transistor configuration: CC (study of input – output characteristics) UJT characteristics To study load regulation of a Bridge Rectifier To study Zener Diode as Regulator Frequency of ac mains: To determine frequency of ac mains (Sonometer wire) 	25

Learning Resources recommended:

- 1. D. Chattopadhya, P. C. Rakshit & B. Saha, Advanced course in Practical Physics, 6th Edition, Book and Allied Pvt. Ltd.
- 2. B.Sc. Practical Physics Harnam Singh, S. Chand & Co. Ld., 2001
- A test book of advanced practical Physics Samir Kumar Ghosh, New Central Book Agency (3rd edition)
- 4. B.Sc. Practical Physics C. L. Arora (1st Edition) -2001, S. Chand and Co. Ltd.
- 5. Practical Physics C. L. Squires (3rd Edition), Cambridge University
- 6. University Practical Physics D. C. Tayal, Himalaya Publication
- 7. Advanced Practical Physics Worsnop & Flint

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method	Marks
 Performance and engagement during practical sessions: Skills, precision, accuracy, safety measures, individual and/or collaborative working while performing practical Ability to record proper observations, to analyze data, to plot graph and to draw meaningful conclusions of experiments Submission of journal within a week after every practical session 	30
Based on above criteria, each experiment of this course will be assessed for 10 marks during regular practical session and finally the total marks obtained by a learner will be converted to marks out of 30.	
Overall performance (attendance, punctuality, sincerity for practical	05
sessions throughout semester)	
Viva	05

B. Semester End Evaluation (Exam Pattern) (60 Marks – 4 hours):

Question	Group	Title	Method	Marks
No.				
1	В	Applied Physics - I	Experiment performance as	30
			per practical slip	
2	С	Applied Physics - II	Experiment performance as	30
			per practical slip	

Syllabi of Courses Offered in the Subject Physics for Semester II

Name of the	Optics and Acoustics
Course	
Course Code	USPH201
Class	FYBSc
Semester	II
Number of Credits	02
Nature	Theory
Туре	Major/Minor
Revision of	Restructuring of syllabus has been done to ensure a smooth and
syllabus specific to	logical flow of content throughout the curriculum. It also facilitates
employability/	the logical progression of subjects which allows learners to build
entrepreneurship/	their understanding of subject progressively and systematically
skill development	and to grasp contents more effectively.
	The curriculum is so designed that along with learning basic
	concepts in optics, learners will develop the skill - to predict the
	characteristics of image formed by lens and to apply lens formula
	to calculate focal length, object distance, image distance, etc., for
	various lens configurations. Learners will also develop skill to
	identify various lens aberrations that can affect image quality and
	will be able to use different methods to reduce them.
	Learners will also become familiar with basic principles of
	common optical instruments and will be able to draw and interpret
	ray diagrams for those systems and will learn the skill to use these
	instruments.
	The curriculum equips learners with a comprehensive
	understanding of interference in thin films and its wide ranging
	applications in science and technology. This will provide a basic
	foundation for further research and practical work related to thin
	films and their optical properties.
	The curriculum also equips learners with necessary knowledge to
	work with lasers safely and effectively in various industries and
	research fields
	Learners will also be equipped with foundational understanding of
	fibre ontics including basic principles of light propagation through
	ontical fibres and will develop a skill to use the ontical fibre for the
	applications like communication and temperature measurement
	Learners will also gain comprehensive understanding of how
	sound interacts with buildings and how to greate accustically
	sound interacts with bundings and now to create acoustically

comfortable and functional spaces.
Additionally, some of the topics in this theory course will be
covered in following physics lab courses which will reinforce
learner's theoretical understanding to real world applications.

Nomenclature: Optics and Acoustics

------Eligibility: --

Eligibility: -

Course Outcomes:

On successful completion of this course, a learner will:

- 1. Understand the concept of lens, lens defects and their minimization.
- 2. Understand the significance of combination of lenses implied to eyepiece of optical instrument.
- 3. Understand interference of light with few well known daily life examples.
- 4. Understand Lasers and Optical fibers, their applications in day to day life.
- 5. Understand acoustics of building and will be able to apply it.

Curriculum:

Unit	Title	Learning Points	No. of
			Lectures
			(60 min.)
Ι	Geometrical Optics	 Lenses and Lens Maker's Equation: Introduction to lenses, Terminology and sign conventions, Introduction to Thin lenses and Lens equation for single convex lens, Lens maker's equation: Positions of the Principal Foci and Newton's Lens equation Reference: SBA Magnification by a lens and power of lens: Lateral, Longitudinal and Angular magnification, Deviation by a thin lens and its power, Necessity to combine the lenses & equivalent focal length & power of two thin lenses, Concept of cardinal points and their significance Reference: SBA Introduction to Aberration in lenses: Spherical aberration & reduction, chromatic aberration & reduction Reference: SBA 	10
II	Introduction to Optical Instruments and	1. Optical Instruments and Eyepieces: Human Eye as an optical instrument, Camera and Lenses of Camera, Simple Microscope & Compound Microscope, Concept of eyepiece & its significance: Huygens'	10

	Interference in Thin Films	 Eyepiece and Ramsden Eyepiece (Principle, Construction, Expression for Equivalent Focal Length, Merits and Demerits), Comparison of Huygens' Eyepiece and Ramsden Eyepiece, Gauss Eyepiece, Refracting Astronomical Telescope (Construction and Working), Reflecting Telescope (Qualitative) Reference: SBA 2. Interference in Thin Films: Interference due to reflected and transmitted light in plane thin films, Conditions for Maxima and Minima, Interference pattern in wedge shaped film & Newton's rings Reference: SBA 	
III	Lasers, Fiber Optics, Acoustics of Building	 An Introduction to LASERS: Absorption and Emission, Spontaneous and Stimulated Emission, Components of laser, Laser beam properties, Ruby laser, He-Ne Laser, Applications of Laser Reference: SBA An Introduction to Optical Fiber: Fiber geometry, Total Internal Reflection, Propagation of light through an Optical fiber, Numerical Aperture, Classification of Optical fibers, Single Mode Step Index Fiber, Multimode Step Index Fiber, Graded Index Fiber, Optical Fiber applications: Optical fiber-based communication system & Optical Fiber based Temperature sensor Reference: SBA Acoustics of Buildings: Reverberation, Explanation of Sabine's formula & Importance of Sabine's Formula, Absorption Coefficient, Acoustics of Buildings, Factors Affecting Acoustics of Buildings, Sound Distribution in an Auditorium Reference: RK 	10

Note: A good number of numerical examples on all units (as far as possible) are expected to be covered during the prescribed lectures.

Learning Resources recommended:

Main References:

- 1. SBA: Dr. N. Subrahmanyam, Brij lal and Dr. M. N. Avadhanulu, A Textbook of Optics, 25th Revised Edition 2012 (Reprint2016), S. Chand & Company Pvt. Ltd.
- 2. RK: Properties of matter and Acoustics R Murugeshan and K. Shivaprasath, S Chand & Co. Ltd. (2005-Ed)

Additional References:

- 1. Jenkins and White, Fundamentals of Optics by (4th Ed.), McGraw Hill International
- 2. Ajoy Ghatak, Optics, 6th Edition, McGraw Hill Education (India) Private Limited

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method	Marks
Unit Test (MCQ / Descriptive – Based on Theory and/or Problems -	20
Online/Offline – 1 unit test of 20 marks / 2 unit tests of 10 marks	
each / 3 unit tests of 10 marks each and best two out of three will be	
considered)	
Assignments / Seminars	10
Attendance and active participation in classroom	10

B. Semester End Evaluation (Paper Pattern) (60 Marks - 2 hours):

Question	Question Type	Unit	Marks
No.			
1	A) Long questions with 100% internal option	Т	07
I	B) Short questions with 100% internal option	1	08
2	A) Long questions with 100% internal option	II	07
2	B) Short questions with 100% internal option	11	08
3	A) Long questions with 100% internal option	III	07
	B) Short questions with 100% internal option		08
4	Objective type of questions without internal	Ι	05
	objective type of questions without internal	II	05
	option	III	05

Guidelines for paper pattern for Semester End Evaluation:

- 1. As far as possible, one fifth weightage of the total marks should be given to numerical examples in above paper pattern.
- 2. All questions will be compulsory and may be divided into sub-questions.
- 3. Long and short questions will include descriptive type of questions, derivation-based questions, problem solving / numericals based questions, etc.
- 4. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Name of the	Electricity and Electronics
Course	
Course Code	USPH202
Class	FYBSc
Semester	II
Number of Credits	02
Nature	Theory
Туре	Major/Minor
Revision of syllabus	Restructuring of syllabus has been done to ensure a smooth and
specific to	logical flow of content throughout the curriculum. It also
employability/	facilitates the logical progression of subjects which allows
entrepreneurship/	learners to build their understanding of subject progressively and
skill development	systematically and to grasp contents more effectively.
	Learners will understand the principles, concepts and
	applications related to alternating current electrical circuits
	including resistors, capacitors and inductors, will learn the skill to
	analyze these circuits and will be able to apply them to actual ac
	circuits. Learners will also develop skill to analyze various ac
	bridges and will be able to use them to determine unknown
	electrical parameters.
	Learners will also develop skill to effectively apply and simplify
	electrical circuits using various circuit theorems.
	Learners will understand different types of power supply
	configurations and their respective advantages and limitations
	and learners will develop a skill to design, operate and
	troubleshoot dc power supplies for variety of applications.
	Learners will understand various number systems and their
	representations and will develop skill to convert them from one
	form to another and will be able to perform their arithmetic
	operations.
	Learners will also gain knowledge to use NAND and NOR gates to
	implement all other logic gates and will also develop a skill to
	design and analyze logic circuits using derived gates.
	Additionally, most of the topics in this theory course will be
	covered in following physics lab courses which will reinforce
	learner's theoretical understanding to real world applications.

Nomenclature: Electricity and Electronics

Eligibility: --

Course Outcomes:

On successful completion of this course, learner will:

- 1. Understand the basic concepts of Alternating current theory, AC bridges and Circuit theorems and apply them in real life situations.
- 2. Understand the basics of Analog and Digital Electronics and apply them in real life situations.

3. Demonstrate quantitative problem-solving skills in all the topics covered.

------Curriculum:

Unit	Title	Learning Points	No. of
			(60 min.)
Ι	Electricity	 Alternating current theory: (Review: Concept of L, R and C) AC circuit containing pure R, pure L and pure C, Representation of sinusoids by complex numbers, Series LR, CR and LCR circuits, Resonance in LCR circuit (both series and parallel), Power in ac circuit, Q-Factor Reference: CR AC bridges: General AC Bridge, Inductance Comparison Bridge, Maxwell's L/C Bridge, De Sauty's Bridge, Wien Bridge (Bridge diagram, balancing condition derivation, applications) Reference: CR 	10
II	Analog Electronics	 Circuit Theorems: (Review: Ohm's law, Kirchhoff's laws) Ideal Current and Voltage Sources, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem, Problems related to circuit analysis using the above theorems Reference: TT DC Power Supply: Block diagram of a dc power supply- Concept of a transformer, (Review: Half wave rectifier, Full wave rectifier) Bridge rectifier, PIV, Efficiency and Ripple factor of full wave rectifier, 	10

		Capacitor Filter, Need for voltage regulation - Zener diode as voltage stabilizer, Clipper and Clampers (Basic diode based circuits) Reference: BN, AD	
III	Digital Electronics	 Number Systems – Binary number system: Binary to decimal and Decimal tobinary conversion, Hexadecimal number system: Hexadecimal to decimal Conversion, Decimal to hexadecimal conversion, Hexadecimal to binary conversion, Binary to hexadecimal conversion Reference: LMS Derived Gates: (Review: Basic logic gates) NAND and NOR as Universal Building blocks, Ex-OR gate: logic expression, logic symbol, truth table, Implementation using basic gates and its applications- Parity generator and checker, Half adder and Full adder Reference : LMS, T 	10

Note: A good number of numerical examples on all units (as far as possible) are expected to be covered during the prescribed lectures.

Learning Resources recommended:

Main References:

- 1. CR: D. Chattopadhyay and P. C. Rakshit, Electricity and Magnetism, New Central Book Agency (P) Ltd.
- 2. LMS: Leach, Malvino, Saha, Digital Principles and Applications 6th Edition.Tata McGraw Hill
- 3. AD: Albert Malvino, David Bates, Electronic Principles, 8th Edition, Tata McGraw Hill
- 4. TT: B. L. Theraja and A. K. Theraja, A Textbook of Electrical Technology Vol. I, S. Chand Publication
- 5. T: Tokheim, Digital Electronics, Principles and Applications, 6th Edition, McGraw Hill Edition
- 6. BN: R. L. Boylestad and L. Nashelsky, Electronic devices and Circuit Theory-10th Edition, Pearson

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method		
Unit Test (MCQ / Descriptive - Based on Theory and/or Problems -	20	
Online/Offline – 1 unit test of 20 marks / 2 unit tests of 10 marks each /		
3 unit tests of 10 marks each and best two out of three will be		
considered)		
Assignments / Seminars	10	
Attendance and active participation in classroom	10	

B. Semester End Evaluation (Paper Pattern) (60 Marks - 2 hours):

Question	Question Type		Marks
No.			
1	A) Long questions with 100% internal option	Т	07
1	B) Short questions with 100% internal option	1	08
2	A) Long questions with 100% internal option	П	07
Z	B) Short questions with 100% internal option	11	08
2	A) Long questions with 100% internal option	III	07
3	B) Short questions with 100% internal option	111	08
	Objective type of questions without internal	Ι	05
4	objective type of questions without internal	II	05
	option	III	05

Guidelines for paper pattern for Semester End Evaluation:

- 1. As far as possible, one fifth weightage of the total marks should be given to numerical examples in above paper pattern.
- 2. All questions will be compulsory and may be divided into sub-questions.
- 3. Long and short questions will include descriptive type of questions, derivation-based questions, problem solving / numericals based questions, etc.
- 4. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Name of the	Physics Lab – II
Course	
Course Code	USPH203
Class	FYBSc
Semester	II
Number of Credits	02
Nature	Practical
Туре	Major/Minor
Revision of syllabus	Restructuring of syllabus has been done to ensure a smooth and
specific to	logical flow of content throughout the curriculum. It also
employability/	facilitates the logical progression of subjects which allows
entrepreneurship/	learners to build their understanding of subject progressively and
skill development	systematically and to grasp contents more effectively.
	The curriculum is so designed that it offers hands-on approach to
	learn the subject. The curriculum also demonstrates how physics
	principles apply to real world scenarios. After completion of this
	course, learners will develop the skill to handle - measuring
	instruments, basic physics laboratory equipments, etc. Learners
	will also learn to perform basic physics experiments, learn to
	improve the accuracy of measurements, learn to analyze
	experimental observations / data, learn to draw meaningful
	conclusions of experiments and to interpret results.

Nomenclature: Physics Lab - II

Eligibility: --

Course Outcomes:

On successful completion of this course, a learner will:

1. Understand & practice the skills while performing experiments.

- 2. Understand the use of apparatus and their use without fear & hesitation.
- 3. Correlate the physics theory concepts to practical application.
- 4. Learn scientific method of recording of the data, its analysis and result/conclusion of an experiment.

Instructions for learners:

- 1. All measurements and readings should be written with proper units.
- 2. Skill of doing the experiment and understanding physics concepts should be more important than the accuracy of final result.
- 3. In order to appear for Semester End Practical Examination of this course, 4 demonstration experiments and minimum 8 experiments (4 from 'General Physics' group and 4 from 'Electricity and Electronics' group) should be completed compulsorily and learners are required to report all these experiments in the journal of this course (Physics practical journal of second semester).
- 4. After completing all required number of experiments of this course and recording them in journal, learner will have to get their journal certified from the head of the Physics department and produce the certified journal at the time of Semester End Practical Examination of this course.
- 5. A learner will be allowed to appear for the Semester End Practical Examination of this course, only if learner submits a certified journal of this course or a certificate from the head of the Physics department that the learner has completed this course as per the minimum requirements.
- 6. For Semester End Practical Examination, the learner will be examined in 2 experiments (1 from 'General Physics' group and 1 from 'Electricity and Electronics' group) from this course and each experiment will be of two hours duration.
- 7. Evaluation in viva voce will be based on demonstration experiments, experiments done from 'General Physics' group and experiments done from 'Electricity and Electronics' group, from this course.
- 8. While evaluating learner's performance at Semester End Practical Examination of this course weightage will be given to circuit / ray diagram, observations, tabular representation, experimental skills and procedure, graph, calculation and result, whichever applicable.

Curriculum:

Group	Title	Learning Points	No. of clock bours
A	General Physics	 LDR Characteristics: To study the dependence of LDR resistance on intensity of light Spectrometer: To determine refractive index of prism material Combination of Lenses: To determine equivalent focal length of a lens system by magnification method Newton's Rings: To determine radius of curvature of a given convex lens using Newton's rings Determination of diameter of thin wire using Wedge Shaped Film 	25
В	Electricity and Electronics	 To study NAND/NOR gates as Universal Building Blocks LR Circuit: To determine the value of given inductance and phase angle CR Circuit: To determine value of given capacitor and Phase angle LCR series Resonance: To determine resonance frequency of LCR series circuit Transistor configurations: CE (study of input- output characteristics) To study half adder and full adder and verification of their truth table 	25
С	Demonstration Experiments	 Use of software for graph plotting Study of I-V Characteristics of LED Study of I-V characteristics of solar cell Angular momentum conservation (Rotating platform) Clipper and clamper circuits Use of Oscilloscope: Observation of Waveforms at output of half wave, bridge rectifiers with and without capacitor filter, ripple 	10

Learning Resources recommended:

- 1. Advanced course in Practical Physics D. Chattopadhya, P. C. Rakshit & B. Saha. (6th Edition), Book and Allied Pvt. Ltd.
- 2. B.Sc. Practical Physics Harnam Singh S. Chand & Co. Ld., 2001
- 3. A test book of advanced practical Physics Samir Kumar Ghosh, New Central Book Agency (3rd edition)
- 4. B.Sc. Practical Physics C. L. Arora (1st Edition) -2001, S. Chand and Co. Ltd.
- 5. Practical Physics C. L. Squires (3rd Edition), Cambridge University
- 6. University Practical Physics D. C. Tayal, Himalaya Publication
- 7. Advanced Practical Physics Worsnop & Flint

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method	Marks
Performance and engagement during practical sessions:	30
 Skills, precision, accuracy, safety measures, individual and/or collaborative working while performing practical Ability to record proper observations, to analyze data, to plot graph and to draw meaningful conclusions of experiments Submission of journal within a week after every practical session 	
Based on above criteria, each experiment of this course will be assessed for 10 marks during regular practical session and finally the total marks obtained by a learner will be converted to marks out of 30.	
Overall performance (attendance, punctuality, sincerity for practical sessions throughout semester)	05
Viva	05

B. Semester End Evaluation (Exam Pattern) (60 Marks – 4 hours):

Question No.	Group	Title	Method	Marks
1	А	General Physics	Experiment performance as per practical slip	30
2	В	Electricity and Electronics	Experiment performance as per practical slip	30

R. E. Society's R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce (Autonomous), Ratnagiri

Syllabus of Open Elective Courses Offered by Department of Physics for the First Year (Semester I & II) of Bachelor's Programme as per NEP 2020

> Under Choice Based Credit System (CBCS)

With effect from Academic Year 2023-24

Open Elective Courses Offered by Department of Physics for FYBA / FYBCom / FYBSc / FYBMS / FYBAF / FYBSc IT / FYBSc BT / FYBSc CS

Semester I				Semester II	
Course CodeNomenclatureCredits			Course Code	Nomenclature	Credits
Generic/Open Elective (OE)			Go	eneric/Open Elective (Ol	E)
USOE101	Astronomy for Beginners	02	USOE201	Observational Astronomy	02

Syllabus of Open Elective Course Offered for Semester I

Name of the Course	Astronomy for Beginners
Course Code	USOE101
Class	FYBA / FYBCom / FYBSc / FYBMS / FYBAF / FYBSc IT / FYBSc
	BT / FYBSc CS
Semester	Ι
Number of Credits	02
Nature	Theory / Practical / Project / any other
Туре	Elective
Revision of syllabus	This course inculcates ability to do mathematical calculation,
specific to	critical thinking and scientific visualization in the context of
employability/	astronomy. The course develops ability to differentiate
entrepreneurship/	between true facts and superstitions in daily life. The course
skill development	will help to enhance skill of communication of astronomical
	facts which may give employability in the field of astronomy
	popularization and outreach.

Nomenclature: Astronomy for Beginners /खगोलशास्त्राची ओळख

Eligibility: -- Candidate who has passed 10+2 examination in Arts/ Science/ Commerce or equivalent.

Course Outcomes:

On successful completion of this course, a learner will / सदर अभ्यासक्रम पूर्ण केल्यानंतर विद्यार्थ्याला:

- 1. Be able to understand importance of astronomy/ खगोलशास्त्राचे महत्त्व समजेल.
- 2. Be able to describe the physical universe and its evolution/ विश्वाविषयी आणि विश्वाच्या उत्क्रांतीविषयी वर्णन करता येईल.
- 3. Be able to describe our solar system/ आपल्या सूर्यमालेचे वर्णन करता येईल.
- 4. Be able to identify the structure of galaxy, properties of galaxies and classify galaxies / दीर्घिकांची रचना, वैशिष्ट्ये ओळखता येतील आणि दीर्घिकांची वर्गवारी करता येईल.
- 5. Be able to distinguish between planets, stars and other celestial objects/ ग्रह, तारे आणि इतर खगोलीय वस्तूंमधील फरक ओळखता येईल.
- 6. Be able to identify and classify types of stars/ ताऱ्याचा प्रकार ओळखून वर्गीकरण करता येईल.
- 7. Be able to identify and classify the astronomical events / खगोलीय घटना ओळखून त्याचे वर्गीकरण करता येईल.

Curriculum:

Unit	Title	Learning Points	No. of
			Lectures
		History of Astronomy: Ancient to Modern खगोलशास्त्राचा प्राचीन ते अर्वाचीन इतिहास	02
		Measurements in Astronomy (distance, time etc.) /	01
		खगोलशास्त्रातील मोजमापे (अंतर, काळइ)	01
	Introduction to	Activity/ उपक्रम : Power of Ten / कमाल दहाची	
Т	Astronomy / खगोलशास्त्राची ओळख	The Sun and various objects in Solar system	
-		(Planets, Asteroid belt) / सूर्य आणि सूर्यमालेतील	
		घटक (ग्रह, लघुग्रहांचा पट्टा)	04
		Activity / उपक्रम: Model Making of our Solar	
		System / आपल्या सूर्यमालेची प्रतिकृती बनवणे	
		The Earth / आपली पृथ्वी	
		The moon / आपला चंद्र	03
		Activity / उपक्रम: Book review / पुस्तक परीक्षण	
	Galaxy and	The milky way galaxy / आकाशगंगा	02
II	Universe /	Galaxy and types of galaxies (Hubble fork)/	04
	दीर्घिका आणि विश्व	दीर्घिका आणि दीर्घिकांचे प्रकार (हबल फोर्क)	04
		Introductory study of structure of the universe /	

		विश्वरचनेचा प्राथमिक अभ्यास	
		Activity / उपक्रम : Galaxy Classification / दीर्घिका	
		वर्गीकरण	
		Activity / उपक्रम : Your Galactic Address / तुमचा	
		विश्वातला पत्ता	
		Birth of the universe (The Big Bang)/ विश्वरचनेची	02
		सुरुवात	02
		The future of universe/विश्वाचे भविष्य	02
		Study of Life cycle of stars: from red giants to	
		Black hole, properties of stars, /ताऱ्यांचे जीवनचक्र:	05
		राक्षसी तारा ते कृष्णविवर, ताऱ्यांचे गुणधर्म	05
		Activity / उपक्रम : HR diagram	
	Evolution of	Eclipses and types / ग्रहणे आणि ग्रहणांचे प्रकार	
	stars and	Activity / उपक्रम : Drawings of eclipses / ग्रहणाचे	
	Astronomical	रेखाटन	
III	events / ताऱ्यांची	Comet , Meteor and Meteor Shower , Aurora	
	, जीवनगाथा आणि	borealis / धूमकेतू, उल्का आणि उल्कावर्षाव, ध्रुवीय प्रकाश	05
	अवकाशीय घटना	Retrograde, Conjunction, Opposition,	
		Occultation, Transits	
		ग्रहांचे वक्री होणे, युती, प्रतियुती, पिधान, अधिक्रमण	
		Activity / उपक्रम : Listing of recent astronomical	
		events /	
		नजीकच्या काळातील खगोलीय घटनांची नोंद	

Learning Resources recommended:

- 1. आकाशाशी जडले नाते: डॉ. जयंत नारळीकर, राजहंस प्रकाशन
- 2. मला उत्तर हवंय ! : खगोलशास्त्र, मोहन आपटे, राजहंस प्रकाशन
- 3. सूर्यमालेतील सृष्टीचमत्कार: मोहन आपटे, राजहंस प्रकाशन
- 4. A Textbook of Astronomy and Astrophysics: Suresh Chandra, Mohit Kumar Sharma, Dream tech Press, Distributed by WILEY

- 5. <u>https://avakashvedh.com/</u>
- 6. <u>https://csa.pkc.org.in/</u>
- 7. <u>https://imagine.gsfc.nasa.gov/science/objects/milkyway1.html</u>

.....

Course Evaluation:

The course will be assessed with Continuous Evaluation and Semester End Evaluation. Continuous Evaluation of the course will be of 40% and Semester End Evaluation of the course will be of 60%.

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method	Marks
Activity Completion	30
Attendance and active participation in classroom	10

B. Semester End Evaluation (60 Marks): Paper Pattern

Que	Question No.		Type of Questions	Unit	Marks
1		Attempt any	Descriptive question which may include	Ι	15
		THREE out of	Short note / Short answer /Drawing		
		Six	labeled diagram / Numerical problems		
2		Attempt any	Descriptive question which may include	II	15
		THREE out of	Short note / Short answer /Drawing		
		Six	labeled diagram / Numerical problems		
3		Attempt any	Descriptive question which may include	III	15
		THREE out of	Short note / Short answer /Drawing		
		Six	labeled diagram / Numerical problems		
4	Α	Attempt ALL	Multiple Choice Questions	I, II, III	12
		SIX			
4	В	Attempt ALL	Answer in one- two lines.	I, II, III	03
		THREE			

Passing Scheme:

In order to earn credits of the course, a learner has to secure minimum 40% marks in Continuous Evaluation and 40% marks in Semester End Evaluation.

Course grade points and course grade will be decided by the aggregate marks (Continuous Evaluation plus Semester End Evaluation) secured by a learner.

Syllabus of Open Elective Course Offered for Semester II

Name of the Course	Observational Astronomy
Course Code	USOE201
Class	FYBA / FYBCom / FYBSc / FYBMS / FYBAF / FYBSc IT / FYBSc
	BT / FYBSc CS
Semester	II
Number of Credits	02
Nature	Theory /Practical / Project / any other
Туре	Generic / Open Elective
Revision of syllabus specific to employability/ entrepreneurship/ skill development	This course imparts skills like sky observation, telescope handling, use of telescope and software for sky observation. Learner may become resource person for sky observation sessions; may conduct sessions on telescope and software handling. Learner completing this course may find suitable employment in newly emerging astro tourism industry.

Nomenclature: Observational Astronomy / निरीक्षणात्मक खगोलशास्त्र

Eligibility: Candidate who has passed 10+2 examination in Arts/ Science/ Commerce or equivalent.

Course Outcomes:

On successful completion of this course, a learner will / सदर अभ्यासक्रम पूर्ण केल्यानंतर विद्यार्थ्याला:

- 1. Be able to identify constellations / तारकासमूह ओळखता येतील.
- 2. Be able to read the sky map and determine position of star and planet / आकाशाचा नकाशा वापरता येऊन ग्रह आणि तारे यांचे स्थान शोधता येईल.
- 3. Be able to handle telescope / दुर्बिण हाताळता येईल.
- 4. Be able to use software for sky observation / आकाश निरीक्षणासाठी software वापरता येईल.
- 5. Be able to conduct sky observation sessions / आकाश निरीक्षण सत्र घेता येतील.

Group	Title	Learning Points	No. of
A	Astronomical Coordinate Systems and Sky Maps / खगोलीय निर्देश पद्धत आणि आकाशाचा नकाशा	Introduction to astronomical coordinates/ खगोलीय निर्देशकांची ओळख 1. Horizon system / क्षितीज पद्धत 2. Equatorial system / वैषुव वृत्त पद्धत 3. Ecliptic system / आयनिक वृत्त पद्धत The Solar Path/ सुर्यभ्रमणाचा मार्ग, Equinox (Vernal, Autumnal)/ संपात बिंदू(वसंत, शरद), Summer Solstice, Winter Solstice and Seasons / उत्तरायण, दक्षिणायन आणि ऋतु Use of Sky map / आकाशाच्या नकाशाचा वापर Methods of determining the position of planets and stars / ग्रह आणि तारे यांचे स्थान निश्चित करण्याच्या पद्धती Locating Pole star and identifying geographical directions on the map (East/West/North/South) using Pole star / नकाशात ध्रुव ताऱ्याचे स्थान निश्चित करणे आणि त्यावरून भौगोलिक दिशा निश्चित करणे Identifying star patterns: constellations /नकाशामध्ये ताऱ्यांच्या रचनाकृती: तारकासमृह ओळखणे	20
В	Naked Eye Sky Observation / उघड्या डोळ्यांनी आकाश निरीक्षण	Introduction to naked eye sky observation/ उघड्या डोळ्यांनी केल्या जाणाऱ्या आकाश निरीक्षणाची ओळख Locating visible planets in the sky / आकशातील दृश्यमान ग्रह ओळखणे Locating Pole star in the sky / आकाशात ध्रुव ताऱ्याचे स्थान ओळखणे	20

		Locating constellations such as Ursa Major /	
		Cassiopeia in the sky	
		आकाशातील सप्तर्षी / शर्मिष्ठा तारकासमूह ओळखणे	
		Locating constellation Orion in the sky /	
		आकाशातील मृग तारकासमूह ओळखणे	
		Locating constellation Pleiades in the sky/	
		आकाशातील कृत्तिका तारकासमूह ओळखणे	
		The moon phase log book: Observe and record	
		phases of moon / चंद्राच्या कलांचे निरीक्षण आणि नोंदी	
		ठेवणे	
		Moon Phases Calendar / चंद्र कला दिनदर्शिका	
		Telescopes and types of telescopes / दुर्बिणी आणि	
		दुर्बिणीचे प्रकार	
		Observation of surface of the moon through	
		telescope / दुर्बिणीच्या सहाय्याने चंद्राच्या पृष्ठभागांचे	
	l elescopes	निरीक्षण करणे	
С	and soltwares	Observation of visible planets through	20
	/ दुाबणा आणि Softwaraa	telescopes / दृश्यमान ग्रहांचे दुर्बिणीतून निरीक्षण	
	Soltwares	Use of astronomy software Stellarium/	
		Stellarium software चा वापर	
		Solar analemma	
		Moon analemma	

Learning Resources recommended:

- 1. आकाशाशी जडले नाते: डॉ. जयंत नारळीकर, राजहंस प्रकाशन
- 2. A Textbook of Astronomy and Astrophysics: Suresh Chandra, Mohit Kumar Sharma, Dream tech Press, Distributed by WILEY
- 3. <u>https://avakashvedh.com/</u>
- 4. Joy of Starwatching,: Biman Basu, National Book Trust, India
- 5. <u>https://stellarium.org/</u>
- 6. <u>http://www.skymaponline.net/</u>
- 7. कथारूपी खगोलशास्त्र: मेहता हाउस पब्लिकेशन
- 8. A Handbook on Telescope: Dr. Sarmistha Basu, First edition, B K Publications Private Limited
- 9. EDMUND MAG 5 STAR ATLAS: Edmund Scientific

Course Evaluation:

The course will be assessed with Continuous Evaluation and Semester End Evaluation. Continuous Evaluation of the course will be of 40% and Semester End Evaluation of the course will be of 60%.

Evaluation Pattern:

A. Continuous Evaluation: (40 marks)

Method	Marks
Performance and engagement during practical sessions:	30
 Skills, precision, accuracy, safety measures, individual and/or collaborative working while performing practical 	
Ability to use sky maps, to locate or identify astronomical objects, to locate	
or identify star patterns, to handle telescopes, to use softwares and to record proper observations	
• Submission of journal within a week after every practical session, wherever applicable.	
Based on above criteria, each experiment of this course will be assessed for 10	
marks during regular practical session and finally the total marks obtained by	
a learner will be converted to marks out of 30.	
Overall performance (attendance, punctuality, sincerity for practical sessions	
throughout semester)	
Viva	05

B. Semester End Evaluation (60 marks)

Exam Pattern

Question No.	Group		Method			Marks
1	A, B, C	Experiment	performance	as	per	60
		examination	slip			

Passing Scheme:

In order to earn credits of the course, a learner has to secure minimum 40% marks in Continuous Evaluation and 40% marks in Semester End Evaluation.

Course grade points and course grade will be decided by the aggregate marks (Continuous Evaluation plus Semester End Evaluation) secured by a learner.

R. E. Society's R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce (Autonomous), Ratnagiri

Syllabus of Skill Enhancement Course Offered by Department of Physics for the First Year (Semester II) of B Sc Programme as per NEP 2020

> Under Choice Based Credit System (CBCS)

With effect from Academic Year 2023-24

Syllabus of Skill Enhancement Course Offered for Semester II

Name of the Course	Basic Measurement Skills and Data Analysis
Course Code	USPH204
Class	FYBSc
Semester	II
Number of Credits	02
Nature	Theory / Practical / Project / any other
Туре	Elective
Revision of syllabus	This course helps to develop ability to do measurement,
specific to	uncertainty calculation and error analysis using statistical
employability/	techniques. Course is designed to impart skills like graph
entrepreneurship/	plotting, critical thinking and mathematical calculations.
skill development	

Nomenclature: Basic Measurement Skills and Data Analysis

Eligibility: -- Candidate who has passed 10+2 examination in Science or equivalent.

Course Outcomes:

On successful completion of this course a learner will:

- 1. Be able to do measurements.
- 2. Be able to use systems of units.
- 3. Be able to calculate uncertainty in measurements.
- 4. Be able to do basic statistical calculations.
- 5. Be able to plot graphs.
- 6. Be able to use graph for uncertainty calculations.

Curriculum:

Group	Title	Learning Points	No. of
			Lectures
		Measurements and systems of units	
		Uncertainty in measurement, expressing	
	Introduction to	uncertainty in measurement, Error vs	
Δ	measurement and	uncertainty, Importance of study of	20
Л	Uncertainties in	uncertainty in measurement	20
	measurements	Origins of errors and uncertainties	
		Error analysis- Experiment I	
		Error analysis- Experiment II	
		Basic statistical calculations- mean, median,	
		mode, standard deviation	
	Racic statistics	Types of Distributions: Normal,	
	distributions and	rectangular, other	
В		The general kinds of uncertainty in any	20
	calculation	measurement: Random or systematic,	
	calculation	Calculation of uncertainty in measurements	
		Error analysis- Experiment III	
		Error analysis- Experiment IV	
		Basic layout of graph, Curve fitting	
C	Graphing technique	Uncertainties and graph	20
	& Uncertainty	Error analysis- Experiment VI	20
		Error analysis- Experiment VII	

Learning Resources recommended:

Measurement Good Practice Guide No. 11 (Issue 2), A Beginner's Guide to Uncertainty of Measurement: Stephanie Bell, Centre for Basic, Thermal and Length Metrology, National Physical Laboratory

Course Evaluation:

The course will be assessed with Continuous Evaluation and Semester End Evaluation. Continuous Evaluation of the course will be of 40% and Semester End Evaluation of the course will be of 60%.

Evaluation Pattern:

A. Continuous Evaluation (40 marks):

Method	Marks
Performance and engagement during practical sessions:	30
 Skills, precision, accuracy, safety measures, individual and/or collaborative working while performing practical Ability to record proper observations, to analyze data, to plot graph, to draw meaningful conclusions of experiments, to do error analysis Submission of journal within a week after every practical session 	
Based on above criteria, each experiment of this course will be assessed for 10 marks during regular practical session and finally the total marks obtained by a learner will be converted to marks out of 30.	
Overall performance (attendance, punctuality, sincerity for practical	05
sessions throughout semester)	
Viva	05

B. Semester End Evaluation (60 marks):

Exam Pattern

Question No.	Group	Method	Marks
1	A, B, C	Experiment performance as per examination slip	60

Passing Scheme:

In order to earn credits of the course, a learner has to secure minimum 40% marks in Continuous Evaluation and 40% marks in Semester End Evaluation.

Course grade points and course grade will be decided by the aggregate marks (Continuous Evaluation plus Semester End Evaluation) secured by a learner.

R. E. SOCIETY'S, R. P. GOGATE COLLEGE OF ARTS & SCIENCE AND R. V. JOGALEKAR COLLEGE OF COMMERCE (AUTONOMOUS), RATNAGIRI

SYLLABI OF COURSES OFFERED BY DEPARTMENT OF PHYSICS OF THE COLLEGE IN THE SUBJECT PHYSICS FOR THE SECOND YEAR (SEMESTER III & IV) OF PROGRAM BSc

UNDER CHOICE BASED CREDIT SYSTEM (CBCS)

WITH THE EFFECT FROM ACADEMIC YEAR 2023-24

Program Outcomes of BSc with Subject Physics

Name of Program	BSc
Level	UG
Number of Semesters	06
Year of Implementation	2023-24
Program Specific	After successful completion of this program, learners will:
Outcomes (PSO)	 Understand fundamental physics concepts and will be able to apply physics principles to real world problems. Be able to think critically and develop the ability to apply theoretical and mathematical principles to solve complex problems in various areas of physics. Acquire hands-on experience in conducting experiments, using laboratory equipments, analyzing experimental data and will be able to draw meaningful conclusions of experiment and to interpret results. Recognize the interconnections between physics and other disciplines, such as, mathematics, chemistry and engineering and will be able to work effectively in those interdisciplinary fields. Possess basic programming skills, will be introduced to the field of automation and will be equipped with essential knowledge and skills to work with basic automation systems. Develop the ability to work individually as well as in collaboration. Be able to pursue higher studies and will be able to take
	research opportunities.
Relevance of PSOs to the local, regional, national and global developmental needs	Science graduates with the subject Physics can go for higher studies and pursue careers directly related to physics, like, research, academics, etc. Other than this, Science graduates with the subject Physics can also pursue careers in other fields, such as, data science, engineering, IT, automation, government jobs, medical physics and healthcare industry, national security, etc., due to their analytical, problem solving and critical thinking abilities. BSc program with the subject Physics produces graduates with a diverse skill set capable of addressing various challenges. This

can lead to improve research and innovation, economic growth
and sustainable development from local to global level. The
relevance of BSc program with the subject Physics to
developmental needs enhances its overall impact on society and
makes it more responsive to the evolving demands of the
scientific, technological and societal landscape.

Scheme of Evaluation

Course Evaluation:

Each course of BSc in the subject Physics will be assessed with Continuous Evaluation and Semester End Evaluation. Continuous Evaluation of each course will be of 40% and Semester End Evaluation of each course will be of 60%.

Passing Scheme:

For each course of BSc in the subject Physics, there will be separate head of passing for Continuous Evaluation and for Semester End Evaluation. Course grade points and course grade will be decided by the aggregate marks obtained by a learner.

		Marks Obtained by a learner in Continuous Evaluation
Aggregate Marks	=	+
		Marks obtained by a learner in Semester End Evaluation

In order to earn credits of this course, a learner is required to secure a minimum of 40% marks in Continuous Evaluation and 40% marks in Semester End Evaluation.

Conversion of Marks:

There will be no conversion of marks for SYBSc.

Credit and Grade Scheme:

% of Aggregate Marks Obtained	Course Grade Point	Course Grade	Performance Indicator	Credits Earned
90.0 to 100	10	0	Outstanding	
80 to 89.99	9	A+	Excellent	٨c
70 to 79.99	8	А	Very Good	AS
60 to 69.99	7	B+	Good	in Course
55 to 59.99	6	В	Above Average	Syllabus
50.0 to 54.99	5	С	Average	bynabus
40 to 49.99	4	Р	Pass	
Less Than 40	0	F	Fail	0
Absent	0	Ab	Absent	U

Note:

For any course,

Aggregate Marks = Marks Obtained by a learner in Continuous Evaluation + Marks obtained by a learner in Semester End Evaluation

Scheme of Courses Offered by Department of Physics for SYBSc

Semester III				Semester IV	
Course	Nomenclature	Credits	Course	Nomenclature	Credits
Code			Code		
USPH301	Mechanics and	02	USPH401	Optics and Material	02
	Thermodynamics			Science	
USPH302	Electronics	02	USPH402	Quantum Physics	02
USPH303	Mathematical Methods	02	USPH403	Applied Physics	02
	in Physics				
USPH304	Physics Lab - III	03	USPH404	Physics Lab - IV	03

Syllabi of Courses Offered for Semester III

Name of the	Mechanics and Thermodynamics
Course	
Course Code	USPH301
Class	SYBSc
Semester	III
Number of Credits	02
Nature	Theory
Туре	Core
Revision of	The curriculum is so designed that it equips learners with a strong
syllabus specific to	foundation in mechanics and thermodynamics, enables them to apply
employability/	their knowledge to various scientific, engineering and practical
entrepreneurship/	situations.
skill development	Learner will develop the skill to analyze and solve mechanics problems,
	particularly related to compound pendulum, center of mass and
	oscillations, using appropriate mathematical and analytical techniques.
	The course equips learners with a comprehensive understanding of
	various thermodynamic processes, principles that govern energy
	conversion, limitations of conversion of energy into work, Carnot's
	cycle, Carnot's theorems, entropy, second and third law of
	thermodynamics, Maxwell's thermodynamic relations and their
	applications. The course also equips learners with basic understanding
	of heat engines including ideal and practical engines, internal and
	external combustion engines, such as, Carnot's ideal heat engine, Steam
	engine, Petrol engine, Diesel engine and learners will be able to assess
	the performance of these engines through efficiency calculations.
	The course equips learners with a comprehensive understanding of low
	temperature physics, as well as, principles, processes and techniques
	involved in converting gases into liquids. The learners will understand
	principle, design and operation of refrigeration systems. The learners
	will also understand properties, behavior and applications of liquid
	helium at extremely low temperature.
	This knowledge will prepare the learners for careers in research and
	engineering fields.
	Additionally, some of the topics in this theory course will be covered in
	following physics lab courses which will reinforce learner's theoretical
	understanding to real world applications.

Nomenclature: Mechanics and Thermodynamics

Eligibility: To be eligible for enrolment in this course, a learner must have appeared for the course 'USPH101: Classical Physics'.

Course Outcomes:

On successful completion of this course, a learner will:

- 1. Understand the concepts of mechanics & properties of matter & to apply them to problems.
- 2. Comprehend the basic concepts of thermodynamics & its applications in physical situations.
- 3. Learn about situations in low temperature.
- 4. Demonstrate tentative problem solving skills in all above areas.

Curriculum:

Unit	Title	Learning Points	No. of
			Lectures
			(50 min.)
Ι	Mechanics	 Compound pendulum: Expression for period, Maximum and minimum time period, Centre of suspension and oscillations, Reversible compound pendulum, Kater's reversible pendulum, Compound pendulum and simple pendulum - a relative study Reference: HP Center of Mass, Motion of the Center of Mass, Linear momentum of a Particle Linear momentum of a System of Particles, Linear momentum w.r.t. CM coordinate (i.e., shift of origin from Lab to CM), Conservation of Linear Momentum, Some Applications of the Momentum Principle, System of Variable Mass, Torque acting on a Particle, Angular Momentum of a Particle, Angular Momentum of System of Particles, Total angular momentum w.r.t. CM coordinate, Conservation of Angular Momentum Reference: HP Oscillations, The Simple Harmonic Oscillator, Relation between Simple Harmonic Motion and Uniform Circular Motion, Two Body Oscillations, 	15

		Damped Harmonic Motion, Forced Oscillations and Resonance Reference: HP	
II	Thermodynamics - I	 (Review: Zeroth and first law of thermodynamics) Conversion of heat into work, heat engine, Carnot's ideal heat engine, Carnot's cycle: its efficiency Reference: AH 	15
		2. Second law of thermodynamics - Statements, Equivalence of Kelvin-Plank and Clausius statement, Carnot's theorem, Reversible and irreversible process, Absolute scale of temperature Reference: AH	
		3. Clausius theorem, Entropy, Entropy of a cyclic process, Reversible process, Entropy change, Reversible heat transfer, Principle of increase in entropy, Generalized form of first and second law, Entropy change of an ideal gas, Entropy of steam, Entropy and unavailable energy, Entropy and disorder, Absolute entropy Reference: AH	
III	Thermodynamics – II	1. Third law of thermodynamics, Nernst heat theorem, Consequences of the third law, Maxwell's thermodynamic relations, Clausius – Clapeyron equation, Thermal Expansion Reference: AH	15
		2. Heat Engines: Rankine cycle, Steam engine, Otto engine, Efficiency of Otto cycle, Diesel cycle, Efficiency of Diesel cycle, Otto and Diesel cycle comparison Reference: AH, BSH	
		3. Low Temperature Physics: Different methods of liquefaction of gases, Methods of freezing mixture, Cooling by evaporation, Cooling by adiabatic expansion, Joule - Thompson effect, JT	

	effect of Van der Waal's gas, Liquefaction of helium,	
	Properties and uses of liquid Helium	
	Reference: BSH	

Note: A good number of numerical examples on all units (as far as possible) are expected to be covered during the prescribed lectures.

Learning Resources recommended:

Main References:

- 1. HP: Mechanics, H. S. Hans and S. P. Puri, Tata McGraw Hill (2nd ED.)
- 2. AH: Thermal Physics, A. B. Gupta and H. Roy, Book and Allied (P) Ltd, Reprint 2008-09
- 3. BSH: Heat, Thermodynamics and Statistical Physics, Brij lal, N. Subramanyam, P. S. Hemne, S. Chand, edition 2007

Additional reference:

- 1. Resnick and Halliday, Physics I
- 2. Mechanics, K. R. Symon
- 3. Classical Dynamics of particles and systems, Thornton and Marian, CENGAGE Learning
- 4. Basic Thermodynamics, Evelyn Guha, Narosa Publications
- 5. Classical mechanics, Kleppener, Kollenkov
- 6. A treatise on heat, Meghanad Saha and B. N. Srivastava, 1969, India Press.
- 7. Mechanics and Electrodynamics, Rev. Edn. 2005, Brij lal and N. Subramanyam and Jeevan Seshan

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method	Marks
Unit Test (MCQ / Descriptive – Based on Theory and/or Problems -	20
Online/Offline – 1 unit test of 20 marks / 2 unit tests of 10 marks	
each / 3 unit tests of 10 marks each and best two out of three will be	
considered)	
Assignments / Seminars	10
Attendance and active participation in classroom	10

B. Semester End Evaluation (Paper Pattern) (60 Marks – 2 hours):

Question	Question Type	Unit	Marks
No.			
1	A) Long questions with 100% internal option	T	07
1	B) Short questions with 100% internal option	1	08
2	A) Long questions with 100% internal option	II	07
Z	B) Short questions with 100% internal option	11	08
2	A) Long questions with 100% internal option	III	07
3	B) Short questions with 100% internal option	111	08
4	Objective type of questions without internal	Ι	05
	objective type of questions without internal	II	05
		III	05

Guidelines for paper pattern for Semester End Evaluation:

- 1. As far as possible, one fifth weightage of the total marks should be given to numerical examples in above paper pattern.
- 2. All questions will be compulsory and may be divided into sub-questions.
- 3. Long and short questions will include descriptive type of questions, derivation-based questions, problem solving / numericals based questions, etc.
- 4. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Name of the	Electronics
Course	
Course Code	USPH302
Class	SYBSc
Semester	III
Number of Credits	02
Nature	Theory
Туре	Core
Revision of syllabus	Restructuring of syllabus has been done to ensure a smooth and
specific to	logical flow of content throughout the curriculum. It also facilitates
employability/	the logical progression of subjects which allows students to build
entrepreneurship/	their understanding of subject progressively and systematically and
skill development	to grasp contents more effectively.
	Learners will develop a basic understanding of variations of
	transistor parameters and their impact on circuit performance.
	Learners will develop the skill to analyze and design various
	transistor biasing circuits, general amplifier circuits and oscillator
	circuits. Learners will also attain a basic understanding of the
	fundamental principles of operational amplifiers, including its
	structure, operation and its versatile applications in electronics.
	These skills will empower learners to contribute effectively in the
	field of analog electronics, signal generation, signal processing,
	frequency control, circuit design, etc.
	Learners will also develop the skill to handle binary data and to
	perform arithmetic operations. Learners will develop the skill to
	analyze and optimize sequential circuits using flip-flops for a variety
	of digital applications. Learners will also understand types of digital
	registers and data transfer mechanisms that these registers allow for
	a wide range of digital applications. Learners will also develop a
	basic understanding of the fundamental principles of digital counters
	and will be able to analyze and design asynchronous and
	synchronous counters for a variety of digital applications.
	These skills will empower learners to contribute effectively in the
	field of digital systems, computer architecture and digital signal
	processing.
	Additionally, some of the topics in this theory course will be covered
	in following physics lab courses which will reinforce learner's
	theoretical understanding to real world applications.

Eligibility: To be eligible for enrolment in this course, a learner must have appeared for the course 'USPH202: Electricity and Electronics'.

Course Outcomes:

On successful completion of this course, a learner will:

- 1. Understand the basics of transistor biasing, operational amplifiers, their applications.
- 2. Understand the basic concepts of oscillators and be able to perform calculations using them.
- 3. Understand the working of digital circuits.
- 4. Demonstrate quantitative problem solving skill in all the topics covered.

Curriculum:

Unit	Title	Learning Points	No. of
			Lectures
			(50 min.)
Ι	Analog Electronics - I	1. Transistor Biasing: Inherent Variations of Transistor Parameters, Stabilization, Essentials of a Transistor Biasing Circuit, Stability Factor, Methods of Transistor Biasing, Base Resistor Method, Emitter Bias Circuit, Circuit analysis of Emitter Bias, Biasing with Collector Feedback Resistor, Voltage Divider Bias Method, Stability	15
		 factor for Potential Divider Bias Reference: MM 2. General amplifier characteristics: Concept of amplification, amplifier notations, current gain, Voltage gain, power gain, input resistance, output resistance, phase reversal, frequency response, Decibel gain and Band width Reference: AM 	
		3. Feedbacks in Amplifiers: General theory of feedback, reasons for negative feedback, loop gain, Practical circuit of transistor amplifier with and without feedback Reference: MM	

r	1		
	Analog Electronics - II	 Oscillators: Introduction, effect of positive feedback. Requirements for oscillations, Phase shift oscillator, Wien Bridge Oscillator, Colpitt's Oscillator, Hartley Oscillator Reference: AM Operational Amplifiers: Introduction, Schematic symbol of OPAMP, Output voltage from OPAMP, AC analysis, Bandwidth of an OPAMP, Slew rate, Frequency Response of an OPAMP, OPAMP with Negative feedback, Inverting Amplifier, Non - Inverting Amplifier, Voltage Follower, Summing Amplifier, Applications of Summing amplifier, OPAMP Integrator and Differentiator, Comparator Reference: MM 	15
III	Digital Electronics	 Digital IC signal levels, Binary addition, Unsigned binary numbers, Sign magnitude numbers, 1's complement, 2's complement, Converting to and from 2's complement representation, 2's complement arithmetic, adder- subtractor (Ignore IC specific diagrams) Reference: LMS RS Flip-Flops (only NOR gate latch, NAND gate latch), Gated Flip-Flops, Edge- Triggered RS Flip-Flop, Edge-Triggered D Flip-Flop, Edge- Triggered JK Flip-Flop, JK Master- Slave Flip-Flops, Bounce elimination switch Reference: LMS 	15
		 3. Types of registers: SISO, SIPO, PISO, PIPO (general description) Reference: LMS 4. Asynchronous counter - 3 bit (Ignore IC specific diagrams), Synchronous counter only Mod 8, Decade Counters, Mod 5 and Mod 10 Reference: LMS 	
1			

Note: A good number of numerical examples on all units (as far as possible) are expected to be covered during the prescribed lectures.

Learning Resources recommended:

Main References:

- 1. MM: Principles of Electronics, V. K. Mehta and Rohit Mehta, S. Chand Multicoloured illustrative edition
- 2. AM: Electronic devices and circuits, An introduction Allan Mottershead, PHI Pvt. Ltd.– EEE Reprint 2013
- 3. LMS: Digital Principles and Applications, Leach, Malvino, Saha 6th edn.

Additional References:

- 1. Digital Fundamentals, Thomas L. Floyd, 10th edn.
- 2. Modern Digital Electronics, R. P. Jain, 4th edn.

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method	Marks
Unit Test (MCQ / Descriptive – Based on Theory and/or Problems -	20
Online/Offline – 1 unit test of 20 marks / 2 unit tests of 10 marks	
each / 3 unit tests of 10 marks each and best two out of three will be	
considered)	
Assignments / Seminars	10
Attendance and active participation in classroom	10

B. Semester End Evaluation (Paper Pattern) (60 Marks - 2 hours):

Question	Question Type	Unit	Marks
No.			
1	A) Long questions with 100% internal option	Ι	07
	B) Short questions with 100% internal option		08
2	A) Long questions with 100% internal option	II	07
	B) Short questions with 100% internal option		08
3	A) Long questions with 100% internal option	III	07
	B) Short questions with 100% internal option		08
4	Objective type of questions without internal option	Ι	05
		II	05
		III	05

Guidelines for paper pattern for Semester End Evaluation:

- 1. As far as possible, one fifth weightage of the total marks should be given to numerical examples in above paper pattern.
- 2. All questions will be compulsory and may be divided into sub-questions.
- 3. Long and short questions will include descriptive type of questions, derivation-based questions, problem solving / numericals based questions, etc.
- 4. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Name of the	Mathematical Methods in Physics		
Course			
Course Code	USPH303		
Class	SYBSc		
Semester	III		
Number of Credits	02		
Nature	Theory		
Туре	Core		
Revision of syllabus	Restructuring of syllabus has been done to ensure a smooth and		
specific to	logical flow of content throughout the curriculum. It also facilitates		
employability/	the logical progression of subjects which allows students to build		
entrepreneurship/	their understanding of subject progressively and systematically and		
skill development	to grasp contents more effectively.		
	The curriculum focuses on providing basic understanding of various		
	mathematical methods to learners that are essential for solving		
	complex problems in physics.		
	Curriculum covers various mathematical methods commonly used in		
	physics, such as, vector algebra, vector calculus, differential		
	equations, etc. This will empower learners to contribute effectively		
	to the field of experimentation, research and theoretical		
	developments.		
	The curriculum is so designed that along with learning various		
	mathematical methods, learners are also introduced to some of the		
	real world examples, where they can find direct applications of these		
	methods to analyze real world scenarios, e.g., the curriculum equips		
	learners to analyze transient response of series LR, CR, LCR circuits.		
	The curriculum also equips learners with basic understanding of		
	curvilinear coordinate systems, particularly cylindrical and spherical		
	coordinates and this will help learners to visualize systems		
	geometrically.		
Eligibility: --

Course Outcomes:

On successful completion of this course, a learner will:

1. Understand the basic concepts of mathematical physics and applications of them in physical situations.

- 2. Learn mathematical skills and tools for studying physics.
- 3. Demonstrate quantitative problem solving skills in all topics covered

Unit	Title	Learning Points	No. of
			Lectures
			(50 min.)
Ι	Vector Algebra	 Vectors, Scalars, Vector algebra, Laws of vector algebra, Unit vector, Rectangular unit vectors, Components of a vector, Scalar fields, Vector fields, Problems based on vector algebra, Dot or scalar product, Cross or vector product, Commutative and distributive laws, Scalar triple product (omit proof), Vector triple product (omit proof), Problems and applications based on dot, cross and triple products Reference: DJG The The Operator, Definition and physical significance of gradient, divergence and curl (omit proofs), Problems based on gradient, divergence and curl Reference: DJG 	15
II	Vector Calculus	1. Line, Surface and Volume Integrals, The Fundamental Theorem of Calculus, The Fundamental Theorem of Gradient, The Fundamental Theorem of Divergence, The Fundamental Theorem of Curl (Statement and Geometrical interpretation is included, Proof of these theorems are omitted). Problems based on these theorems are required to be done	15

		Reference: DJG	
		2. Curvilinear Coordinates: Cylindrical Coordinates, Spherical Coordinates Reference: DJG	
III	Differential Equations	 Introduction, ordinary differential equations, First order homogeneous and non- homogeneous equations with variable coefficients, Exact differentials, General first order Linear Differential Equation, Second order homogeneous equation with constant coefficients, Problems, depicting physical situations like LC and LR circuits, Simple harmonic motion (Spring mass system) Reference: CH Transient response of circuits: Series LR, CR, LCR circuits (Growth and decay of current/charge) Reference: CR 	15

Note: A good number of numerical examples on all units (as far as possible) are expected to be covered during the prescribed lectures.

Learning Resources recommended:

Main References:

- 1. DJG: D. J. Griffith, Introduction to Electrodynamics, 3rd Ed
- 2. CH: Charlie Harper, Introduction to Mathematical Physics, 2009 (EEE) PHI Learning Pvt. Ltd.
- 3. CR: D. Chattopadhyay, P. C. Rakshit, Electricity and Magnetism, 7th Edition, New Central Book Agency

Additional References:

- 1. Brij Lal, N. Subrahmanyam, Jivan Seshan, Mechanics and Electrodynamics, S. Chand (Revised and Enlarged Edition 2005)
- 2. A. K. Ghatak, Chua, Mathematical Physics, 1995, MacMillan India Ltd.
- 3. Ken Riley, Michael Hobson and Stephan Bence, Mathematical methods for Physics and Engineering, Cambridge (Indian Edition)
- 4. H. K. Dass, Mathematical Physics, S. Chand & Co.

- 5. Jon Mathews & R. L. Walker, Mathematical Methods of Physics, W. A. Benjamin Inc.
- 6. Murray R. Spiegel, Schaum's ouline of theory and problems of vector analysis, Asian Student Edition

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method	Marks
Unit Test (MCQ / Descriptive – Based on Theory and/or Problems -	20
Online/Offline – 1 unit test of 20 marks / 2 unit tests of 10 marks	
each / 3 unit tests of 10 marks each and best two out of three will be	
considered)	
Assignments / Seminars	10
Attendance and active participation in classroom	10

B. Semester End Evaluation (Paper Pattern) (60 Marks – 2 hours):

Question	Question Type	Unit	Marks
No.			
1	A) Long questions with 100% internal option	Т	07
I	B) Short questions with 100% internal option	1	08
2	A) Long questions with 100% internal option	П	07
2	B) Short questions with 100% internal option	11	08
2	A) Long questions with 100% internal option	Ш	07
5	B) Short questions with 100% internal option	111	08
	Objective type of questions without internal	Ι	05
4	objective type of questions without internal	II	05
		III	05

Guidelines for paper pattern for Semester End Evaluation:

- 1. As far as possible, one fifth weightage of the total marks should be given to numerical examples in above paper pattern.
- 2. All questions will be compulsory and may be divided into sub-questions.
- 3. Long and short questions will include descriptive type of questions, derivation-based questions, problem solving / numericals based questions, etc.
- 4. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Name of the	Physics Lab – III
Course	
Course Code	USPH304
Class	SYBSc
Semester	III
Number of Credits	03
Nature	Practical
Туре	Core
Revision specific to	Restructuring of syllabus has been done to ensure a smooth and
employability/	logical flow of content throughout the curriculum. It also
entrepreneurship/	facilitates the logical progression of subjects which allows
skill development	students to build their understanding of subject progressively and
	systematically and to grasp contents more effectively.
	The curriculum is so designed that it offers hands-on approach to
	learn the subject. The curriculum also demonstrates how physics
	principles apply to real world scenarios. Learners will develop the
	skill to handle - measuring instruments, basic physics laboratory
	equipments, etc. Learners will also learn to perform basic physics
	experiments, learn to improve the accuracy of measurements,
	learn to analyze experimental observations / data, learn to draw
	meaningful conclusions of experiments and to interpret results.

Eligibility: --

Course Outcomes:

On successful completion of this course, a learner will:

1. Understand & practice the skills while performing experiments.

- 2. Understand the use of apparatus and their use without fear & hesitation.
- 3. Correlate the physics theory concepts to practical application.
- 4. Learn scientific method of recording of the data, its analysis and result/conclusion of an experiment.

Instructions for learners:

- 1. All measurements and readings should be written with proper units.
- 2. Skill of doing the experiment and understanding physics concepts should be more important than the accuracy of final result.
- 3. In order to appear for Semester End Practical Examination of this course, all 5 skill experiments from this course and minimum 12 experiments (4 from 'Mechanics' group, 4 from 'Electricity and Electronics' group and 4 from 'General Physics' group) from this course, should be completed compulsorily and learners are required to report all these experiments in the journal of this course (Physics practical journal of third semester).
- 4. After completing all required number of experiments of this course and recording them in journal, learner will have to get their journal certified from the head of the Physics department and produce the certified journal at the time of Semester End Practical Examination of this course.
- 5. A learner will be allowed to appear for the Semester End Practical Examination of this course, only if learner submits a certified journal of this course or a certificate from the head of the Physics department that the learner has completed this practical course as per the minimum requirements.
- 6. For Semester End Practical Examination, the learner will be examined in 3 experiments (1 from 'Mechanics' group, 1 from 'Electricity and Electronics' group and 1 from 'General Physics' group) from this course and each experiment will be of two hours duration.
- 7. Evaluation in viva voce will be based on all skill experiments, experiments done from 'Mechanics' group, experiments done from 'Electricity and Electronics' group and experiments done from 'General Physics' group, from this course.
- 8. While evaluating learner's performance at Semester End Practical Examination of this course, weightage will be given to circuit / ray diagram, observations, tabular representation, experimental skills and procedure, graph, calculation and result, whichever applicable.

GJC (Autonomous) Syllabi of Courses Offered by Department of Physics for UG and PG Studies 2023-24 Page 78 of 325

Curriculum:

Group	Title	Learning Points	No. of
			lectures
			(50 min.)
А	Skill	1. Wiring of simple circuit using breadboard	15
	Experiments	2. Use of Oscilloscope	
		3. Spectrometer: mean μ of yellow doublet of	
		mercury source	
		4. Drawing of graph on semi logarithmic /	
		logarithmic scale	
		5. Radius of ball bearings (single pan balance)	
В	Mechanics	1. Y by bending	40
		2. Searle's experiment: determination of Y	
		3. Searle's experiment: determination of η	
		4. Determination of acceleration due to gravity	
		by using bar pendulum	
		5. Concept of beats	
		6. Resonance Pendulum	
С	Electricity	1. Passive low pass filter	40
C	and	2. Passive high pass filter	
	Electronics	3. Passive band pass filter	
		4. Verification of Thevenin:s theorem for dc	
		circuits	
		5. Verification of Norton's Theorem for dc	
		circuits	
		6. Phase shift oscillator	
D	Conorci	1 Figure of marit of a mirror column an ator	40
D	General	1. Figure of merit of a mirror galvanometer	40
	Physics	2. Determination of absolute capacitance using	
		Du 2 Macaurament of registerics of galuanometer	
		(G by shunting)	
		4. Charging and discharging of capacitor in	
		series CR dc circuit	
		5. LCR parallel resonance	
		6. Surface tension of liquid	
		7. Coupled oscillations and resonance	

Learning Resources recommended:

- 1. Advanced course in Practical Physics D. Chattopadhya, P. C. Rakshit & B. Saha. (6th Edition) Book and Allied Pvt. Ltd.
- 2. B.Sc. Practical Physics, Harnam Singh, S. Chand & Co. Ld. 2001
- 3. A test book of advanced practical Physics, Samir Kumar Ghosh, New Central Book Agency (3rd edition)

- 4. B.Sc. Practical Physics, C. L. Arora, 1st Edition, 2001 S. Chand and Co. Ltd.
- 5. Practical Physics, C. L. Squires, 3rd Edition, Cambridge University
- 6. University Practical Physics , D. C. Tayal, Himalaya Publication
- 7. Advanced Practical Physics, Worsnop & Flint

Evaluation Pattern:

A. Continuous Evaluation (60 Marks):

Method	Marks
Performance and engagement during practical sessions:	30
 Skills, precision, accuracy, safety measures, individual and/or collaborative working while performing practical 	
 Ability to record proper observations, to analyze data, to plot graph and to draw meaningful conclusions of experiments Submission of journal within a week after every practical session 	
Based on above criteria, each experiment of this course will be assessed for 10 marks during regular practical session and finally the total marks obtained by a learner will be converted to marks out of 30.	
Overall performance (attendance, punctuality, sincerity for practical	
Viva	15

B. Semester End Evaluation (Exam Pattern) (90 Marks - 6 hours)

Question	Group	Title	Method	Marks
No				
1	В	Mechanics	Experiment performance as	30
			per practical slip	
2	С	Electricity and	Experiment performance as	30
		Electronics	per practical slip	
3	D	General Physics	Experiment performance as	30
			per practical slip	

Syllabi of Courses Offered for Semester IV

Name of the	Optics and Material Science
Course	
Course Code	USPH401
Class	SYBSc
Semester	IV
Number of Credits	02
Nature	Theory
Туре	Core
Revision of syllabus	Restructuring of syllabus has been done to ensure a smooth and
specific to	logical flow of content throughout the curriculum. It also
employability/	facilitates the logical progression of subjects which allows
entrepreneurship/	learners to build their understanding of subject progressively and
skill development	systematically and to grasp contents more effectively.
	The curriculum is so designed that learners will develop a
	comprehensive understanding of the phenomena like, diffraction
	of light, polarization of light. After that, learners will be well-
	prepared to predict, analyze and interpret these phenomena and
	will be able to use it in various contexts, including optics,
	spectroscopy, material characterization, photography, imaging,
	etc. The study of these phenomena will empower learners to
	contribute effectively in the field of research, technology
	development and innovations.
	Learners will also gain the comprehensive knowledge about
	classification of materials based on their electrical, optical and
	magnetic properties and the application of dielectric materials.
	This will help learners to analyze and select materials for various
	applications, considering their electrical, magnetic and optical
	properties. These skills will help learners to contribute effectively
	in the field of research specifically in material science and in the
	field of engineering, manufacturing, product design, etc.
	Additionally, some of the topics in this theory course will be
	covered in following physics lab courses which will reinforce
	learner's theoretical understanding to real world applications.

Nomenclature: Optics and Material Science

Eligibility: To be eligible for enrolment in this course, a learner must have appeared for the course 'USPH202: Optics and Acoustics'.

Course Outcomes:

On successful completion of this course, a learner will:

- 1. Understand the phenomenon like, diffraction of light, polarization of light and their applications in physical situations.
- 2. Understand the fundamental principles of material science and classification of materials.
- 3. Demonstrate quantitative problem solving skills in all topics covered.

Unit	Title	Learning Points	No. of
			Lectures
			(50 min.)
Ι	Diffraction of	1. Fresnel's Diffraction: (Review:	15
	Light	Introduction, Huygens' – Fresnel theory, Distinction	
		between interference and diffraction, Fresnel and	
		Fraunhoffer types of diffraction)	
		Fresnel's assumptions, Rectilinear propagation	
		(Half period zones) of light, Diffraction pattern due	
		to straight edge, Positions of maxima and minima in	
		intensity, Intensity at a point inside the geometrical	
		shadow(straight edge), Diffraction due to a narrow	
		slit, Diffraction due to a narrow wire	
		Reference: BSA	
		2. Fraunhoffer Diffraction: Introduction,	
		Fraunhoffer diffraction at a single slit, Intensity	
		distribution in diffraction pattern due to a single	
		slit, Fraunhoffer diffraction at a double slit,	
		Distinction between single slit and double slit	
		diffraction pattern and missing orders, Plane	
		diffraction Grating, Theory of plane transmission	
		grating, Width of principal maxima	
		Reference: BSA	

II	Polarization of Light	1. Introduction to Polarization of light, Types of polarization, Plane polarized light, Circularly polarized light, Elliptically polarized light, Partially polarized light, Production of Plane polarized light, Polarization by reflection from dielectric surface, Brewster's law, Polarization by refraction – pile of plates, Polarization by scattering, Polarization by selective Absorption, Polarizer and Analyzer, Malus' Law Reference: BSA	15
		2. Polarization by double refraction, Anisotropic crystal, Calcite crystal, Optic Axis, Double refraction in calcite crystal, Huygens' explanation of double refraction, Ordinary and Extra ordinary rays, Positive and Negative crystals, Superposition of waves linearly polarized at right angles, Superposition of e-Ray and o-Ray, Retarders, Quarter wave plate, Half wave plate, Production of linearly polarized light, Production of elliptically polarized light, Production of circularly polarized light, Analysis of polarized light, Applications of polarized light Reference: BSA	
III	Properties of Material	1.Electrical properties of materials: Energy band diagram for materials – conductors, semiconductors and insulators, Electrical conductivity in metals, semiconductors and insulators (dielectrics), Effect of temperature on conductivity Reference: WD2.Optical properties of materials: Reflection, refraction, absorption and transmission of electromagnetic radiation in solids Reference: WD	15
		3. Magnetic properties of materials: Origin	

	of magnetism in solids (basic idea), Types of	
	magnetic order (paramagnetism, diamagnetism,	
	antiferromagnetism, ferromagnetism,	
	ferrimagnetism), magnetic hysteresis	
	Reference: WD	
	4. Applications: Applications of dielectric	
	materials: Piezoelectric, ferroelectric and	
	pyroelectric materials	
	FJ	
	Reference: WD	ĺ

Note: A good number of numerical examples on all units (as far as possible) are expected to be covered during the prescribed lectures.

Learning Resources recommended:

Main References:

- 1. BSA A Text Book Of Optics, Dr. N. Subrahmanyam, Brij lal, Dr M. N. Avadhanulu (S. Chand, 25th Revised edition 2012 Reprint 2013)
- 2. WD Material Science and Engineering, An Introduction, 10th edition, William D. Callister, Jr. David G. Rethwisch

Additional reference:

- 1. Ajoy Ghatak: Optics (5th edn)
- 2. Rolf E. Hummel, Electronic Properties of Materials
- 3. V. Raghavan, Materials Science and Engineering: A First Course

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method		
Unit Test (MCQ / Descriptive - Based on Theory and/or	20	
Problems - Online/Offline – 1 unit test of 20 marks / 2 unit tests		
of 10 marks each / 3 unit tests of 10 marks each and best two		
out of three will be considered)		
Assignments / Seminars		
Attendance and active participation in classroom	10	

Question	Question Type	Unit	Marks
No.			
1	A) Long questions with 100% internal option	Т	07
1	B) Short questions with 100% internal option	1	08
2	A) Long questions with 100% internal option	II	07
2	B) Short questions with 100% internal option		08
2	A) Long questions with 100% internal option	ш	07
3	B) Short questions with 100% internal option	111	08
	Objective type of questions without internal	Ι	05
4	objective type of questions without internal	II	05
		III	05

B. Semester End Evaluation (Paper Pattern) (60 Marks – 2 hours):

Guidelines for paper pattern for Semester End Evaluation:

- 1. As far as possible, one fifth weightage of the total marks should be given to numerical examples in above paper pattern.
- 2. All questions will be compulsory and may be divided into sub-questions.
- 3. Long and short questions will include descriptive type of questions, derivationbased questions, problem solving / numericals based questions, etc.
- 4. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Name of the	Quantum Physics	
Course		
Course Code	USPH402	
Class	SYBSc	
Semester	IV	
Number of Credits	02	
Nature	Theory	
Туре	Core	
Revision of syllabus	This course focuses on Schrödinger's equation and its applications,	
specific to	which provide a strong foundation for developing skills, which are	
employability/	essential for understanding quantum mechanics, conducting	
entrepreneurship/	research and pursuing careers in fields of theoretical physics.	
skill development	Curriculum focuses on development of skills to calculate expectation	
	values, probabilities and uncertainties based on solutions to	
	Schrödinger's equation.	
	Curriculum also focuses on development of skills in applying	
	Schrödinger's equation to various physical systems, including	
	particle in a box, harmonic oscillator and hydrogen atom to	
	determine energy levels and wave functions.	

Nomenclature: Quantum Physics

Eligibility: To be eligible for enrolment in this course, a learner must have appeared for the course 'USPH201: Modern Physics'.

Course Outcomes:

On successful completion of this course, a learner will:

- 1. Understand the postulates of quantum mechanics and understand its importance in explaining significant phenomena in Physics.
- 2. Demonstrate quantitative problem solving skills in all the topics covered.
- _____

Unit	Title	Learning Points	No. of
			Lectures
			(50 min.)
		 Background reading for Unit I, II and III (Review): 1. Origin of Quantum Mechanics: a) Review of Black body radiation b) Review of photoelectric effects 2. Matter waves - De Broglie hypothesis, Davisson and Germer experiment 3. Wave particle duality 4. Concept of wave packet, phase velocity, group velocity and relation between them 5. Heisenberg's uncertainty principle with thought experiment, different forms of uncertainty 	
Ι	The Schrodinger wave equation	 Concept of wave function, Born interpretation of wave function Concept of operator in quantum mechanics examples – position, momentum and energy operators Eigenvalue equations, expectation values of operators Schrodinger equation Postulates of Quantum Mechanics Analogy between Wave equation and Schrodinger equation 	15

		 7. Time dependent and time independent (Steady State) Schrodinger equation, Stationary State 8. Superposition principle 9. Probability current density, Equation of continuity and its physical significance Reference: AB 	
II	Applications of Schrodinger steady state equation – I	 Free particle Particle in infinitely deep potential well (one - dimension) Particle in finitely deep potential well (one - dimension) Step potential Step potential Particle in three dimensional rigid box, degeneracy of energy state Reference: AB 	15
III	Applications of Schrodinger steady state equation - II	 Potential barrier (Finite height and width) penetration and tunneling effect (derivation of approximate transmission probability) Theory of alpha particle decay from radioactive nucleus Harmonic oscillator (one-dimension), correspondence principle Reference: AB 	15

Note: A good number of numerical examples on all units (as far as possible) are expected to be covered during the prescribed lectures.

Learning Resources recommended:

Main References:

1. AB – Arthur Beiser, Perspective of Modern Physics, McGraw Hill

Additional References:

- 1. Concepts of Modern Physics, A. Beiser (6th Ed.) Tata McGraw Hill.
- 2. Quantum Mechanics, S P Singh, M K Bagade, Kamal Singh, S. Chand: 2004 Ed.
- 3. Quantum Mechanics of Atoms, Molecules, Solids, Nuclei and particles, R. Eisberg and

R. Resnik Published by Wiley.

- 4. Introduction to Quantum Mechanics. By D. Griffiths Published by Prentice Hall.
- 5. Quantum Mechanics. By Ghatak and Lokanathan Published by Mc. Millan.
- 6. Quantum Mechanics. By L. I. Schiff.
- 7. Quantum Mechanics. By Powell and Crasemann, Addison-Wesley Pub. Co.

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method		
Unit Test (MCQ / Descriptive – Based on Theory and/or	20	
Problems - Online/Offline – 1 unit test of 20 marks / 2 unit tests		
of 10 marks each / 3 unit tests of 10 marks each and best two out		
of three will be considered)		
Assignments / Seminars		
Attendance and active participation in classroom	10	

B. Semester End Evaluation (Paper Pattern) (60 Marks – 2 hours):

Question	Question Type	Unit	Marks
No.			
1	A) Long questions with 100% internal option	Т	07
L	B) Short questions with 100% internal option	1	08
2	A) Long questions with 100% internal option	II	07
2	B) Short questions with 100% internal option	11	08
3	A) Long questions with 100% internal option	III	07
	B) Short questions with 100% internal option	111	08
	Objective type of questions without internal	Ι	05
4	objective type of questions without internal	II	05
		III	05

Guidelines for paper pattern for Semester End Evaluation:

- 1. As far as possible, one fifth weightage of the total marks should be given to numerical examples in above paper pattern.
- 2. All questions will be compulsory and may be divided into sub-questions.
- 3. Long and short questions will include descriptive type of questions, derivationbased questions, problem solving / numericals based questions, etc.

4. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Name of the	Applied Physics
Course	
Course Code	USPH403
Class	SYBSc
Semester	IV
Number of Credits	02
Nature	Theory
Туре	Core
Revision of syllabus	Restructuring of syllabus has been done to ensure a smooth and
specific to	logical flow of content throughout the curriculum. It also facilitates
employability/	the logical progression of subjects which allows learners to build
entrepreneurship/	their understanding of subject progressively and systematically and
skill development	to grasp contents more effectively.
	The topics on geology included in curriculum provide a
	comprehensive understanding of Earth's history, Earth's structure,
	Earth resources, internal processes and tectonic dynamics to
	learners. The topics on geophysics included in curriculum provide a
	comprehensive understanding of Earth's physical properties,
	subsurface structures and tectomic processes through the application
	of geophysical techniques. This will encourage learners for further
	studies of careers in geology, geophysics and related fields.
	me topics on microprocessor microare of microprocessor 2005 to
	knowledge about hardware and software of microprocessor 8085 to
	language programs for microprocessor 2025. This will provide the
	foundation to loarners to pursue careers in the field of embedded
	systems design digital electronics computer engineering
	systems design, digital electronics, computer engineering,
	microprocessor 8085 included in following physics lab courses will
	reinforce learner's theoretical understanding to practical
	applications
	The tonics on radio communication included in curriculum provide
	understanding about fundamental principles of radio
	communication, including modulation, demodulation, propagation
	and signal processing in analog and digital communication. This will
	provide the foundation to learners to pursue careers in the field of
	telecommunication, wireless technology, networking and related
	fields.

Nomenclature: Applied Physics

Eligibility: --

Course Outcomes:

On successful completion of this course, a learner will:

- 1. Understand structure of earth including various layers, plate tectonics, interior of earth, processes in interior of earth.
- 2. Learn about geological features, geological timescale, evolution of life on earth and the interpretation of geological history through fossils and rock layers.
- 3. Learn about causes and effects of natural hazards/calamities.
- 4. Understand principles and components of radio communication system.
- 5. Understand various modulation techniques including analog and digital modulation.
- 6. Understand architecture, operation and basic assembly language programming of 8085 microprocessor.
- 7. Be able to write basic assembly language programming with 8085 microprocessor.

Unit	Title	Learning Points	No. of
			Lectures
			(50 min.)
Ι	Introduction to Geology and Geophysics	1. GEOLOGY: Introduction to Geology its branches and relationship with other sciences, Earth and solar system: Meteorites and other extra-terrestrial materials, Age of Earth and various methods of determination, Planetary evolution of the Earth and its internal structure: Elastic waves and variation of physical and chemical properties in the interior of Earth, Major tectonic features of the ocean, oceanic and continental crust, Continental drift – geological and geophysical evidence: mechanisms, objections and present status, Geodynamics of the Indian plate Reference: BSJ	15
		2. GEOPHYSICS: Introduction to Geophysics,	

		Gravity and magnetic anomalies at Mid-ocean ridges: deep sea trenches, continental shield areas and mountain chains, Geomagnetism, elements of Earth's magnetism: Internal, external fields and their causes, Palaeomagnetism, Polar wandering paths and reversals, Seafloor spreading and Plate tectonics, Seismic belts of the Earth: Seismicity and plate movements, Utility of the different geophysical techniques (discussed above) in exploration for academic as well as for harnessing resources. Geophysical potential fields: Principles of Gravity and Magnetic methods, Instrumentation, field procedures used in geophysical studies Reference: TLT	
II	Microprocessor	 Building Concept of Microprocessor: Introduction, Study of Memory, Input Device, Output Device, Input/output Device Central Processing Unit Reference: RG 8085 Microprocessor: Introduction, Features of Inter 8085, Pin Diagram of 8085, 8085 CPU Architecture, Arithmetic and Logical Group (ALU), Accumulator, Temporary Register, Flag Register (PSW)), Register Group (Temporary Registers (W and Z), General purpose registers, Special Purpose registers), Interrupt Control, Serial I/O Control Group, Instruction Register, Decoder and Control Group (Instruction Register, Instruction Decoder, Timing and Control) Reference: RG 8085 Instruction Set: Introduction, Flowchart, Classification of Instruction Set (Data Transfer Group, Arithmetic Group, Logical Group, Branching Group, Stack and Machine Control Group), Notations used in Instructions and Opcode, Data Transfer Group, Program Examples for Data 	15

		Transfer Group, Arithmetic Operation Group, Branch Group, Logical Group, Addressing Modes, 8085 Programmers Model Reference: RG	
III	Radio	1. Basics of Communication:	15
	Communication	Electromagnetic spectrum, Block diagram of communication system, types of communication system: simplex, duplex, analog and digital communication, base band and broad band communication, Noise concept and types, signal to noise ratio, noise figure, noise temperature, Need of modulation, concept of modulation Reference: LF	
		2. Amplitude Modulation: AM waveform, mathematical expression of AM, concept of sideband, demodulation principles, AM Receiver: TRF and super heterodyne receiver Reference: LF, VM	
		3. Frequency Modulation: Definition, mathematical representation, frequency spectrum, bandwidth and modulation index Reference: LF, VM	
		4. Concept of ASK, PSK, FSK, PAM, PWM, PPM, PCM Reference: LF	

Note: A good number of numerical examples on all units (as far as possible) are expected to be covered during the prescribed lectures.

Learning Resources recommended:

Main References:

1. LF: Communication Electronics: Principles and applications by Louis E Frenzel 3rd edition TMH Publications.

- 2. RG: Microprocessor Architecture, programming and Applications with the 8085 by Ramesh Gaonkar, 5th Edition, Prentice Hall of India
- 3. VM: Principles of Electonics, V. K. Mehta, Rohit Mehta, S. Chand & Company, Multicolour Illustrative Edition
- 4. BSJ: Introduction to Applied Geophysics: Exploring the Shallow Subsurface. H.R. Burger, A.F. Sheehan and C.H. Jones. W.W. Norton, New York (2006)
- 5. TLT: Earth Science. E.J. Tarbuck, F.K. Lutgens and D. Tasa, Prentice & Hall (2005). 4. Mantle Plumes and Their Record in Earth History. K.C. Condie, Cambridge University Press, Cambridge, UK (2001)

Additional References:

- 1. Microprocessor and Applications by Vibhute and Borole, Technova Publications, Pune
- 2. Microprocessor, Principles & Applications by Gilmore (2nd Ed) TMH
- 3. Geomagnetism: Solid Earth and Upper Atmosphere Perspectives. Nathani Basavaiah, Springer (2011)
- 4. The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle. R.T. Merrill, M.W. McElhinny and P.L. McFadden, International Geophysical Series 63, Academic Press (1996)
- 5. Applied Geophysics (Paperback). W.M. Telford, L.P. Geldart and R.E. Sheriff, Cambridge University Press, Cambridge (1990)
- 6. Electronics Communication Systems by Kennedy
- 7. Telecommunication Switching Systems and Network by Vishwanathan and Thiagarajan, PHI publication
- 8. Electronics Communication Systems by Denis Roddy and John Coolen, PHI publication.

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method	Marks	
Unit Test (MCQ / Descriptive – Based on Theory and/or Problems -	20	
Online/Offline - 1 unit test of 20 marks / 2 unit tests of 10 marks		
each / 3 unit tests of 10 marks each and best two out of three will be		
considered)		
Assignments / Seminars		
Attendance and active participation in classroom	10	

Question	Question Type	Unit	Marks
No.			
1	A) Long questions with 100% internal option	Т	07
1	B) Short questions with 100% internal option	1	08
2	A) Long questions with 100% internal option	п	07
Ζ	B) Short questions with 100% internal option	11	08
3	A) Long questions with 100% internal option	ш	07
	B) Short questions with 100% internal option	111	08
4	Objective type of questions without internal	Ι	05
	objective type of questions without internal	II	05
		III	05

B. Semester End Evaluation (Paper Pattern) (60 Marks – 2 hours):

Guidelines for paper pattern for Semester End Evaluation:

- 1. As far as possible, one fifth weightage of the total marks should be given to numerical examples in above paper pattern.
- 2. All questions will be compulsory and may be divided into sub-questions.
- 3. Long and short questions will include descriptive type of questions, derivationbased questions, problem solving / numericals based questions, etc.
- 4. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Name of the	Physics Lab – IV				
Course					
Course Code	USPHP4				
Class	SYBSc				
Semester	IV				
Number of Credits	03				
Nature	Practical				
Туре	Core				
Revision of syllabus	Restructuring of syllabus has been done to ensure a smooth and				
specific to	logical flow of content throughout the curriculum. It also facilitates				
employability/	the logical progression of subjects which allows learners to build				
entrepreneurship/	their understanding of subject progressively and systematically and				
skill development	to grasp contents more effectively.				
	The curriculum is so designed that it offers hands-on approach to				
	learn the subject. The curriculum also demonstrates how physics				
	principles apply to real world scenarios. Learners will develop the				
	skill to handle - measuring instruments, basic physics laboratory				
	equipments, etc. Learners will also learn to perform basic physics				
	experiments, learn to improve the accuracy of measurements, learn				
	to analyze experimental observations / data, learn to draw				
	meaningful conclusions of experiments and to interpret results.				
	Learner will also develop the skill to write and perform basic				
	assembly language program with 8085 microprocessor.				

Nomenclature: Physics Lab - IV

Eligibility: --

Course Outcomes:

On successful completion of this course, a learner will:

- 1. Understand & practice the skills while performing experiments.
- 2. Understand the use of apparatus and their use without fear & hesitation.
- 3. Correlate the physics theory concepts to practical application.
- 4. To learn scientific method of recording of the data, its analysis and result/conclusion of an experiment.
- 5. Write and perform basic assembly language programming with 8085 microprocessor.

Instructions for learners:

- 1. All measurements and readings should be written with proper units.
- 2. Skill of performing the experiment and understanding physics concepts should be more important than the accuracy of final result.
- 3. In order to appear for Semester End Practical Examination of this course, 5 demonstration experiments and minimum 12 experiments (4 from 'Optics' group, 4 from 'Electricity and Electronics' group and 4 from 'Microprocessor' group) should be completed compulsorily and learners are required to report all these experiments in the journal of this course (Physics practical journal of fourth semester).
- 4. After completing all required number of experiments of this course and recording them in journal, learner will have to get their journal certified from the head of the Physics department and produce the certified journal at the time of Semester End Practical Examination of this course.
- 5. A learner will be allowed to appear for the Semester End Practical Examination of this course, only if learner submits a certified journal of this course or a certificate from the head of the Physics department that the learner has completed this practical course as per minimum requirements.
- 6. For Semester End Examination, the learner will be examined in 3 experiments (1 from 'Optics' group, 1 from 'Electricity and Electronics' group and 1 from 'Microprocessor' group) from this course and each experiment will be of two hours duration.
- 7. Evaluation in viva voce will be based on demonstration experiments, experiments done from 'Optics' group, 'Electricity and Electronics' group, and 'Microprocessor' group, from this course.
- 8. While evaluating learner's performance at Semester End Practical Examination,

weightage will be given to circuit / ray diagram, observations, tabular representation, experimental skills and procedure, graph, flowchart, assembly language program, calculation and result, whichever applicable.

language program, calculation and result, whichever applicable.

Group	Group Title	Learning Points	No. of
			lectures
			(50 min.)
А	Optics	1. Optical lever: determination of μ	40
		2. Single slit diffraction using LASER	
		3. Determination of Cauchy's constants	
		4. R.P. of telescope	
		5. R.P. of grating	
		6. Determination of wavelength of LASER using	
		diffraction grating	
В	Electricity and	1. Study of MS-JK flip flop	40
	Electronics	2. OPAMP: Inverting amplifier with different gains	
		3. OPAMP: Non-inverting amplifier with different	
		gains and voltage follower	
		4. CE amplifier: determination of bandwidth	
		5. CE amplifier: variation of gain with load	
		6. Verification of Maximum Power Transfer	
		Theorem for dc circuits	
С	Microprocessor	1. Microprocessor 8085: addition, subtraction,	40
		multiplication of two 8-bit numbers	
		2. Microprocessor 8085: Two digit Decimal	
		addition, subtraction	
		3. Microprocessor 8085: Memory block transfer	
		from one location to another	
		4. Microprocessor 8085: Find largest/smallest	
		number in given block	
		5. Microprocessor 8085: Find number of	
		positive/negative, odd/even elements in given	
		block	
		6. Microprocessor 8085: Arrange given numbers in	
		ascending/descending order	

		(No per	(Note: Use 8085 kit or any 8085 simulator to perform above experiments)				
D	Demonstration	1.	Waveform generation using OPAMP	15			
	Experiments	2.	2. Fraunhoffer diffraction due to single slit, double				
			slit, Missing orders of interference maxima in				
			double slit diffraction pattern				
		3.	3. Fraunhoffer diffraction – Grating Spectra				
		4.	4. Total internal reflection				
		5.					
		6.					
		7.	First order active filter				

Learning Resources recommended:

- 1. Advanced course in Practical Physics, D. Chattopadhya, P. C. Rakshit & B Saha. (6th Edition) Book and Allied Pvt. Ltd.
- 2. B. Sc. Practical Physics Harnam Singh S. Chand & Co. Ld. 2001
- 3. A test book of advanced practical Physics, Samir Kumar Ghosh, New Central Book Agency (3rd edition)
- 4. B. Sc. Practical Physics C. L. Arora (1st Edition) -2001 S. Chand and Co. Ltd.
- 5. Practical Physics C. L. Squires (3rd Edition) Cambridge University
- 6. University Practical Physics D. C. Tayal, Himalaya Publication
- 7. Advanced Practical Physics Worsnop & Flint.
- 8. Microprocessor Architecture, programming and Applications with the 8085 by Ramesh Gaonkar, 5th Edition, Prentice Hall of India
- 9. Microprocessor 8085 User Manual

Evaluation Pattern:

A. Continuous Evaluation (60 Marks):

Method	Marks
Performance and engagement during practical sessions throughout	30
semester:	
• Skills, precision, accuracy, safety measures, collaborative and/or	
individual working while performing practical	
• Ability to record proper observations, to analyze data, to plot graph	

and to draw meaningful conclusions of experiments				
Submission of journal after every practical session				
Based on above criteria, each experiment of this course will be assessed				
for 10 marks during regular practical session and finally the total marks				
obtained by a learner will be converted to marks out of 30.				
Overall performance (attendance, punctuality, sincerity for practical	15			
sessions)				
Viva	15			

B. Semester End Evaluation (Exam Pattern) (90 Marks - 6 hours):

Question	Group	Title	Method	Marks
No.				
1	А	Optics	Experiment performance as	30
			per practical slip	
2	В	Electricity and	Experiment performance as	30
		Electronics	per practical slip	
3	С	Microprocessor	Experiment performance as	30
			per practical slip	

R. E. SOCIETY'S, R. P. GOGATE COLLEGE OF ARTS & SCIENCE AND R. V. JOGALEKAR COLLEGE OF COMMERCE (AUTONOMOUS), RATNAGIRI

SYLLABI OF COURSES OFFERED BY DEPARTMENT OF PHYSICS OF THE COLLEGE IN THE SUBJECT PHYSICS FOR THE THIRD YEAR (SEMESTER V & VI) OF PROGRAM BSc

UNDER CHOICE BASED CREDIT SYSTEM (CBCS)

WITH THE EFFECT FROM ACADEMIC YEAR 2023-24

Program Outcomes of BSc with Subject Physics

Name of Program	BSc				
Level	UG				
Number of Semesters	06				
Year of Implementation	2023-24				
Program Specific	After successful completion of this program, learners will:				
Outcomes (PSO)	 Understand fundamental physics concepts and will be able to apply physics principles to real world problems. Be able to think critically and develop the ability to apply theoretical and mathematical principles to solve complex problems in various areas of physics. Acquire hands-on experience in conducting experiments, using laboratory equipments, analyzing experimental data and will be able to draw meaningful conclusions of experiment and to interpret results. Recognize the interconnections between physics and other disciplines, such as, mathematics, chemistry and engineering and will be able to work effectively in those interdisciplinary fields. Possess basic programming skills, will be introduced to the field of automation and will be equipped with essential knowledge and skills to work with basic automation systems. Develop the ability to work individually as well as in collaboration. Be able to pursue higher studies and will be able to take research opportunities. 				
Relevance of PSOs to the local, regional, national and global developmental needs	Science graduates with the subject Physics can go for higher studies and pursue careers directly related to physics, like, research, academics, etc. Other than this, Science graduates with the subject Physics can also pursue careers in other fields, such as, data science, engineering, IT, automation, government jobs, medical physics and healthcare industry, national security, etc., due to their analytical, problem solving and critical thinking abilities. BSc program with the subject Physics produces graduates with a diverse skill set capable of addressing various challenges. This can lead to improve research and innovation, economic growth				

and sustainable development from local to global level. The
relevance of BSc program with the subject Physics to
developmental needs enhances its overall impact on society and
makes it more responsive to the evolving demands of the
scientific, technological and societal landscape.

Scheme of Evaluation

Course Evaluation:

Each course of BSc in the subject Physics will be assessed with Continuous Evaluation and Semester End Evaluation. Continuous Evaluation of each course will be of 40% and Semester End Evaluation of each course will be of 60%.

Passing Scheme:

For each course of BSc in the subject Physics, there will be separate head of passing for Continuous Evaluation and for Semester End Evaluation. Course grade points and course grade will be decided by the aggregate marks obtained by a learner.

	Marks Obtained by a learner in Continuous Evaluation
Aggregate Marks =	+
	Marks obtained by a learner in Semester End Evaluation

In order to earn credits of this course, a learner is required to secure a minimum of 40% marks in Continuous Evaluation and 40% marks in Semester End Evaluation.

Conversion of Marks:

There will be no conversion of marks for TYBSc.

% of Aggregate	Course Grade	Course	Performance	Credits
Marks Obtained	Point	Grade	Indicator	Earned
90.0 to 100	10	0	Outstanding	
80 to 89.99	9	A+	Excellent	٨c
70 to 79.99	8	А	Very Good	AS
60 to 69.99	7	B+	Good	in Course
55 to 59.99	6	В	Above Average	Svllabus
50.0 to 54.99	5	С	Average	bynabab
40 to 49.99	4	Р	Pass	
Less Than 40	0	F	Fail	0
Absent	0	Ab	Absent	U

Credit and Grade Scheme:

Note:

For any course,

Aggregate Marks = Marks Obtained by a learner in Continuous Evaluation + Marks obtained by a learner in Semester End Evaluation

Scheme of Courses Offered by Department of Physics for TYBSc

Semester V			Semester VI		
Course Code	Nomenclature	Credits	Course Code	Nomenclature	Credits
USPH501	Mathematical, Thermal and Statistical Physics	2.5	USPH601	Classical Mechanics	2.5
USPH502	Solid State Physics	2.5	USPH602	Electronics	2.5
USPH503	Atomic and Molecular Physics	2.5	USPH603	Nuclear Physics	2.5
USPH504	Electrodynamics	2.5	USPH604	Special Theory of Relativity	2.5
USPH505	Physics Lab – V	3	USPH605	Physics Lab – VII	3
USPH506	Physics Lab - VI	3	USPH606	Physics Lab - VIII	3
USACEI501	Applied Component (Electronic Instrumentation) I: Analog Circuits, Instruments and Consumer Appliances	2	USACEI601	Applied Component (Electronics Instrumentation) II: Digital Electronics, Microprocessor, Microcontroller and OOP	2
USACEI502	Practical of Course 'Applied Component (Electronic Instrumentation) I: Analog Circuits, Instruments and Consumer Appliances'	2	USACEI602	Practical of Course 'Applied Component (Electronics Instrumentation) II: Digital Electronics, Microprocessor, Microcontroller and OOP'	2

Syllabi of Courses Offered for Semester V

Name of the	Mathematical, Thermal and Statistical Physics		
Course			
Course Code	USPH501		
Class	TYBSc		
Semester	V		
Number of Credits	2.5		
Nature	Theory		
Туре	Core		
Revision of syllabus specific to employability/ entrepreneurship/ skill development	Topics on probability included in the curriculum develop learners' ability to analyze uncertainty, model random events and make informed decisions based on probabilistic reasoning. These skills are valuable for careers in statistics, data analysis, finance, engineering and various fields where uncertainty plays a significant role. Topics on complex functions included in the curriculum develop learner's skills in understanding and analyzing functions of complex variables. These skills are valuable for career in mathematics, engineering, physics and any field where understanding and manipulating complex behavior is essential. Topics on differential equations included in curriculum develop learner's ability to analyze and solve differential equations. These skills are valuable for career in mathematics, engineering, physics and other fields where understanding and predicting change over time is crucial. The curriculum also equips learners with fundamental concepts of statistical thermodynamics to develop the ability of learner to analyze and predict the behavior of systems of particles. These skills are needed for careers in physics chemistry materials		
	science, engineering and other fields where understanding the probabilistic behavior of a system is essential.		

Nomenclature: Mathematical, Thermal and Statistical Physics

Eligibility: To be eligible for enrolment in this course, a learner must have appeared for the courses 'USPH101: Classical Physics' and 'USPH301: Mechanics and Thermodynamics' and 'USPH303: Mathematical Methods in Physics'.

Course Outcomes:

On successful completion of this course, a learner will:

- 1. Comprehend the basic concepts of thermodynamics & its applications in physical situations.
- 2. Learn some mathematical techniques required to understand the physical phenomena at the undergraduate level.
- 3. Get exposure to important ideas of statistical mechanics.
- 4. Be able to solve simple problems in probability, understand the concept of independent events and work with standard continuous distributions.
- 5. Understand the functions of complex variables.
- 6. Be able to solve non-homogeneous differential equations and partial differential equations using simple methods.
- 7. Understand the concept of statistical mechanics through the concept of microstates, the concept of configurations, Boltzmann distribution and statistical origins of entropy.
- 8. Understand the difference between classical and quantum statistics.
- 9. Demonstrate tentative problem solving skills in all above areas.

Unit	Title	Learning Points	No. of
			Lectures
			(50 min.)
Ι	Probability	Review of basic concepts, introduction, sample space, events, independent events, conditional probability, probability theorems, methods of counting (derivation of formulae not expected), random variables, continuous distributions (omit joint distributions), binomial distribution, the normal distribution, the Poisson distribution Reference: MB – 15.1-15.9 Expected to cover solved problems from each	15
		section and solve at least the following	
		problems:	
-----	-------------------	---	----
		section 2: 1-5, 11-15, section 3: 1, 3, 4, 5, section	
		4: 1, 3, 5,13, 21, section 5: 1, 10, 13, section 6: 1	
		to 9, section 8: 1 and 3, section 9: 2, 3, 4, 9	
II	Complex functions	1. Functions of complex variables: The	15
	and differential	exponential and trigonometric functions,	
	equations	hyperbolic functions, logarithms, complex roots	
		and powers, inverse trigonometric and	
		hyperbolic functions, some applications	
		Reference: MB: 2.11 to 2.16	
		Expected to cover all solved problems. In	
		addition, solve the following problems:	
		section 2: 16 – 2, 3, 8, 9, 10	
		2. Second order non-homogeneous equations	
		with constant coefficients, partial differential	
		equations, some important partial differential	
		equations in physics, method of separation of	
		variables	
		Reference : CH :5.2.4, 5.3.1 to 5.3.4	
		Expected to cover all solved problems. In	
		addition, solve the following problems:	
		5.17 a to e, 5.23, 5.26, 5.29 to 5.35	
III	Statistical	Microstates and configurations, derivation of	15
	Thermodynamics	Boltzmann distribution, dominance of	
		Boltzmann distribution, physical meaning of the	
		Boltzmann distribution law, definition of , the	
		canonical ensemble, relating Q to q for an ideal	
		gas, translational partition function,	
		equipartition theorem, energy, entropy	
		Reference: ER	
IV	Classical and	1. The probability of a distribution, The	15
	Quantum	most probable distribution, Maxwell- Boltzmann	
	Statistics	statistics, Molecular speeds	
		Reference: AB	
		2. Bose-Einstein statistics, Black-body	

radiation, The Rayleigh-Jeans formula, The
Planck radiation formula, Fermi-Dirac statistics,
Comparison of results
Reference: AB

Note: A good number of numerical examples on all units (as far as possible) are expected to be covered during the prescribed lectures.

Learning Resources recommended:

Main References:

- 1. MB: Mathematical Methods in the Physical sciences: Mary L. Boas Wiley India, 3rd ed.
- 2. ER: Thermodynamics, Statistical Thermodynamics and Kinetics: T. Engel and P. Reid (Pearson)
- 3. AB: Perspectives of Modern Physics: Arthur Beiser, (Mc Graw Hill International)
- 4. CH: Introduction to Mathematical Methods: Charlie Harper (PHI Learning)

Additional reference:

- 1. Mathematical Physics: A K Ghatak, Chua 1995 Macmillian India Ltd.
- 2. Mathematical Method of Physics: Riley, Hobson and Bence, Cambridge (Indian edition)
- 3. Mathematical Physics: H. K. Das, S. Chand & Co.
- 4. Mathematical Methods of Physics: Jon Mathews & R. L. Walker, W A Benjamin inc.
- 5. A Treatise on heat: Saha and Srivastava (Indian press, Allahabad)
- 6. Statistical Physics: F. Reif (Berkeley Physics Course, McGraw Hill)
- 7. Introductory Statistical Mechanics: R. Bowley and M. Sanchez (Oxford Science Publications)
- 8. An Introduction to Thermal Physics: D. V. Schroeder (Pearson).
- 9. PROBABILITY: Schaum's Outlines Series by S. Lipschutz and M. L. Lipson (Mc Graw Hill International)

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method	Marks
Unit Test (MCQ / Descriptive - Based on Theory and/or Problems -	20
Online/Offline – 1 unit test of 20 marks / 2 unit tests of 10 marks each / 3	
unit tests of 10 marks each and best two out of three will be considered / 4	
unit tests of 10 marks each and best two out of four will be considered)	
Assignments / Seminars	10
Attendance and active participation in classroom	10

B. Semester End Evaluation (Paper Pattern) (60 Marks - 2 hours):

Question	Question Type	Unit	Marks
No.			
1	A) Long questions with 100% internal option	Т	06
1	B) Short questions with 100% internal option	1	06
2	A) Long questions with 100% internal option	П	06
2	B) Short questions with 100% internal option	11	06
2	A) Long questions with 100% internal option	III	06
5	B) Short questions with 100% internal option		06
Λ	A) Long questions with 100% internal option	117	06
4	B) Short questions with 100% internal option	IV	06
		Ι	03
5	Objective type of questions without internal	II	03
5	option	III	03
		IV	03

Guidelines for paper pattern for Semester End Evaluation:

- 1. As far as possible, one fifth weightage of the total marks should be given to numerical examples in above paper pattern.
- 2. All questions will be compulsory and may be divided into sub-questions.
- 3. Long and short questions will include descriptive type of questions, derivation-based questions, problem solving / numericals based questions, etc.
- 4. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Name of the	Solid State Physics
Course	
Course Code	USPH502
Class	TYBSc
Semester	V
Number of Credits	2.5
Nature	Theory
Туре	Core
Revision of syllabus specific to employability/ entrepreneurship/ skill development	The course is so designed that it develops learner's ability to analyze, understand and predict structure, properties and behavior of crystalline materials at the atomic and subatomic level. The curriculum includes topics like, electrical properties of metals which develops learner's ability to understand and analyze the behavior of metallic materials for electrical and electronic applications. The curriculum also includes topics like, band theory of solids and conduction in semiconductors which develops learner's ability to understand and analyze the electronic properties of solid materials, particularly semiconductors. The curriculum also equips learners with the ability to understand, analyze and apply the principles of diode operation and superconductivity. All these skills are valuable for learners which make foundation to pursue careers in the field of material science, condensed matter physics, electrical engineering, electronics, semiconductor device

Nomenclature: Solid State Physics

Eligibility: --

Course Outcomes:

On successful completion of this course, a learner will:

- 1. Understand the basics of crystallography, electrical properties of metals, band theory of solids, demarcation among the types of materials, semiconductor physics and superconductivity.
- 2. Understand the application of Fermi Dirac distribution function, density of states, conduction in semiconductors and BCS theory of superconductivity.
- 3. Demonstrate quantitative problem solving skills in all the topics covered.

Curriculum:

Unit	Title	Learning Points	No. of
			Lectures
			(50 min.)
Ι	Crystal Physics	The crystalline state, Basic definitions of crystal lattice, basis vectors, unit cell, primitive and non- primitive cells, The fourteen Bravais lattices and the seven crystal systems, Elements of symmetry, nomenclature of crystal directions and crystal planes, Miller Indices, spacing between the planes of the same Miller indices, examples of simple crystal structures, The reciprocal lattice and X-ray diffraction Reference: AO	15
II	Electrical Properties of Metals	 Classical free electron theory of metals, Drawbacks of classical theory, Relaxation time, Collision time and mean free path Reference: SOP Quantum theory of free electrons, Fermi Dirac statistics and electronic distribution in solids, Density of energy states and Fermi energy, The Fermi distribution function, Heat capacity of the Electron gas, Mean energy of electron gas at 0 K, Electrical conductivity from 	15

		quantum mechanical considerations, Failure of Sommerfeld's free electron Theory, Thermionic emission Reference: SOP	
III	Band Theory of Solids and Conduction in Semiconductors	1. Band theory of solids, The Kronig- Penney model (Omit eq. 6.184 to 6.188), Allowed energy spectrum for electron in a solid, E(K) curve, Brillouin zones, Number of wave functions in a band, Motion of electrons in a one-dimensional periodic potential, Effective mass of an electron in a solid, Effective number of free electrons in a band, Distinction between metals, insulators and intrinsic semiconductors Reference: SOP	15
		2. Electrons and Holes in an Intrinsic Semiconductor, Conductivity of a Semiconductor, Carrier concentrations in an intrinsic semiconductor, Donor and Acceptor impurities, Charge densities in a semiconductor, Fermi level in extrinsic semiconductors, Diffusion, Carrier lifetime, The continuity equation, Hall Effect Reference: MHS	
IV	Diode Theory and Superconductivity	 Semiconductor-diode Characteristics: Qualitative theory of the p-n junction, The p-n junction as a diode, Band structure of an open- circuit p-n junction, The current components in a p-n junction diode, Quantitative theory of p-n diode currents, The Volt-Ampere characteristics, The temperature dependence of p-n characteristics, Diode resistance Reference: MHS 	15
		2. Superconductivity: Experimental Survey, Occurrence of Superconductivity, destruction of superconductivity by magnetic field, The Meissner effect, London equation, BCS	

	theory of superconductivity, Type I and Type II	
	Superconductors, Vortex state	
	Reference: CK	

Note: A good number of numerical examples on all units (as far as possible) are expected to be covered during the prescribed lectures.

Learning Resources recommended:

Main References:

- 1. AO: Elementary Solid State Physics-Principles and Applications: M. Ali Omar, Pearson Education, 2012
- 2. SOP: Solid State Physics: S. O. Pillai, New Age International, 6th Ed.
- 3. MHS: Electronic Devices and Circuits: Millman, Halkias & Satyabrata Jit. (3rd Ed.) Tata McGraw Hill
- 4. CK: Introduction to Solid State Physics Charles Kittel, 7th Ed. John Wiley & Sons.

Additional reference:

- 1. Solid State Physics: A. J. Dekker, Prentice Hall.
- 2. Electronic Properties of Materials: Rolf Hummel, 3rd Ed. Springer
- 3. Semiconductor Devices: Physics and Technology, 2nd Ed. John Wiley & Sons
- 4. Solid State Physics: Ashcroft & Mermin, Harcourt College Publisher
- 5. Modern Physics and Solid State Physics: Problems and solutions New Age International

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method	Marks
Unit Test (MCQ / Descriptive - Based on Theory and/or Problems -	20
Online/Offline – 1 unit test of 20 marks / 2 unit tests of 10 marks each / 3	
unit tests of 10 marks each and best two out of three will be considered / 4	
unit tests of 10 marks each and best two out of four will be considered)	
Assignments / Seminars	10
Attendance and active participation in classroom	10

Question	Question Type	Unit	Marks
No.			
1	A) Long questions with 100% internal option	т	06
1	B) Short questions with 100% internal option	1	06
2	A) Long questions with 100% internal option	п	06
Z	B) Short questions with 100% internal option	11	06
2	A) Long questions with 100% internal option	III	06
5	B) Short questions with 100% internal option		06
4	A) Long questions with 100% internal option	117	06
4	B) Short questions with 100% internal option	1 V	06
		Ι	03
Ę	Objective type of questions without internal	II	03
J	option	III	03
		IV	03

B. Semester End Evaluation (Paper Pattern) (60 Marks – 2 hours):

Guidelines for paper pattern for Semester End Evaluation:

- 1. As far as possible, one fifth weightage of the total marks should be given to numerical examples in above paper pattern.
- 2. All questions will be compulsory and may be divided into sub-questions.
- 3. Long and short questions will include descriptive type of questions, derivation-based questions, problem solving / numericals based questions, etc.
- 4. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Name of the	Atomic and Molecular Physics
Course	
Course Code	USPH503
Class	TYBSc
Semester	V
Number of Credits	2.5
Nature	Theory
Туре	Core
Type Revision of syllabus specific to employability/ entrepreneurship/ skill development	Core The course is so designed that it includes the study of hydrogen atom and electron spin aims which develops learner's ability to understand and analyze the behavior of atomic systems at the quantum level, including the hydrogen atom and the fundamental concept of electron spin. The curriculum includes topics like, spin-orbit coupling and the effect of magnetic fields on atoms which develops learner's ability to understand and analyze the interactions between electron spin, orbital angular momentum, and external magnetic fields in atomic and molecular systems. The curriculum includes topics like, molecular spectra which develops learner's ability to understand, analyze and interpret the interactions between molecules and electromagnetic radiation, as well as the information obtained from different types of molecular spectra. The curriculum also focuses on topics like, infrared spectrometry and microwave spectrometry which develops learner's ability to understand these spectroscopic techniques, enabling them to study molecular properties and interactions in various applications. The study of Raman Effect aims to develop learner's ability to understand molecular vibrational modes, interactions and properties in Raman spectra. The study of electron and nuclear resonance develops learner's
	ability to understand principle of operation of ESR and NMR spectrometers, enabling them to study molecular and atomic properties, interactions and dynamics.
	This foundation will encourage learners for advanced study and pursue careers in the field of atomic physics, quantum mechanics, chemistry, materials science, spectroscopy, spectrometry, analytical laboratories, medical imaging and related fields.

Nomenclature: Atomic and Molecular Physics

Eligibility: To be eligible for enrolment in this course, a learner must have appeared for the courses 'USPH102: Modern Physics' and 'USPH403: Quantum Mechanics'.

Course Outcomes:

On successful completion of this course, a learner will:

- 1. Understand the application of quantum mechanics in atomic physics.
- 2. Understand the importance of electron spin, symmetric and antisymmetric wave functions and vector atom model.
- 3. Understand the effect of magnetic field on atoms.
- 4. Learn Molecular physics and its applications.
- 5. Get an insight into theoretical basics of spectroscopy.
- 6. Demonstrate quantitative problem solving skills in all topics covered.

Curriculum:

Unit	Title	Learning Points	No. of
			Lectures
			(50 min.)
Ι	Hydrogen Atom, Electron Spin	 Hydrogen atom: Schrödinger's equation for Hydrogen atom and its solution by variable separation method, Quantum Numbers: Total quantum number, Orbital quantum number, Magnetic quantum number, Angular momentum, Electron probability density (Radial part) Reference: B Electron spin: The Stern-Gerlach experiment, Pauli's Exclusion Principle, Symmetric and Anti-symmetric wave functions Reference: B 	15
II	Spin-Orbit Coupling, Effect of Magnetic Field	1. Spin orbit coupling, Total angular momentum, Vector atom model, L-S and j-j coupling, Origin of spectral lines, Selection rules	15
	on Atoms	2. Effect of Magnetic field on atoms, the normal Zeeman effect and its explanation	

		(Classical and Quantum), The Lande g-factor, Anomalous Zeeman effect Reference: B	
III	Molecular Spectra, Spectrometer	 Molecular spectra (Diatomic Molecules): Rotational energy levels, Rotational spectra, Vibrational energy levels, Vibrational-Rotational spectra, Electronic Spectra of Diatomic molecules: The Born-Oppenheimer approximation, Intensity of vibrational-electronic spectra: The Franck- Condon principle Reference: B Infrared spectrometer & Microwave spectrometer Reference: B 	15
IV	Raman Effect, Electron and Nuclear Resonance	 Raman effect: Quantum Theory of Raman effect, Pure Rotational Raman spectra: Linear molecules, Symmetric top molecules, Asymmetric top molecules, Vibrational Raman spectra: Raman activity of vibrations, Experimental set-up of Raman Effect Reference: BM Electron spin resonance: Introduction, Principle of ESR, ESR spectrometer Reference: GA Nuclear magnetic resonance: Introduction, principle and NMR instrumentation Reference: GA 	15

Note: A good number of numerical examples on all units (as far as possible) are expected to be covered during the prescribed lectures.

GJC (Autonomous) Syllabi of Courses Offered by Department of Physics for UG and PG Studies 2023-24 Page 121 of 325

Learning Resources recommended:

Main References:

- 1. B: Perspectives of Modern Physics: Arthur Beiser, McGraw Hill
- 2. BM: Fundamentals of Molecular Spectroscopy: C. N. Banwell & E. M. McCash (TMH).(4th Ed.)
- 3. GA: Molecular structure and spectroscopy: G Aruldhas (2nd Ed) PHI learning Pvt Ltd.

Additional reference:

1. Atomic Physics (Modern Physics): S. N. Ghoshal. S. Chand Publication (for problems on atomic Physics)

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method	Marks	
Unit Test (MCQ / Descriptive – Based on Theory and/or Problems -		
Online/Offline - 1 unit test of 20 marks / 2 unit tests of 10 marks		
each / 3 unit tests of 10 marks each and best two out of three will be		
considered / 4 unit tests of 10 marks each and best two out of four		
will be considered)		
Assignments / Seminars	10	
Attendance and active participation in classroom	10	

B. Semester End Evaluation (Paper Pattern) (60 Marks - 2 hours):

Question	Question Type	Unit	Marks
No.			
1	A) Long questions with 100% internal option	Т	06
L	B) Short questions with 100% internal option	I	06
2	A) Long questions with 100% internal option	II	06
2	B) Short questions with 100% internal option		06
2	A) Long questions with 100% internal option		06
5	B) Short questions with 100% internal option	111	06
1	A) Long questions with 100% internal option	IV/	06
4	B) Short questions with 100% internal option	1 V	06

	Objective type of questions without internal option	Ι	03
F		II	03
Э		III	03
		IV	03

Guidelines for paper pattern for Semester End Evaluation:

- 1. As far as possible, one fifth weightage of the total marks should be given to numerical examples in above paper pattern.
- 2. All questions will be compulsory and may be divided into sub-questions.
- 3. Long and short questions will include descriptive type of questions, derivation-based questions, problem solving / numericals based questions, etc.
- 4. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Name of the	Electrodynamics
Course	
Course Code	USPH504
Class	TYBSc
Semester	V
Number of Credits	2.5
Nature	Theory
Туре	Core
Revision of syllabus specific to employability/ entrepreneurship/ skill development	The curriculum is so designed that it includes topics like, electrostatics which develops learner's ability to understand, analyze and solve problems related to electric fields, potentials and charge distributions in the context of electromagnetic theory. The curriculum includes topics like, electrostatics in matter and magnetostatics which develops learner's ability to understand, analyze and solve problems related to electric and magnetic fields, charges, currents and their interactions with materials. The curriculum includes topics like, magnetostatics in matter and electrodynamics which develops learner's ability to understand, analyze and solve problems related to magnetic properties, materials and electromagnetic interactions. A curriculum also focuses on study of electromagnetic waves within the context of electrodynamics which develop learner's ability to understand, analyze and predict the behavior of electromagnetic waves and their interactions with matter and boundaries. This foundation will encourage learners for advanced study and pursue careers in the field of electrostatics, magnetostatics, electrodynamics, telecommunications, optics, material science and related fields.

Nomenclature: Electrodynamics

Eligibility: To be eligible for enrolment in this course, a learner must have appeared for the courses 'USPH303: Mathematical Methods in Physics'.

Course Outcomes:

On successful completion of this course, a learner will:

- 1. Understand the laws of electrodynamics and be able to perform calculations using them.
- 2. Understand Maxwell's electrodynamics and its relation to relativity.
- 3. Understand how optical laws can be derived from electromagnetic principles.
- 4. Develop quantitative problem solving skills.

Curriculum:

Unit	Title	Learning Points	No. of
			Lectures
			(50 min.)
Ι	Electrostatics	 Review of Coulomb & Gauss law, The divergence of E, Applications of Gauss' law, The curl of E, Introduction to potential, Comments on potential, The potential of a localized charge distribution, Poisson's equation and Laplace's equation, Solution and properties of 1D Laplace equation, Properties of 2D and 3D Laplace equation (without proof) Reference: DG Boundary conditions and Uniqueness theorems, Conductors and Second Uniqueness theorem, The classic image problem- point charge and grounded infinite conducting plane and conducting sphere Reference: DG 	15
II	Electrostatics in Matter and Magnetostatics	1. Dielectrics, Induced Dipoles, Alignment of polar molecules, Polarization, Bound charges and their physical interpretation, Gauss' law in presence of dielectrics, A deceptive parallel, Susceptibility, Permittivity, Dielectric constant and relation between them, Energy in dielectric systems	15

		Reference: DG	
		2. Review of Biot-Savart's law and Ampere's law, Straight-line currents, The Divergence and Curl of B, Applications of Ampere's Law in the case of a long straight wire and a long solenoid, Comparison of Magnetostatics and Electrostatics, Magnetic Vector Potential Reference: DG	
III	Magnetostatics in Matter and Electrodynamics	 Magnetization, Bound currents and their physical interpretation, Ampere's law in magnetized materials, A deceptive parallel, Magnetic susceptibility and permeability Reference: DG Energy in magnetic fields, Electrodynamics before Maxwell, Maxwell's correction to Ampere's law, Maxwell's equations, Magnetic charge, Maxwell's equations in matter, Boundary conditions Reference: DG 	15
IV	Electromagnetic Waves	 The continuity equation, Poynting's theorem Reference: DG The wave equation for E and B, Monochromatic Plane waves, Energy and momentum in electromagnetic waves, Propagation in linear media, Reflection and transmission of EM waves at normal incidence, Reflection and transmission of EM waves at oblique incidence Reference: DG 	15

Note: A good number of numerical examples on all units (as far as possible) are expected to be covered during the prescribed lectures.

Learning Resources recommended:

Main References:

1. DG: Introduction to Electrodynamics, David J. Griffiths (3rd Ed) Prentice Hall of India

Additional reference:

- 1. Introduction to Electrodynamics: A. Z. Capria and P. V. Panat, Narosa Publishing House
- 2. Engineering Electrodynamics: William Hayt Jr. & John H. Buck (TMH)
- 3. Foundations of Electromagnetic Theory: Reitz, Milford and Christy
- 4. Solutions to Introduction to Electrodynamics: David J. Griffiths (3rd Ed) Prentice Hall of India

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method	Marks
Unit Test (MCQ / Descriptive – Based on Theory and/or	20
Problems - Online/Offline – 1 unit test of 20 marks / 2 unit tests	
of 10 marks each / 3 unit tests of 10 marks each and best two	
out of three will be considered / 4 unit tests of 10 marks each	
and best two out of four will be considered)	
Assignments / Seminars	10
Attendance and active participation in classroom	10

B. Semester End Evaluation (Paper Pattern) (60 Marks - 2 hours):

Question	Question Type	Unit	Marks
No.			
1	A) Long questions with 100% internal option	I	06
1	B) Short questions with 100% internal option	1	06
2	A) Long questions with 100% internal option	II	06
2	B) Short questions with 100% internal option		06
2	A) Long questions with 100% internal option	III	06
5	B) Short questions with 100% internal option	111	06
4	A) Long questions with 100% internal option	117	06
4	B) Short questions with 100% internal option	1 V	06

	Objective type of questions without internal option	Ι	03
F		II	03
5		III	03
		IV	03

Guidelines for paper pattern for Semester End Evaluation:

- 1. As far as possible, one fifth weightage of the total marks should be given to numerical examples in above paper pattern.
- 2. All questions will be compulsory and may be divided into sub-questions.
- 3. Long and short questions will include descriptive type of questions, derivation-based questions, problem solving / numericals based questions, etc.
- 4. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Name of the	Physics Lab - V
Course	
Course Code	USPH505
Class	TYBSc
Semester	V
Number of Credits	3
Nature	Practical
Туре	Core
Revision of syllabus	Restructuring of syllabus has been done to ensure a smooth and
specific to	logical flow of content throughout the curriculum. It also
employability/	facilitates the logical progression of subjects which allows
entrepreneurship/	students to build their understanding of subject progressively and
skill development systematically and to grasp contents more effectively.	
	The curriculum is so designed that it offers hands-on approach to
learn the subject. The curriculum also demonstrates how ph	
	principles apply to real world scenarios. Learners will develop the
	skill to handle - measuring instruments, basic physics laboratory
	equipments, etc. Learners will also learn to perform basic physics
	experiments, learn to improve the accuracy of measurements,
	learn to analyze experimental observations / data, learn to draw
	meaningful conclusions of experiments and to interpret results.

Nomenclature: Physics Lab - V

Eligibility: --

Course Outcomes:

On successful completion of this course, a learner will:

- 1. Understand & practice the skills while performing experiments.
- 2. Understand the use of apparatus and their use without fear & hesitation.
- 3. Correlate the physics theory concepts to practical application.
- 4. Understand the concept of errors and their estimation.
- 5. Learn scientific method of recording of the data, its analysis and result/conclusion of an experiment.

Instructions for learners:

- 1. All measurements and readings should be written with proper units.
- 2. Skill of doing the experiment and understanding physics concepts should be more important than the accuracy of final result.
- 3. A learner must enroll for physics practical courses USPH505 and USPH506 simultaneously and there will be a common journal for courses USPH505 and USPH506.
- 4. In order to appear for Semester End Practical Examination of both these courses, minimum 8 experiments from the group of 'General Physics' from course USPH505, all 3 'Skill Experiments' from course USPH505, minimum 8 experiments from the group of 'Electricity and Electronics' from course USPH506 and all 3 'Skill Experiments' from course USPH506 should be completed compulsorily and learners are required to report all these experiments in the common journal of these Physics practical courses.
- 5. After completing all required number of experiments for these courses and recording them in journal, a learner will have to get their journal certified and produce the certified journal at the time of Semester End Practical Examination of these courses.
- 6. A learner will be allowed to appear for the Semester End Practical Examination of these courses, only if a learner submits a common certified journal of these courses or a certificate from the head of the Physics department that the learner has completed these practical courses as per minimum requirements.
- 7. For Semester End Practical Examination of these courses, the learner will be examined for 1 experiment from each course. For Semester End Practical Examination of course USPH505, the experiment will be from 'General Physics' group and for Semester End Practical Examination of course USPH506, the experiment will be from 'Electricity and Electronics' group and each experiment will be of three hours duration.

- 8. Evaluation in viva voce will be separate for each of these courses and it will be based on experiments done from the respective courses.
- 9. While evaluating learner's performance for Semester End Practical Examination of each course, weightage will be given to circuit / ray diagram, observations, tabular representation, experimental skills and procedure, graph, calculation and result, whichever applicable.

Curriculum:

Group	Title	Learning Points	No. of
			lectures
			(50 min.)
A	Skill Experiments	 Estimation of errors from actual experimental data Spectrometer: Optical Leveling and Schuster's Method Laser beam profile 	10
В	General Physics	 Determination of 'g' by Kater's pendulum Elastic constants of a rubber tube Determination of dielectric constant Logarithmic decrement Searle's Goniometer Determination of Rydberg's constant Edser's 'A' pattern Determination of e/m by Thomson's method R. I. by total internal reflection Velocity of sound in air using CRO 	80

Learning Resources recommended:

- 1. Advanced course in Practical Physics D. Chattopadhya, PC Rakshit & B Saha. (6th Edition) Book and Allied Pvt. Ltd.
- 2. B.Sc Practical Physics Harnam Singh S. Chand & Co. Ld. 2001
- 3. A test book of advanced practical PHYSICS _ SAMIR Kumar Ghosh, New Central Book Agency (3rd edition)
- 4. B.Sc. Practical Physics C. L. Arora (1st Edition) -2001 S. Chand and Co. Ltd.
- 5. Practical Physics C. L. Squires (3rd Edition) Cambridge University
- 6. University Practical Physics D C Tayal. Himalaya Publication
- 7. Advanced Practical Physics Worsnop & Flint

GJC (Autonomous) Syllabi of Courses Offered by Department of Physics for UG and PG Studies 2023-24 Page 131 of 325

Evaluation Pattern for course USPH505:

A. Continuous Evaluation (40 Marks):

Method	Marks
Performance and engagement during practical sessions:	30
 Skills, precision, accuracy, safety measures, individual and/or collaborative working while performing practical Ability to record proper observations, to analyze data, to plot graph and to draw meaningful conclusions of experiments Submission of journal within a week after every practical session 	
Based on above criteria, each experiment of this course will be assessed for 10 marks during regular practical session and finally the total marks obtained by a learner will be converted to marks out of 30.	
Overall performance (attendance, punctuality, sincerity for practical	05
sessions throughout semester)	
Viva	05

B. Semester End Evaluation (Exam Pattern) (60 Marks – 3 hours):

Question No.	Group	Title	Method	Marks
1	B General Physics Experiment per practic		Experiment performance as per practical slip	60

Name of the	Physics Lab - VI
Course	
Course Code	USPH506
Class	TYBSc
Semester	V
Number of Credits	3
Nature	Practical
Туре	Core
Revision of syllabus	Restructuring of syllabus has been done to ensure a smooth and
specific to	logical flow of content throughout the curriculum. It also
employability/	facilitates the logical progression of subjects which allows
entrepreneurship/	students to build their understanding of subject progressively and
skill development	systematically and to grasp contents more effectively.
	The curriculum is so designed that it offers hands-on approach to
	learn the subject. The curriculum also demonstrates how physics
	principles apply to real world scenarios. Learners will develop the
	skill to handle - measuring instruments, basic physics laboratory
	equipments, etc. Learners will also learn to perform basic physics
	experiments, learn to improve the accuracy of measurements,
	learn to analyze experimental observations / data, learn to draw
	meaningful conclusions of experiments and to interpret results.

Nomenclature: Physics Lab - VI

Eligibility: --

Course Outcomes:

On successful completion of this course, a learner will:

- 1. Understand & practice the skills while performing experiments.
- 2. Understand the use of apparatus and their use without fear & hesitation.
- 3. Correlate the physics theory concepts to practical application.
- 4. Understand the concept of errors and their estimation.
- 5. Learn scientific method of recording of the data, its analysis and result/conclusion of an experiment.

Instructions for learners:

- 1. All measurements and readings should be written with proper units.
- 2. Skill of doing the experiment and understanding physics concepts should be more important than the accuracy of final result.
- 3. A learner must enroll for physics practical courses USPH505 and USPH506 simultaneously and there will be a common journal for courses USPH505 and USPH506.
- 4. In order to appear for Semester End Practical Examination of both these courses, minimum 8 experiments from the group of 'General Physics' from course USPH505, all 3 'Skill Experiments' from course USPH505, minimum 8 experiments from the group of 'Electricity and Electronics' from course USPH506 and all 3 'Skill Experiments' from course USPH506 should be completed compulsorily and learners are required to report all these experiments in the common journal of these Physics practical courses.
- 5. After completing all required number of experiments for these courses and recording them in journal, a learner will have to get their journal certified and produce the certified journal at the time of Semester End Practical Examination of these courses.
- 6. A learner will be allowed to appear for the Semester End Practical Examination of these courses, only if a learner submits a common certified journal of these courses or a certificate from the head of the Physics department that the learner has completed these practical courses as per minimum requirements.
- 7. For Semester End Practical Examination of these courses, the learner will be examined for 1 experiment from each course. For Semester End Practical Examination of course USPH505, the experiment will be from 'General Physics' group and for Semester End Practical Examination of course USPH506, the experiment will be from 'Electricity and Electronics' group and each experiment will be of three hours duration.
- 8. Evaluation in viva voce will be separate for each of these courses and it will be

based on experiments done from the respective course.

9. While evaluating learner's performance for Semester End Practical Examination of each course, weightage will be given to circuit / ray diagram, observations, tabular representation, experimental skills and procedure, graph, calculation and result, whichever applicable.

Curriculum:

Group	Title	Learning Points	No. of
			lectures
			(50 min.)
А	Skill	1. C1/C2 by BG	10
	Experiments	2. Internal resistance of voltage and current	
		source	
		3. Dual trace CRO: Phase shift measurement	
B	Flectricity	1 Mutual inductance by BC	80
D	and	2 I/C by Maywell's bridge	00
	Flectronics	3 Band gan energy of Ge diode	
	Liettonies	4 Design and study of transistorized astable	
		multivibrator (BB)	
		5. Design and study of Wien bridge oscillator	
		6. Design and study of first order active low pass filter Circuit (BB)	
		7. Design and study of first order active high pass filter circuit (BB)	
		8. Application of IC 555 timer as a ramp generator (BB)	
		9. LM 317 as constant current source	
		10. Counters Mod 2, 5, 10 (2 x 5, 5 x 2) (BB)	
		Note: BB: Using Breadboard	

Learning Resources recommended:

- 1. Advanced course in Practical Physics D. Chattopadhya, PC Rakshit & B Saha. (6th Edition) Book and Allied Pvt. Ltd.
- 2. B.Sc Practical Physics Harnam Singh S. Chand & Co. Ld. 2001
- 3. A test book of advanced practical PHYSICS _ SAMIR Kumar Ghosh, New Central Book Agency (3rd edition)
- 4. B.Sc. Practical Physics C. L. Arora (1st Edition) -2001 S. Chand and Co. Ltd.
- 5. Practical Physics C. L. Squires (3rd Edition) Cambridge University

- 6. University Practical Physics D C Tayal. Himalaya Publication
- 7. Advanced Practical Physics Worsnop & Flint

Evaluation Pattern for course USPH506:

A. Continuous Evaluation (40 Marks):

Method	Marks	
Performance and engagement during practical sessions:	30	
 Skills, precision, accuracy, safety measures, individual and/or 		
collaborative working while performing practical		
• Ability to record proper observations, to analyze data, to plot		
graph and to draw meaningful conclusions of experiments		
• Submission of journal within a week after every practical session		
Based on above criteria, each experiment of this course will be		
assessed for 10 marks during regular practical session and finally the		
total marks obtained by a learner will be converted to marks out of 30.		
Overall performance (attendance, punctuality, sincerity for practical		
sessions throughout semester)		
Viva	05	

B. Semester End Evaluation (Exam Pattern) (60 Marks - 3 hours):

Question No.	Group	Title		Method	Marks
1	В	Electricity Electronics	and	Experiment performance as per practical slip	60

Name of the	Electronic Instrumentation (A. C.) I: Analog Circuits,		
Course	Instruments and Consumer Appliances		
Course Code	USACEI501		
Class	TYBSc		
Semester	V		
Number of Credits	2		
Nature	Theory		
Туре	Applied		
Revision of syllabus	The curriculum is so designed that learner will understand the		
specific to	construction and operating principle of transducers, sensors and		
employability/	optoelectronic devices. This will equip learners with the		
entrepreneurship/	knowledge and skills necessary to work in the field of		
skill development	instrumentation.		
	The curriculum equips learners with understanding of		
	fundamental concepts of signal conditioning and applications of		
	these techniques to enhance the quality of analog and digital		
	signals. The curriculum empowers learners with comprehensive		
	understanding of design and operation of SMPS and its		
	application in converting and regulating electrical power for		
	electronic systems. Curriculum develops learner's understanding		
	about principle and characteristics of measuring instruments,		
	such as, oscilloscope and multimeter. The curriculum also		
	develops learner's understanding about operating principle of		
	microphones and loud speakers. All this content will provide the		
	foundation to learner to work with signals, power supplies and		
	measuring instruments in various industries, contributing to the		
	design, optimization and maintenance of electronic systems and		
	applications.		
	The curriculum equips learners with the fundamental concepts of		
	data acquisition and mechanism of conversion of data/signal from		
	analog to digital and from digital to analog.		
	The curriculum includes study of PCB components, layers,		
	materials and its manufacturing processes, which will help		
	learner for the development of reliable and efficient electronic		
	circuits.		
	Learners will also gain the comprehensive understanding of		
	microwave oven technology and learners will be well-prepared to		
	utilize the full range of features offered by microwave ovens.		
	The curriculum also provides basics of various methods used in		
	Une menu of medical diagnostics, such as, EUG, EEG, EMG, UT Scan,		
	MIKI and Ultrasonography which will provide the foundation to		
	learner to work in the field of medical diagnostics.		

Additionally, some of the topics in this theory course will be
covered in following physics lab courses which will reinforce
learner's theoretical understanding to real world applications.

Nomenclature: Applied Component (Electronic Instrumentation) I: Analog Circuits, Instruments and Consumer Appliances

Eligibility: --

Course Outcomes:

On successful completion of this course, a learner will:

- 1. Understand the difference between a transducer and a sensor.
- 2. Understand the construction, working and uses of different types of transducers.
- 3. Understand the concept of signal conditioning, devices used and their operations.
- 4. Get acquainted with the measuring instruments used in laboratory.
- 5. Get the insight of the modern medical instruments in principle, which are used in day to day life.

Curriculum:

Unit	Title	Learning Points	No. of
			Lectures
			(50 min.)
Ι	Transducers,	1. Transducers: Definition, Classification,	15
	Sensors and	Selection of transducer	
	Optoelectronic	Reference: R3	
	Devices		
		2. Electrical transducers: Thermistor,	
		Thermocouple, Pressure Transducer: Strain gauges	
		(wire, foil, & semiconductor), Displacement	
		transducer: LVDT, Peizo-electric Transducer	
		Reference: R2, R3, R6, R9	
		3. Chemical sensors: PH sensor, Gas	
		sensor (Fundamental aspects), Humidity	
		Sensor (Resistive)	
		Kelelence: Ko, K/	
		A Flectronic Weighing Systems	
		Operating principle Block diagram	
		features	
		Reference: R12, R13	
		5. Optoelectronic Devices: LDR, LED	
		(Construction, Working & Applications),	
		Multicolour LED, Seven Segment Display, Liquid	

		Crystal Display (LCD), Photodiode (construction, Characteristics & applications), Phototransistor Reference: R1, R2, R3	
II	Signal Conditioning, SMPS and Measuring Instruments	 Half wave precision rectifier, Active Peak detector, Active Positive Clamper, Active Positive and Negative Clippers Reference: R19, R20 Microphones: characteristics, types (list only), carbon microphone and dynamic type microphone (principle, construction and working) Loud speakers: Characteristics, Dynamic (Moving coil type) speaker, Multi-way speaker system 	15
		 (woofer and tweeter) Reference: R4 3. Switching Regulators: Basic and Monolithic Switching regulators (buck, boost and buck – boost) (Only basic Configurations) Reference: R19 	
		4. Cathode Ray Oscilloscope: Single trace CRO (Block diagram), Front Panel Controls (Intensity, Focus, Astigmatism, X & Y position, Level knob, Time base (Time/Division) and attenuation (Volts/Division) knobs X-Y mode), Dual Trace CRO (Block diagram), Probes: 1:1 & 10:1, Digital storage oscilloscope Reference: R3, R10	
		5. DMM: 3 ½ Digit display, resolution and sensitivity, general specifications Reference: R3	
III	Data Acquisition and Conversion	 Data acquisition system: Objectives of DAS, Signal conditioning of inputs, Single channel Data Acquisition system, Multichannel Data Acquisition system. Reference: R11 	15
		2. D to A Converters: Resistive divider	

		network, Binary ladder network Reference: R7, R8 3. A to D Converters: Successive approximation type, Voltage to Time (Single slope, Dual slope) Reference: R7, R8	
IV	Modern Techniques and Appliances	 Printed Circuit Board: Idea of PCB, advantages, copper clad, Etching processes, Principle of Photolithography (For PCB) Reference: R4, R14, R15 Microwave Oven: Operating principle, block diagram, features 	15
		 Reference: R12, R13 3. Medical instruments: Bio-Potential, Types of electrodes, ECG, EEG, EMG, CT Scan and MRI (principle, block diagram and features), Ultrasonography: working principle Reference: R16, R17, R18 	

Learning Resources recommended:

- 1. R1: A Textbook of Applied Electronics R S Sedha, S Chand & Company, New Delhi
- 2. R2: Basic Electronics Solid state B. L. Thereja, S Chand & Company, New Delhi
- 3. R3: Electronic Instrumentation H.S. Kalsi, Tata McGraw Hill Publishing Company Limited, New Delhi
- 4. R4: Electronic components and materials: Principles, Manufacture and Maintenance- S. M. Dhir, Tata McGraw-Hill Publishing Company Limited, New Delhi
- 5. R5: Measurement and Instrumentation Principles: Alan S. Morris, Butterworth-Heinemann
- 6. R6: Transducers and display systems: B. S. Sonde, Tata McGraw-Hill Publishing Company Limited, New Delhi
- 7. R7: Digital principles and applications: A. P. Malvino and D. P. Leach, Tata McGraw-Hill
- 8. R8: Data Converters– B. S. Sonde, Tata McGraw-Hill Publishing Company Limited, New Delhi
- 9. R9: Modern Electronic Instruments and Measurement techniques- Albert D.

Helfrick, Willam D. Cooper, Prentice Hall India Pvt. Ltd, New Delhi

- 10. R10: A course in electrical and electronic Measurements and Instrumentation: A. K. Sawhney, Dhanpat Rai and Sons.
- 11. R11: Instrumentation Devices & Systems, 2nd Edition Tata McGraw Hill, C. S. Rangan, G. R. Sarma, V. S. Mani
- 12. R12: Consumer Electronics R. P. Bali, Pearson Education (2008)
- 13. R13: S.P Bali, "Consumer Electronics", Pearson Education Asia Pvt., Ltd., 2008 Edition
- 14. R14: Printed Circuits Handbook pdf, Clyde F. Coombs. Jr., McGraw Hill Handbooks, 6th ed.
- 15. R15: PCB design basics, Mahmoud Wahby, EDN Networks, Nov 2013
- 16. R16: Introduction to Bio-medical Electronics: Joseph-Du-bary, McGraw Hill Co. Ltd.
- 17. R17: Medical instrumentation Application and design- J. C. Wobster
- 18. R18: Biomedical instruments and measurements L. Cromwell, F. J. Weibell, Printice hall of India of India Pvt. Ltd, New Delhi
- 19. R19: Electronic Principles, Malvino
- 20. R20: Operational Amplifier and Linear integrated Circuits Ramakant Gaikawad

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method	Marks
Unit Test (MCQ / Descriptive – Based on Theory and/or	20
Problems - Online/Offline – 1 unit test of 20 marks / 2 unit	
tests of 10 marks each / 3 unit tests of 10 marks each and	
best two out of three will be considered / 4 unit tests of 10	
marks each and best two out of four will be considered)	
Assignments / Seminars	10
Attendance and active participation in classroom	10

B. Semester End Evaluation (Paper Pattern) (60 Marks - 2 hours):

Question	Question Type	Unit	Marks
No.			
1	A) Long questions with 100% internal option	Ι	06
	B) Short questions with 100% internal option		06
2	A) Long questions with 100% internal option	II	06
	B) Short questions with 100% internal option		06
3	A) Long questions with 100% internal option	III	06
	B) Short questions with 100% internal option		06

4	A) Long questions with 100% internal option	n IV	06
	B) Short questions with 100% internal option		06
5	Objective type of questions without internal option	Ι	03
		II	03
		III	03
		IV	03

Guidelines for paper pattern for Semester End Evaluation:

- 1. As far as possible, one fifth weightage of the total marks should be given to numerical examples in above paper pattern.
- 2. All questions will be compulsory and may be divided into sub-questions.
- 3. Long and short questions will include descriptive type of questions, derivationbased questions, problem solving / numericals based questions, etc.
- 4. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Name of the	Practical of Course 'Applied Component (Electronic			
Course	Instrumentation) I: Analog Circuits, Instruments and			
	Consumer Appliances'			
Course Code	USACEI502			
Class	TYBSc			
Semester	V			
Number of Credits	2			
Nature	Practical			
Туре	Applied			
Revision of syllabus	The curriculum is so designed that it offers hands-on approach to			
specific to	learn the subject. The curriculum also demonstrates how physics			
employability/	principles apply to real world scenarios. Learners will develop the			
entrepreneurship/	skill to handle - measuring instruments, basic physics laboratory			
skill development	equipments, etc.			
	The curriculum is so designed that learners will be well-prepared			
	to apply their theoretical knowledge to practical situations,			
	effectively utilize electronic instruments and confidently work			
	with ac circuits and consumer appliances in a laboratory setting.			

Nomenclature: Practical of Course 'Electronic Instrumentation (A. C.) I: Analog Circuits, Instruments and Consumer Appliances'

Eligibility: --

Course Outcomes:

On successful completion of this course, a learner will:

- 1. Understand & practice the skills while performing experiments.
- 2. Understand the use of apparatus and their use without fear & hesitation.
- 3. Correlate the physics theory concepts to practical application.
- 4. Understand the concept of errors and their estimation.
- 5. Learn scientific method of recording of the data, its analysis and result/conclusion of an experiment.

Instructions for learners:

- 1. All measurements and readings should be written with proper units.
- 2. Skill of doing the experiment and understanding physics concepts should be more important than the accuracy of final result.
- 3. In order to appear for Semester End Practical Examination of this applied component course in Physics, minimum 8 experiments (minimum 2 from A group, minimum 2 from B group, minimum 2 from C group and minimum 2 from D group) from this course should be completed compulsorily and learners are required to report all these experiments in the journal of this course.
- 4. After completing all required number of experiments for this course and recording them in journal, a learner will have to get their journal certified and produce the certified journal at the time of Semester End Practical Examination of this course.
- 5. A learner will be allowed to appear for the Semester End Practical Examination of this course, only if a learner submits a certified journal of this course or a certificate from the head of the department that the learner has completed this practical course as per the minimum requirements.
- 6. For Semester End Practical Examination of this course, the learner will be examined in only one experiment either from Group A or from Group B or from Group C or from Group D, from this course and the experiment will be of three hours duration.
- 7. Evaluation in viva voce will be based on all experiments done from this course.
- 8. While evaluating learner's performance at Semester End Practical Examination of this course, weightage will be given to circuit diagram, observations, tabular representation, experimental skills and procedure, graph, calculation and result, whichever applicable.

Curriculum:

Group	Title	Learning Points	No. of
			lectures
			(50 min.)
A	Transducers	 Thermistor as sensor in temperature to voltage converter using OPAMP Characteristics of Photo diode and photo transistors Study of LVDT characteristics Study of seven segment display 	15
В	Data Acquisition Circuits	 OPAMP D/A Converter: Binary weighted resistors OPAMP D/A Converter: Ladder network Basic Instrumentation Amplifier using 3 OPAMPs coupled to resistance bridge Peak detector using OPAMP 741 	15
C	Waveform Shaping Circuits	 Active Notch Filter (frequency response & phase relation) Square and Triangular wave generator using OPAMPs with concept of duty cycle Half wave precision rectifier using precision OPAMPs Positive and Negative Clippers using OPAMP 	15
D	Current, Voltage Sources and Consumer Appliances	 Study of variable dual power supply using LM 317 & LM 337 (± 3V to ± 15V) Constant Current source using OPAMP and PNP transistor (o/p current less than 50 mA) Simple microphone amplifier using a transistor Low voltage audio amplifier using IC LM386 	15

Learning Resources recommended:

- 1. Modern Electronic Instrumentation & Measurement Techniques by Albert D. Helfrick & William D. Cooper PHI) Edition
- 2. OPAMPs and linear integrated circuits" by Coughlin & F. F. Driscoll (6th edition PHI)
- 3. OPAMPs and linear integrated circuits by R.A. Gayakwad (4th edition, PHI)
- 4. Electronic Principles by A. P. Malvino, (PHI), 6th edition
- 5. Electronic Instrumentation by H. S. Kalsi, (TMH) 2nd Edition
- 6. Digital Principle and Applications" by Malvino and Leach, (TMH), 5th edition
- 7. Modern Digital Electronics, R.P. Jain, (TMH), 3rd edition

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method	Marks
Performance and engagement during practical sessions:	30
• Skills, precision, accuracy, safety measures, individual	
and/or collaborative working while performing practical	
• Ability to record proper observations, to analyze data, to	
plot graph and to draw meaningful conclusions of	
experiments	
• Submission of journal within a week after every practical	
session	
Based on above criteria, each experiment of this course will	
be assessed for 10 marks and finally the total marks obtained	
by a learner will be converted to marks out of 25.	
Overall performance (attendance, punctuality, sincerity for	05
practical sessions throughout semester)	
Viva	05

Question	Group	Title	Method	Marks
No.				
1	A / B / C /	Transducers /	Experiment	60
	D	Data Acquisition Circuits	Performance as	
		/	per practical slip	
		Waveform Shaping		
		Circuits /		
		Current, Voltage Sources		
		and Consumer		
		Appliances		

B. Semester End Evaluation (Exam Pattern) (60 Marks – 3 hours):

Syllabi of Courses Offered for Semester VI

Name of the	Classical Mechanics
Course	
Course Code	USPH601
Class	TYBSc
Semester	VI
Number of Credits	2.5
Nature	Theory
Туре	Core
Revision of syllabus specific to employability/ entrepreneurship/ skill development	The curriculum is so designed that, learners will understand and analyze the behavior of objects under the influence of central force. Learners will also be equipped to analyze complex motion scenarios under central force and understand the dynamics of systems in moving and rotating coordinate frames, which will enhance their ability to address advanced problems in physics and related fields. The curriculum focuses on Lagrangian Formulation which is powerful mathematical formalism for analyzing and solving complex problems in classical mechanics and learners will develop the ability to apply Lagrange's equations to a diverse set of mechanical systems, including rigid bodies, oscillators, coupled systems and systems with constraints. The curriculum equips learners to analyze, interpret and solve problems on complex fluid dynamics and rotational motion, which will provide foundation to learners to work in various engineering and scientific contexts. The curriculum also equips learners to analyze and interpret nonlinear dynamics, predict chaotic behavior and understand the underlying principles governing complex systems, enabling them to contribute to various scientific, engineering and interdisciplinary applications

Nomenclature: Classical Mechanics

Eligibility: To be eligible for enrolment in this course, a learner must have appeared for the courses 'USPH101: Classical Physics' and 'USPH301: Mechanics and Thermodynamics'.

Course Outcomes:

On successful completion of this course, a learner will:

- 1. Understand the kinds of motions that can occur under a central potential and their applications to planetary orbits.
- 2. Understand the effect of moving coordinate system, rectilinear as well as rotating.
- 3. Learn the concepts needed for the important formalism of Lagrange's equations and derive the equations using D'Alembert's principle and able to solve simple examples using this formalism.
- 4. Understand simple concepts from fluid mechanics.
- 5. Understand the dynamics of rigid bodies.
- 6. Understand the drastic effect of adding nonlinear corrections to usual problems of mechanics and nonlinear mechanics which will help to understand the irregularity we observe around us in nature.
- 7. Be able to solve simple mathematical problems in all above areas.

Unit	Title	Learning Points	No. of
			Lectures
			(50 min.)
Ι	Central Force	 Motion under a central force, the central force inversely proportional to the square of the distance, Elliptic orbits, The Kepler problem Reference: KRS Moving origin of coordinates, Rotating coordinate systems, Laws of motion on the rotating earth, The Foucault pendulum, Larmor's theorem Reference: KRS 	15
	Lagrange's	1. D'Alembert's principle, Constraints,	15
	Equations	Examples of holonomic constraints, examples of	

		 nonholonomic constraints, degrees of freedom and generalized coordinates, virtual displacement, virtual work, D'Alembert's principle, illustrative problems Reference: PVP 2. Lagrange's equations (using D'Alembert's principle), properties of Lagrange's equations, illustrative problems, canonical momentum, cyclic or ignorable coordinates Reference: PVP 	
III	Fluid Motion and Rigid Body Rotation	 Kinematics of moving fluids, Equation of motion for an ideal fluid, Conservation laws for fluid motion, Steady flow Reference: KRS Rigid dynamics: introduction, degrees of freedom, rotation about an axis: orthogonal matrix, Euler's theorem, Eulerian angles, inertia tensor, angular momentum of rigid body, Euler's equation of motion of rigid body, free motion of rigid body, motion of symmetric top (without notation) Reference: KRS 	15
IV	Non Linear Mechanics	 Nonlinear mechanics: Qualitative approach to chaos, The anharmonic oscillator, Numerical solution of Duffing's equation Reference: BO Transition to chaos: Bifurcations and strange attractors, Aspects of chaotic behavior (Logistic map) Reference: BO 	15

Note: A good number of numerical examples on all units (as far as possible) are expected to be covered during the prescribed lectures.

GJC (Autonomous) Syllabi of Courses Offered by Department of Physics for UG and PG Studies 2023-24 Page 151 of 325

Learning Resources recommended:

Main References:

- 1. PVP: Classical Mechanics, P. V. Panat (Narosa)
- 2. KRS: Mechanics : Keith R. Symon, (Addision Wesely) 3rd Ed.
- 3. BO: Classical Mechanics- a Modern Perspective: V. D. Barger and M. G. Olsson. (Mc Graw Hill International 1995 Ed.)

Additional reference:

- 1. Classical Mechanics: Herbert Goldstein (Narosa 2nd Ed.)
- 2. An Introduction to Mechanics: Daniel Kleppner & Robert Kolenkow Tata McGraw Hill (Indian Ed. 2007)
- 3. Chaotic Dynamics- an introduction: Baker and Gollub (Cambridge Univ. Press)
- 4. Classical Mechanics: J. C. Upadhyaya (Himalaya Publishing House)

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method	Marks
Unit Test (MCQ / Descriptive - Based on Theory and/or Problems -	20
Online/Offline – 1 unit test of 20 marks / 2 unit tests of 10 marks each /	
3 unit tests of 10 marks each and best two out of three will be	
considered / 4 unit tests of 10 marks each and best two out of four will	
be considered)	
Assignments / Seminars	10
Attendance and active participation in classroom	10

B. Semester End Evaluation (Paper Pattern) (60 Marks - 2 hours):

Question	Question Type	Unit	Marks
No.			
1	A) Long questions with 100% internal option	T	06
L	B) Short questions with 100% internal option	I	06
2	A) Long questions with 100% internal option	II	06
	B) Short questions with 100% internal option		06
3	A) Long questions with 100% internal option	Ш	06
	B) Short questions with 100% internal option	111	06

4	A) Long questions with 100% internal option		06
	B) Short questions with 100% internal option	IV	06
	Objective type of questions without internal option	Ι	03
5		II	03
		III	03
		IV	03

Guidelines for paper pattern for Semester End Evaluation:

- 1. As far as possible, one fifth weightage of the total marks should be given to numerical examples in above paper pattern.
- 2. All questions will be compulsory and may be divided into sub-questions.
- 3. Long and short questions will include descriptive type of questions, derivation-based questions, problem solving / numericals based questions, etc.
- 4. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Name of the	Electronics
Course	
Course Code	USPH602
Class	TYBSc
Semester	VI
Number of Credits	2.5
Nature	Theory
Туре	Core
Revision of syllabus	The curriculum describes different semiconductor devices, like,
specific to	JFET, MOSFET, SCR and UJT. The curriculum equips learners to
employability/	analyze and design circuits using these semiconductor devices,
entrepreneurship/	contributing to various fields of electronics and technology.
skill development	The curriculum equips learners to analyze and design differential
	amplifiers using transistors and a variety of OPAMP based
	circuits, for a wide range of electronic applications and to design,
	analyze and optimize power supply circuits to meet specific
	voltage and current requirements.
	The curriculum also equips learners to analyze and design
	multivibrators and timer circuits for a variety of electronic
	applications, ranging from timing and pulse generation to digital
	logic and control systems.
	The curriculum also develops comprehensive understanding of
	various digital communication methods, their principles,
	modulation techniques, signal processing and practical
	applications. This will provide the foundation to learners to work
	with digital communication techniques, design efficient
	communication systems and contribute to various industries such
	as telecommunications, networking and wireless technologies.
	Additionally, some of the topics in this theory course will be
	covered in following physics lab courses which will reinforce
	learners' theoretical understanding to real world applications.

Nomenclature: Electronics

Eligibility: To be eligible for enrolment in this course, a learner must have appeared for the courses 'USPH202: Electricity and Electronics' and 'USPH302: Electronics'.

Course Outcomes:

On successful completion of this course, a learner will:

- 1. Understand the basics of semiconductor devices and their applications.
- 2. Understand the basic concepts of operational amplifier: its prototype and applications as instrumentation amplifier, active filters, comparators and waveform generation.
- 3. Understand the basic concepts of timing pulse generation and regulated power supplies.
- 4. Understand the basic electronic circuits for universal logic building blocks and basic concepts of digital communication.
- 5. Develop quantitative problem solving skills in all the topics covered.

Unit	Title	Learning Points	No. of
			Lectures
			(50 min.)
Ι	Semiconductor Devices	 Field effect transistors: JFET: Basic ideas, Drain curve, The transconductance curve, Biasing in the ohmic region and the active region, Transconductance, JFET common source amplifier, JFET analog switch, multiplexer, voltage controlled resistor, Current sourcing Reference: MB MOSFET: Depletion and enhancement mode, MOSFET operation and characteristics, digital switching Reference: MB SCR: Construction, static characteristics, 	15
		Analysis of the operation of SCR, Gate Triggering Characteristics Variable half wave rectifier and	
		Variable full wave rectifier, Current ratings of SCR	

		Reference: AM 4. UJT: Construction, Operation, characteristics and application as a relaxation oscillator Reference: AM	
II	Differential Amplifier and OPAMP Applications	1. Differential Amplifier using transistor: The Differential Amplifier, DC and AC analysis of a differential amplifier, Input characteristic-effect of input bias, offset current and input offset voltage on output, common mode gain, CMRR Reference: MB	15
		2. OPAMP Applications: Log amplifier, Instrumentation amplifiers, Voltage controlled current sources (grounded load), First order Active filters, Astable using OPAMP, square wave and triangular wave generator using OPAMP, Wein-bridge oscillator using OPAMP, Comparators with Hysteresis, Window Comparator Reference: MB	
III	Multivibrators, Timer, Power Supply	 Transistor Multivibrators: Astable, Monostable and Bistable Multivibrators, Schmitt trigger Reference: AM/ KVR/MB 555 Timer: Review Block diagram, Monostable and Astable operation Voltage Controlled Oscillator, Pulse Width modulator, Pulse Position Modulator, Triggered linear ramp generator Reference: AM/ KVR/MB Regulated DC power supply: Supply characteristics, series voltage regulator, Short circuit protection (current limit and fold back) Monolithic linear IC voltage Regulators. (LM 78XX, LM 79XX, LM 317, LM337) 	15

		Reference: AM/ KVR/MB	
IV	Logic families,	1. Logic families: Standard TTL NAND, TTL	15
	Digital	NOR, Open collector gates, Three state TTL	
	Communication	devices, MOS inverters, CMOS NAND and NOR	
	Techniques	gates, CMOS characteristics	
		Reference: ML	
		2. Digital Communication Techniques: Digital	
		Transmission of Data, Benefits of Digital	
		Communication, Disadvantages of Digital	
		Communication, Parallel and Serial Transmission,	
		Pulse Modulation, Comparing Pulse-Modulation	
		Methods (PAM, PWM, PPM), Pulse-Code	
		Modulation	
		Reference: LF	

Note: A good number of numerical examples on all units (as far as possible) are expected to be covered during the prescribed lectures.

Learning Resources recommended:

Main References:

- 1. MB: Electronic Principles, Malvino & Bates -7th Ed TMH Publication
- 2. AM: Electronic Devices and Circuits, Allen Mottershead -PHI Publication
- 3. KVR: Functional Electronics, K.V. Ramanan-TMH Publication
- 4. ML: Digital Principles and Applications, Malvino and Leach (4th Ed)(TMH)
- 5. LF: Communication Electronics: Principles and applications, Louis E Frenzel 4th edition TMH Publications

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method	Marks
Unit Test (MCQ / Descriptive – Based on Theory and/or Problems	20
- Online/Offline – 1 unit test of 20 marks / 2 unit tests of 10 marks	
each / 3 unit tests of 10 marks each and best two out of three will	
be considered /4 unit tests of 10 marks each and best two out of	

four will be considered)	
Assignments / Seminars	10
Attendance and active participation in classroom	10

B. Semester End Evaluation (Paper Pattern) (60 Marks - 2 hours):

Question	Question Type		Marks
No.			
1	A) Long questions with 100% internal option	Т	06
1	B) Short questions with 100% internal option	I	06
2	A) Long questions with 100% internal option	II	06
	B) Short questions with 100% internal option	11	06
2	A) Long questions with 100% internal option	III	06
5	B) Short questions with 100% internal option	111	06
4	A) Long questions with 100% internal option	IV	06
	B) Short questions with 100% internal option	IV	06
5		Ι	03
	Objective type of questions without internal	II	03
	option	III	03
		IV	03

Guidelines for paper pattern for Semester End Evaluation:

- 1. As far as possible, one fifth weightage of the total marks should be given to numerical examples in above paper pattern.
- 2. All questions will be compulsory and may be divided into sub-questions.
- 3. Long and short questions will include descriptive type of questions, derivation-based questions, problem solving / numericals based questions, etc.
- 4. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Name of the	Nuclear Physics
Course	
Course Code	USPH603
Class	TYBSc
Semester	VI
No of Credits	2.5
Nature	Theory
Туре	Core
Revision of syllabus	The curriculum is so designed that, learners will develop a basic
specific to	understanding of alpha, beta and gamma decay processes,
employability/	including their principles, characteristics and decay equations.
entrepreneurship/	Learners will also develop a basic understanding of various
skill development	nuclear models, including liquid drop model and shell model.
	The curriculum focuses on understanding and analyzing nuclear
	energy processes, their applications and challenges.
	The curriculum also focuses on design, operation and
	advancement of particle accelerators.
	The curriculum also develops conceptual understanding about
	nuclear forces, deuteron problem and the meson theory as
	fundamental aspects of nuclear physics. This will help learners to
	evaluate properties of deuteron and to analyze potential energy
	curves.
	All this content will encourage learners to work in the field of
	research and applications related to elementary particles,
	contribute to advancements in nuclear and particle physics and
	potentially pursue further studies or careers in nuclear and
	particle physics research, medical applications, industrial
	applications and related fields.

Nomenclature: Nuclear Physics

Eligibility: To be eligible for enrolment in this course, a learner must have appeared for the courses 'USPH102: Modern Physics'.

Course Outcomes:

On successful completion of this course, a learner will:

- 1. Understand the fundamental principles and concepts governing classical nuclear and particle physics and will get a knowledge of their applications interactions of ionizing radiation with matter, the key techniques for particle accelerators, the physical processes involved in nuclear power generation.
- 2. Understand the concept of elementary particles, the fundamental constituents of matter and lay foundation for the understanding of unsolved questions about dark matter, antimatter and other research oriented topics.
- 3. Demonstrate quantitative problem solving skills in all the topics covered.

Unit	Title	Learning Points	No. of
			Lectures
			(50 min.)
Ι	Alpha & Beta Decay	 Alpha decay: Velocity, energy and Absorption of alpha particles: Range, Ionization and stopping power, Nuclear energy levels. Range of alpha particles, alpha particle spectrum, Fine structure, long range alpha particles, Alpha decay paradox: Barrier penetration (Gamow's theory of alpha decay and Geiger- Nuttal law) Reference: IK, SBP, SNG Beta decay: Introduction, Velocity and energy of beta particles, Energy levels and decay schemes, Continuous beta ray spectrum- Difficulties encountered to understand it, Pauli's neutrino hypothesis, Detection of neutrino, Energetics of beta decay Reference: IK, SBP, SNG 	15

II	Gamma Decay & Nuclear Models	 Gamma decay: Introduction, selection rules, Internal conversion, nuclear isomerism, Mossbauer effect Reference: SBP, AB Nuclear Models: Liquid drop model, Weizsacker's semi-empirical mass formula, Mass parabolas - Prediction of stability against beta decay for members of an isobaric family, Stability limits against spontaneous fission. Shell model (Qualitative), Magic numbers in the nucleus Reference: SBP AB 	15
III	Nuclear Energy & Particle Accelerators	 Nuclear energy: Introduction, Asymmetric fission - Mass yield, Emission of delayed neutrons, Nuclear release in fission, Nature of fission fragments, Energy released in the fission of U235, Fission of lighter nuclei, Fission chain reaction, Neutron cycle in a thermal nuclear reactor (Four Factor Formula), Nuclear power and breeder reactors, Natural fusion Possibility of controlled fusion Reference: SBP, AB 2. Particle Accelerators: Van de Graaff Generator, Cyclotron, Synchrotron, Betatron and Idea of Large Hadron Collider Reference: SBP, AB 	15
IV	Nuclear force & Elementary particles	 1. Nuclear force: Introduction, Deuteron problem, Meson theory of Nuclear Force- A qualitative discussion Reference: SBP, DCT, AB 2. Elementary particles: Introduction, Classification of elementary particles, Particle interactions, Conservation laws (linear & angular momentum, energy, charge, baryon number & lepton number), particles and antiparticles 	15

(Electrons and positrons, Protons and anti-
protons, Neutrons and anti- neutrons, Neutrinos
and anti-neutrinos), Photons, Mesons, Quark
model (Qualitative)
Reference: SBP, DCT, AB

Note: A good number of numerical examples on all units (as far as possible) are expected to be covered during the prescribed lectures.

Learning Resources recommended:

Main References:

- 1. AB: Concepts of Modern Physics: Arthur Beiser, Shobhit Mahajan, S Rai Choudhury (6th Ed.) (TMH)
- 2. SBP: Nuclear Physics, S.B. Patel (Wiley Eastern Ltd.)
- 3. IK: Nuclear Physics, Irving Kaplan (2nd Ed.) (Addison Wesley)
- 4. SNG: Nuclear Physics, S. N. Ghoshal (S. Chand & Co.)
- 5. DCT: Nuclear Physics, D. C. Tayal (Himalayan Publishing House) 5th ed

Additional reference:

- 1. Modern Physics: Kenneth Krane (2nd Ed.), John Wiley & Sons.
- 2. Atomic & Nuclear Physics: N Subrahmanyam, Brij Lal. (Revised by Jivan Seshan.) S. Chand
- 3. Atomic & Nuclear Physics: A B Gupta & Dipak Ghosh Books & Allied (P) Ltd.
- 4. Introduction to Elementary Particles: David Griffith, Second Revised Edition, Wiley-VCH

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method	Marks
Unit Test (MCQ / Descriptive - Based on Theory and/or	20
Problems - Online/Offline – 1 unit test of 20 marks / 2 unit tests	
of 10 marks each / 3 unit tests of 10 marks each and best two	
out of three will be considered / 4 unit tests of 10 marks each	
and best two out of four will be considered)	
Assignments / Seminars	10
Attendance and active participation in classroom	10

Question	Question Type		Marks
No.			
1	A) Long questions with 100% internal option	т	06
1	B) Short questions with 100% internal option	1	06
2	A) Long questions with 100% internal option	п	06
2	B) Short questions with 100% internal option	11	06
2	A) Long questions with 100% internal option	III	06
5	B) Short questions with 100% internal option	111	06
4	A) Long questions with 100% internal option	IV	06
	B) Short questions with 100% internal option	1 V	06
		Ι	03
5	Objective type of questions without internal	II	03
	option	III	03
		IV	03

B. Semester End Evaluation (Paper Pattern) (60 Marks – 2 hours):

Guidelines for paper pattern for Semester End Evaluation:

- 1. As far as possible, one fifth weightage of the total marks should be given to numerical examples in above paper pattern.
- 2. All questions will be compulsory and may be divided into sub-questions.
- 3. Long and short questions will include descriptive type of questions, derivation-based questions, problem solving / numericals based questions, etc.
- 4. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Name of the	Special Theory of Relativity
Course	
Course Code	USPH604
Class	TYBSc
Semester	VI
Number of Credits	2.5
Nature	Theory
Туре	Core
Revision of syllabus	The curriculum includes basic principles and concepts of special
specific to	relativity like Lorentz transformations, time dilation and length
employability/	contraction. It also covers study of mathematical equations to
entrepreneurship/	calculate relativistic effects, such as time dilation, length
skill development	contraction and relativistic momentum. The curriculum helps
	learners to visualize and interpret relativistic effects using space-
	time diagrams, enhancing the ability to understand the geometry
	of space-time. Learners will also be able to apply critical thinking
	to evaluate the implications of special relativity on concepts like
	simultaneity, mass-energy equivalence and relativistic dynamics.
	All this knowledge will encourage learners to pursue higher study
	in the field of research, specifically in the field of theoretical
	physics.

Nomenclature: Special Theory of Relativity

_____ **Eligibility:** --_____

Course Outcomes:

On successful completion of this course, a learner will:

- Understand the significance of Michelson Morley experiment and failure of the 1. existing theories to explain the null result.
- 2. Understand the importance of postulates of special relativity, Lorentz transformation equations and how it changed the way we look at space and time, absolutism and relativity, Common sense versus Einstein concept of Space and time.
- Understand the transformation equations for: Space and time, velocity, 3. frequency, mass, momentum, force, energy, charge and current density, electric and magnetic fields.
- Be able to solve problems based on length contraction, time dilation, velocity 4. addition, Doppler effect, mass energy relation and resolve paradoxes in relativity like twin paradox, etc.
- Develop quantitative problem solving skills. 5.

Curriculum:		

	Lectures
	(50 min.)
 Introduction to Special theory of Relativity: Inertial and Non-inertial frames of reference, Galilean transformations, Newtonian relativity, Electromagnetism and Newtonian relativity. Attempts to locate absolute frame: Michelson- Morley experiment (omit derivation part), Attempts to preserve the concept of a preferred ether frame: Lorentz Fitzgerald contraction and Ether drag hypothesis (conceptual), Stellar aberration, Attempt to modify electrodynamics Reference: RR Relativistic Kinematics - I: Postulates of the special theory of relativity, Simultaneity, Derivation of Lorentz transformation equations. 	15
	 Conceptual), stenar aberration, Attempt to modify electrodynamics Reference: RR 2. Relativistic Kinematics - I: Postulates of the special theory of relativity, Simultaneity, Derivation of Lorentz transformation equations. Some consequences of the Lorentz

		transformation equations: length contraction, time dilation and meson experiment, The observer in relativity Reference: RR	
II	Relativistic Kinematics – II, The Geometric Representation of Space-Time	1. Relativistic Kinematics - II: The relativistic addition of velocities, acceleration transformation equations, Aberration and Doppler effect in relativity, The common sense of special relativity Reference: RR	15
		2. The Geometric Representation of Space- Time: Space-Time Diagrams, Simultaneity, Length contraction and Time dilation, The time order and space separation of events, The twin paradox Supplementary topics A1, A2, A3, B1, B2, B3 Reference: RR	
III	Relativistic Dynamics	Mechanics and Relativity, The need to redefine momentum, Relativistic momentum, Alternative views of mass in relativity, The relativistic force law and the dynamics of a single particle, The equivalence of mass and energy, The transformation properties of momentum, energy and mass Reference: RR	15
IV	Relativity and Electromagnetism	 Introduction, The interdependence of Electric and Magnetic fields, The Transformation for E and B, The field of a uniformly moving point charge, Force and fields near a current-carrying wire, Force between moving charges, The invariance of Maxwell's equations Reference: RR The principle of equivalence and general relativity, Gravitational red shift Supplementary topic C1, C2, C3, C4 Reference: RR 	15

Note: A good number of numerical examples on all units (as far as possible) are expected to be covered during the prescribed lectures.

Learning Resources recommended:

Main References:

1. RR: Introduction to Special Relativity: Robert Resnick (Wiley Student Edition)

Additional reference:

- 1. Special theory of Relativity: A. P. French
- 2. Very Special Relativity An illustrated guide: by Sander Bais Amsterdam University Press

- 3. Chapter 1: Concepts of Modern Physics by Arthur Beiser
- 4. Chapter 2: Modern Physics by Kenneth Krane

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method	Marks
Unit Test (MCQ / Descriptive – Based on Theory and/or	20
Problems - Online/Offline – 1 unit test of 20 marks / 2 unit tests	
of 10 marks each / 3 unit tests of 10 marks each and best two	
out of three will be considered / 4 unit tests of 10 marks each	
and best two out of four will be considered)	
Assignments / Seminars	10
Attendance and active participation in classroom	10

B. Semester End Evaluation (Paper Pattern) (60 Marks - 2 hours):

Question	Question Type	Unit	Marks
No.			
1	A) Long questions with 100% internal option	Т	06
1	B) Short questions with 100% internal option	I	06
2	A) Long questions with 100% internal option	II	06
2	B) Short questions with 100% internal option		06
2	A) Long questions with 100% internal option	ш	06
5	B) Short questions with 100% internal option	111	06
Л	A) Long questions with 100% internal option	IV/	06
4	B) Short questions with 100% internal option	1 V	06

		Ι	03
F	Objective type of questions without internal	II	03
5	option	III	03
		IV	03

Guidelines for paper pattern for Semester End Evaluation:

- 1. As far as possible, one fifth weightage of the total marks should be given to numerical examples in above paper pattern.
- 2. All questions will be compulsory and may be divided into sub-questions.
- 3. Long and short questions will include descriptive type of questions, derivation-based questions, problem solving / numericals based questions, etc.
- 4. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Name of the	Physics Lab – VII	
Course		
Course Code	USPH605	
Class	TYBSc	
Semester	VI	
No of Credits	3	
Nature	Practical	
Туре	Core	
Revision of syllabus	Restructuring of syllabus has been done to ensure a smooth and	
specific to	logical flow of content throughout the curriculum. It also	
employability/	facilitates the logical progression of subjects which allows	
entrepreneurship/	students to build their understanding of subject progressively and	
skill development	systematically and to grasp contents more effectively.	
The curriculum is so designed that it offers hands-on ap		
	learn the subject. The curriculum also demonstrates how physics	
	principles apply to real world scenarios. Learners will develop the	
	skill to handle - measuring instruments, basic physics laboratory	
	equipments, etc. Learners will also learn to perform basic physics	
	experiments, learn to improve the accuracy of measurements,	
	learn to analyze experimental observations / data, learn to draw	
	meaningful conclusions of experiments and to interpret results.	

Nomenclature: Physics Lab - VII

Eligibility: --

Course Outcomes:

On successful completion of this course, a learner will:

- 1. Understand & practice the skills while performing experiments.
- 2. Understand the use of apparatus and their use without fear & hesitation.
- 3. Correlate the physics theory concepts to practical application.
- 4. Understand the concept of errors and their estimation.
- 5. To learn scientific method of recording of the data, its analysis and result/conclusion of an experiment.

Instructions for learners:

- 1. All measurements and readings should be written with proper units.
- 2. Skill of doing the experiment and understanding physics concepts should be more important than the accuracy of final result.
- 3. A learner must enroll for physics practical courses USPH605 and USPH606 simultaneously and there will be a common journal for courses USPH605 and USPH606.
- 4. In order to appear for Semester End Practical Examination of both these courses, minimum 8 experiments from the group of 'General Physics' from course USPH605, 3 'Demonstration Experiments' from course USPH605, minimum 8 experiments from the group of 'Electricity and Electronics' from course USPH606 and 3 'Demonstration Experiments' from course USPH606 should be completed compulsorily and learners are required to report all these experiments in the common journal of these Physics practical courses.
- 5. After completing all required number of experiments for these courses and recording them in journal, a learner will have to get their journal certified and produce the certified journal at the time of Semester End Practical Examination of these courses.
- 6. A learner will be allowed to appear for the Semester End Practical Examination of these courses, only if a learner submits a common certified journal of these courses or a certificate from the head of the Physics department that the learner has completed these practical courses as per minimum requirements.
- 7. For Semester End Practical Examination of these courses, the learner will be examined for 1 experiment from each course. For Semester End Practical Examination of course USPH605, the experiment will be from 'General Physics' group and for Semester End Practical Examination of course USPH606, the experiment will be from 'Electricity and Electronics' group and each experiment will be of three hours duration.

- 8. Evaluation in viva voce will be separate for each of these courses and it will be based on demonstrations and experiments done from the respective course.
- 9. While evaluating learner's performance for Semester End Practical Examination of each course, weightage will be given to circuit / ray diagram, observations, tabular representation, experimental skills and procedure, graph, calculation and result, whichever applicable.

Curriculum:

Group	Title	Learning Points	No. of
			lectures
			(50 min.)
A	General Physics	 Surface tension of mercury by Quincke's method Thermal conductivity by Lee's method Study of JFET characteristics JFET as a common source amplifier JFET as switch (series and shunt) UJT characteristics and relaxation oscillator R. P. of Prism Double refraction Determination of h/e by photocell Lloyd's single mirror: determination of wavelength 	80
В	Demonstration Experiments	 Open CRO, Power Supply and Signal Generator: block diagram study Michelson's interferometer Constant deviation spectrometer (CDS) Zeeman Effect 	10

Learning Resources recommended:

- 1. Advanced course in Practical Physics D. Chattopadhya, P. C. Rakshit & B. Saha (6th Edition) Book and Allied Pvt. Ltd.
- 2. B. Sc. Practical Physics Harnam Singh S. Chand & Co. Ld. 2001
- 3. A test book of advanced practical PHYSICS _ SAMIR Kumar Ghosh, New Central Book Agency (3rd edition)
- 4. B.Sc. Practical Physics C. L. Arora (1st Edition) -2001 S. Chand and Co. Ltd.
- 5. Practical Physics C. L. Squires (3rd Edition) Cambridge University
- 6. University Practical Physics D C Tayal. Himalaya Publication
- 7. Advanced Practical Physics Worsnop & Flint

Evaluation Pattern for course USPH605:

A. Continuous Evaluation (40 Marks):

Method		
Performance and engagement during practical sessions:		
• Skills, precision, accuracy, safety measures, individual and/or		
collaborative working while performing practical		
• Ability to record proper observations, to analyze data, to plot graph		
and to draw meaningful conclusions of experiments		
• Submission of journal within a week after every practical session		
Based on above criteria, each experiment of this course will be		
assessed for 10 marks during regular practical session and finally the		
total marks obtained by a learner will be converted to marks out of 30.		
Overall performance (attendance, punctuality, sincerity for practical		
sessions throughout semester)		
Viva	05	

B. Semester End Evaluation (Exam Pattern) (60 Marks – 3 hours):

Question No.	Group	Title	Method	Marks
1	А	General Physics	Experiment performance as per practical slip	60

Name of the	Physics Lab – VIII
Course	
Course Code	USPH606
Class	TYBSc
Semester	VI
No of Credits	3
Nature	Practical
Туре	Core
Revision of syllabus	Restructuring of syllabus has been done to ensure a smooth and
specific to	logical flow of content throughout the curriculum. It also
employability/	facilitates the logical progression of subjects which allows
entrepreneurship/	students to build their understanding of subject progressively and
skill development	systematically and to grasp contents more effectively.
	The curriculum is so designed that it offers hands-on approach to
	learn the subject. The curriculum also demonstrates how physics
	principles apply to real world scenarios. Learners will develop the
	skill to handle - measuring instruments, basic physics laboratory
	equipments, etc. Learners will also learn to perform basic physics
	experiments, learn to improve the accuracy of measurements,
	learn to analyze experimental observations / data, learn to draw
	meaningful conclusions of experiments and to interpret results.

Nomenclature: Physics Lab - VII

Eligibility: --

Course Outcomes:

On successful completion of this course, a learner will:

- 1. Understand & practice the skills while performing experiments.
- 2. Understand the use of apparatus and their use without fear & hesitation.
- 3. Correlate the physics theory concepts to practical application.
- 4. Understand the concept of errors and their estimation.
- 5. To learn scientific method of recording of the data, its analysis and result/conclusion of an experiment.

Instructions for learners:

- 1. All measurements and readings should be written with proper units.
- 2. Skill of doing the experiment and understanding physics concepts should be more important than the accuracy of final result.
- 3. A learner must enroll for physics practical courses USPH605 and USPH606 simultaneously and there will be a common journal for courses USPH605 and USPH606.
- 4. In order to appear for Semester End Practical Examination of both these courses, minimum 8 experiments from the group of 'General Physics' from course USPH605, all 3 'Demonstration Experiments' from course USPH605, minimum 8 experiments from the group of 'Electricity and Electronics' from course USPH606 and all 3 'Demonstration Experiments' from course USPH606 should be completed compulsorily and learners are required to report all these experiments in the common journal of these Physics practical courses.
- 5. After completing all required number of experiments for these courses and recording them in journal, a learner will have to get their journal certified and produce the certified journal at the time of Semester End Practical Examination of these courses.
- 6. A learner will be allowed to appear for the Semester End Practical Examination of these courses, only if a learner submits a common certified journal of these courses or a certificate from the head of the Physics department that the learner has completed these practical courses as per minimum requirements.
- 7. For Semester End Practical Examination of these courses, the learner will be examined for 1 experiment from each course. For Semester End Practical Examination of course USPH605, the experiment will be from 'General Physics' group and for Semester End Practical Examination of course

USPH606, the experiment will be from 'Electricity and Electronics' group and each experiment will be of three hours duration.

- 8. Evaluation in viva voce will be separate for each of these courses and it will be based on demonstrations and experiments done from the respective course.
- 9. While evaluating learner's performance for Semester End Practical Examination of each course, weightage will be given to circuit / ray diagram, observations, tabular representation, experimental skills and procedure, graph, calculation and result, whichever applicable.

Group	Title	Learning Points	No .of
			lectures
			(50 min.)
А	Electricity and	1. Determination of M/C by using BG	80
	Electronics	2. Design and study of transistorized	
		monostable multivibrator (BB)	
		3. Design and study of transistorized bistable	
		multivibrator (BB)	
		4. Application of Op-Amp as a window	
		comparator	
		5. Application of Op-Amp as a Log amplifier	
		6. Application of IC 555 as a voltage to	
		frequency converter (BB)	
		7. LM-317 as variable voltage source	
		8. Shift register (BB)	
		9. Hall effect	
		10. Application of IC 555 as a voltage to time	
		converter (BB)	
		Note: BB: Using Breadboard	
D	D		10
В	Demonstration	1. Digital storage oscilloscope (DSO)	10
	Experiments	2. Determination of OPAMP parameters (offset	
		voltage, slew rate, input impedance, output	
		Impedance, A _{CM} J	
		3. Transformer (theory, construction and	
		lossos associated with them	
		105585 associated with themister ODAMD 9	
		4. Data sileets: Dioues, Halisistoi, UPAMP &	
		optoelecti onic devices	

Learning Resources recommended:

- 1. Advanced course in Practical Physics D. Chattopadhya, P. C. Rakshit & B. Saha. (6th Edition) Book and Allied Pvt. Ltd.
- 2. B.Sc Practical Physics Harnam Singh S. Chand & Co. Ld. 2001
- 3. A test book of advanced practical PHYSICS _ SAMIR Kumar Ghosh, New Central Book Agency (3rd edition)
- 4. B.Sc. Practical Physics C. L. Arora (1st Edition) -2001 S. Chand and Co. Ltd.
- 5. Practical Physics C. L. Squires (3rd Edition) Cambridge University
- 6. University Practical Physics D C Tayal. Himalaya Publication
- 7. Advanced Practical Physics Worsnop & Flint

Evaluation Pattern for course USPH606:

A. Continuous Evaluation (40 Marks):

Method	Marks	
Performance and engagement during practical sessions:		
• Skills, precision, accuracy, safety measures, individual and/or		
collaborative working while performing practical		
• Ability to record proper observations, to analyze data, to plot graph		
and to draw meaningful conclusions of experiments		
• Submission of journal within a week after every practical session		
Based on above criteria, each experiment of this course will be		
assessed for 10 marks during regular practical session and finally the		
total marks obtained by a learner will be converted to marks out of 30.		
Overall performance (attendance, punctuality, sincerity for practical		
sessions throughout semester)		
Viva	05	

B. Semester End Evaluation (Exam Pattern) (60 Marks – 3 hours):

Question No.	Group	Title	Method		Marks
1	A	Electricity and Electronics	Experiment performance per practical slip	as	60

Name of the	Applied Component (Electronics Instrumentation) II: Digital		
Course	Electronics, Microprocessor, Microcontroller and OOP		
Course Code	USACEI601		
Class	TYBSc		
Semester	VI		
Number of Credits	2		
Nature	Theory		
Туре	Applied		
Revision of syllabus	Restructuring of syllabus has been done to ensure a smooth and		
specific to	logical flow of content throughout the curriculum. It also		
employability/	facilitates the logical progression of subjects which allows		
entrepreneurship/	students to build their understanding of subject progressively and		
skill development	systematically and to grasp contents more effectively.		
	The curriculum is so designed that learners will understand		
	various types of binary code, simplify Boolean expressions and		
	effectively apply K-maps for logic simplification. Learners will be		
	equipped with necessary knowledge to design, analyze and		
	optimize combinational logic circuits using decoder, encoder,		
	multiplexer, demultiplexer, D-latch and tri-state logic buffers for a		
	variety of applications in the field of digital electronics.		
	Learner will also be equipped with necessary knowledge in		
	advanced 8085 microprocessor programming techniques.		
	memory/IO interfacing and interfacing with the 8255		
	Programmable Perinheral Interface (PPI) enabling them to		
	develop and optimize microprocessor based systems and		
	applications		
	Learners will understand the foundations of microcontroller.		
	architecture of microcontroller 8051 and will develop the skills to		
	write basic assembly language programming with microcontroller		
	8051		
	Learners will also understand the fundamental principles of		
	object-oriented programming, master C++ syntax and will be able		
	to apply their knowledge to develop hasic applications using C++		
	Additionally most of the tonics in this theory course will be		
	covered in following lab course which will reinforce learners'		
	theoretical understanding to real world applications		
	מוכטו כנוכמו מוומכו זנמוומווצ נט וכמו שטוומ מטטונג.		

Nomenclature: Applied Component (Electronics Instrumentation) II: Digital Electronics, Microprocessor, Microcontroller and OOP

Eligibility: --

Course Outcomes:

On successful completion of this course, a learner will:

- 1. Be able to analyze/design and implement combinational logic circuits.
- 2. Develop assembly language programing skills and understand real time applications of microprocessor.
- 3. Illustrate how to interface the I/O peripheral (PPI) with 8085 microprocessor.
- 4. Understand architecture, salient features, instruction set.
- 5. Be able to write assembly language programs for basic and interfacing experiments with 8051 microcontroller.

6. Develop the programming skills in programming language C++.

Unit	Title	Learning Points	No. of
			Lectures
			(50 min.)
Ι	Digital Electronics	 Combinational Logic Design: Introduction, Code Converters (based on – binary, BCD, Gray and Excess – 3 codes), Boolean identities, K – map (2, 3 and 4 variable) Reference: NGP Tri-State logic, buffers, D latch, Design and implementations of: Decoders, Encoders, Multiplexers, De-multiplexers, Use of MUX and DEMUX in Combinational Logic design Reference: NGP, RG, RPJ 	15
II	Advanced 8085 Programming and 8255 (PPI)	 Introduction to advanced instructions and applications Reference: RG Stack and Subroutines: Stack, Subroutine Reference: RG The 8255 Programmable Peripheral Interface: Block Diagram of the 8255, Mode 0 – 	15

		Simple Input / Output mode, BSR (Bit Set/Reset Mode) Reference: RG	
III	Introduction to Microcontrollers	1. Introduction, Microcontrollers and Microprocessors, History of Microcontrollers and Microprocessors, Block diagram of 8051 Microcontroller, Embedded Versus External Memory Devices, 8-bit & 16-bit Microcontrollers, CISC and RISC Processors, Harvard and Von Neumann Architectures, Commercial Microcontrollers Reference: AVD, MMM	15
		2. 8051 Microcontrollers: Introduction, MCS-Architecture, Registers in MCS-51, 8051 Pin Description, 8051 Connections, 8051 Parallel I/O Ports, Memory Organization Reference: AVD	
		3. 8051 Instruction Set and Programming: MCS-51 Addressing Modes and Instructions: 8051 Addressing modes, MCS-51 Instruction Set, 8051 Instructions and Simple Programs, Using Stack Pointer Reference: AVD	
IV	Basic Concepts of Object Oriented Programming and C++	1.BasicsofObject-OrientedProgramming & Beginning with C++:BasicconceptsofObject-OrientedProgramming,BenefitsofOOP,Object-OrientedLanguages,ApplicationsofOOP,What is C++?,ApplicationsofC++,A simpleC++program,MoreC++Statements,ExamplewithClass,Structureof C++Program,CreatingtheSourceFile,CompilingandLinkingReference:EBEBEEE	15
		2. Tokens and Expressions in C++: Introduction, Tokens, Keywords, Identifiers and Constants, Basic Data Types, User-Defined Data Types, Derived Data Types, Symbolic Constants,	

Type Compatibility, Declaration of Variables,	
Dynamic Initialization of Variables, Reference	
Variables, Operators in C++, Scope Resolution	
Operator, Member Dereferencing Operators,	
Memory Management Operators, Manipulators,	
Type Cast Operator, Expressions and Their	
Types, Special Assignment Expressions, Implicit	
Conversions, Operator Overloading, Operator	
Precedence	
Reference: EB	
3. Control Structures and Functions:	
Control Structures, Functions: The Main	
Function, Function Prototyping, Call by	
Reference, Return by Reference, Inline Functions,	
Default Arguments, Constant Arguments,	
Function Overloading, Math Library Functions	
Reference: EB	

Learning Resources recommended:

Main References:

- 1. RG: Microprocessor Architecture, Programming and Applications with the 8085, Ramesh Gaonkar, 5th Edition
- 2. NGP: Digital Electronics and Logic design by N. G. Palan
- 3. RPJ: R. P. Jain, Modern Digital Electronics, Tata McGraw Hill, 4th Edition
- 4. MMM: The 8051 Microcontroller & Embedded Systems by M.A. Mazidi, J.G. Mazidiand R. D. Mckinlay, Second Edition, Pearson
- 5. AVD: Microcontrollers (Theory and Applications) by Ajay V Deshmukh, The Tata McGraw Hill Companies
- 6. EB: Object Oriented Programming with C++ by E Balagurusamy, Third/Fourth Edition, Tata McGraw-Hill Publishing Company Limited

Additional reference:

- 1. Microprocessor and Applications by Vibhute and Borole, Techmax Publications
- 2. Microprocessor, Principles & Applications by Gilmore (2nd Ed) TMH
- 3. Programming with C++ by D. Ravichandran, Tata McGraw Hill Publishing Company Limited
- 4. Starting out with C++ by Tony Gaddis, Third Edition, Addison Wesley Publishing Company
- 5. Digital Electronics by A. P. Godse & D. A. Godse Technical publications, Pune,

Revised third edition, 2008

- 6. Intel's 8031/8051 Data sheet
- 7. The 8051 Microcontroller & Embedded Systems, Dr. Rajiv Kapadia (Jaico Pub. House)
- 8. 2.8051 Micro-controller by K. J. Ayala, Penram International
- 9. Programming & customizing the 8051 microcontroller By Myke Predko, TMH

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method	Marks
Unit Test (MCQ / Descriptive - Based on Theory and/or	20
Problems - Online/Offline – 1 unit test of 20 marks / 2 unit	
tests of 10 marks each / 3 unit tests of 10 marks each and	
best two out of three will be considered / 4 unit tests of 10	
marks each and best two out of four will be considered)	
Assignments / Seminars	10
Attendance and active participation in classroom	10

B. Semester End Evaluation (Paper Pattern) (60 Marks – 2 hours):

Question	Question Type	Unit	Marks
No.			
1	A) Long questions with 100% internal option	Т	06
1	B) Short questions with 100% internal option	1	06
2	A) Long questions with 100% internal option	II	06
	B) Short questions with 100% internal option		06
3	A) Long questions with 100% internal option	III	06
	B) Short questions with 100% internal option		06
4	A) Long questions with 100% internal option	IV	06
	B) Short questions with 100% internal option		06
		Ι	03
5	Objective type of questions without internal	II	03
5	option	III	03
		IV	03

Guidelines for paper pattern for Semester End Evaluation:

- 1. As far as possible, one fifth weightage of the total marks should be given to numerical examples in above paper pattern.
- 2. All questions will be compulsory and may be divided into sub-questions.

- 3. Long and short questions will include descriptive type of questions, derivation-based questions, problem solving / numericals based questions, etc.
- 4. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.
| Name of the | Practical of Course 'Applied Component (Electronics | | | | |
|----------------------|---|--|--|--|--|
| Course | Instrumentation) II: Digital Electronics, Microprocessor, | | | | |
| | Microcontroller and OOP' | | | | |
| Course Code | USACEI602 | | | | |
| Class | TYBSc | | | | |
| Semester | VI | | | | |
| No of Credits | 2 | | | | |
| Nature | Practical | | | | |
| Туре | Applied | | | | |
| Revision of syllabus | The curriculum is so designed that learners will be well-prepared | | | | |
| specific to | to work with specific ICs and components commonly used in | | | | |
| employability/ | digital electronics, understand their operation and applications, | | | | |
| entrepreneurship/ | and apply their knowledge to designing, building and | | | | |
| skill development | troubleshooting digital circuits. | | | | |
| | Learners will be proficient in advanced 8085 microprocessor | | | | |
| | programming techniques, memory/IO interfacing and interfacing | | | | |
| | with the 8255 Programmable Peripheral Interface (PPI), enabling | | | | |
| | them to develop and optimize microprocessor-based systems and | | | | |
| | applications. | | | | |
| | Learners will develop the skill to write and execute basic | | | | |
| | assembly language programming with microcontroller 8051. | | | | |
| | Learners will also develop the skill to write and execute basic C++ | | | | |
| | program. | | | | |
| | The curriculum is so designed that learners will apply their | | | | |
| | theoretical knowledge to practical situations. All this content and | | | | |
| | skills developed by this course will provide foundation to learners | | | | |
| | to work in the field of digital electronics, embedded systems, IT, | | | | |
| | automation and related fields. | | | | |

Nomenclature: Practical of Course 'Applied Component (Electronics Instrumentation) II: Digital Electronics, Microprocessor, Microcontroller and OOP'

Eligibility: --

Course Outcomes:

On successful completion of this course, a learner will:

- 1. Understand & practice the skills while performing experiments.
- 2. Understand the use of apparatus and their use without fear & hesitation.
- 3. Correlate the physics theory concepts to practical application.
- 4. Understand the concept of errors and their estimation.
- 5. Learn scientific method of recording of the data, its analysis and result/conclusion of an experiment.
- 6. Understand basic principles and concepts of digital electronics and become familiar with various digital components commonly used in computer.
- 7. Implement digital circuits and develop skills in troubleshooting, identifying and fixing issues in digital circuits.
- 8. Understand architecture, operation and basic assembly language programming of 8085 microprocessor, 8031/8051 microcontroller.
- 9. Write and perform basic assembly language programming with 8085 microprocessor, 8031/8051 microcontroller.
- 10. Gain proficiency in writing assembly language programs for microprocessor 8085, 8031/8051 microcontroller to control and communicate with interfaced devices, reinforcing the theoretical concepts learned in this course and gain hands-on experience through practical exercises.

Instructions for learners:

- 1. All measurements and readings should be written with proper units.
- 2. Skill of doing the experiment and understanding physics concepts should be more important than the accuracy of final result.
- 3. In order to appear for Semester End Practical Examination of this applied component course in Physics, minimum 8 experiments (minimum two from A group, minimum 2 from B group, minimum 2 from C group and minimum 2 from D group) from this course should be completed compulsorily and learners are required to report all these experiments in the journal of this practical course.
- 4. After completing all required number of experiments for this course and recording them in journal, a learner will have to get their journal certified and produce the certified journal at the time of Semester End Practical Examination of this course.
- 5. A learner will be allowed to appear for the Semester End Practical Examination of this course, only if a learner submits a certified journal of this course or a

certificate from the head of the department that the learner has completed this practical course as per the minimum requirements.

- 6. For Semester End Practical Examination of this course, the learner will be examined in only one experiment either from Group A or from Group B or from Group C or from Group D, from this course and the experiment will be of three hours duration.
- 7. Evaluation in viva voce will be based on all experiments done from this course.
- 8. While evaluating learner's performance at Semester End Practical Examination of this course, weightage will be given to circuit diagram, observations, tabular representation, experimental skills and procedure, graph, flowchart, assembly language program, C++ program, calculation and result, whichever applicable.

Curriculum:

Group	Title	Learning Points	No. of
			lectures
			(50 min.)
A	Digital	1. Study of 3:8 Decoder (74LS138), 8:3 Priority	15
	Electronics	Encoder (74LS148) and their applications	
		2. Study of Latch (74LS373) and its application	
		3. Study of 8:1 Multiplexer (74LS151), 1:4 De-	
		multiplexer (74LS155) and their applications	
		4. Study of unidirectional buffer (74LS244)	
		and bidirectional buffer (74LS245)	
В	8085 Advanced	8085 Advanced Programming:	15
	Programming	Prerequisites: The students should be familiar	
	and 8255	with Keyboard and Display utilities such as	
	Interfacing	READ KEYBOARD, TO DISPLAY ON ADDRESS	
		FIELD, and TO DISPLAY ON DATA FIELD,	
		mentioned in the 8085 μ p kit's manual.	
		1. 16-bit Data manipulation (Addition,	
		subtraction). Display result on Address field.	
		2. Write ALP for Addition/	
		Subtraction/Multiplication of two, 8-bit hex,	
		numbers. (Note: Use Read Keyboard Utility	
		for inputting the hex numbers and display	
		the result on the Address field.)	
		8255 Interfacing:	
		1. Design a system (both Software and	
		Hardware) to control ON/OFF operation of	

		4 electrical loads (appliances).	
		Hardware) using 8 LED display to	
		demonstrate:	
		A. Binary - up, down and ring counters	
		B. Flashing display	
C	Experiments	1. 8031/51 assembly language programming:	15
	for 8031 /	A. Simple data manipulation programs	
	8051/89051	(8/16-bit addition, subtraction, multiplication division)	
		B. 8/16 bit data transfer, cubes of	
		numbers, to rotate a 32- bit number	
		C. Finding greatest/smallest number from	
		a block of data, decimal / hexadecimal	
		2 Study of IN and OUT port of 8031/51 by	
		Interfacing switches, LEDs and Relays:	
		A. To display bit pattern on LED's	
		B. To count the number of "ON" switches	
		and display on LED's	
		C. To trip a relay depending on the logic	
		D. Event counter (using LDR and light	
		source)	
D	C++	1. Program based on Control Statements	15
	Programming	A. Program based on II-else statement B. Program based on nested if statement	
		2. Program based on for loop, while loop and	
		do-while loop	
		3. Program based on Input, Output	
		Statements (Programs to read any two	
		numbers through keyboard and to perform	
		display the result)	
		4. Program using switch statements and if-	
		else ladder	

GJC (Autonomous) Syllabi of Courses Offered by Department of Physics for UG and PG Studies 2023-24 Page 186 of 325

Learning Resources recommended:

- 1. Microprocessor Architecture, Programming and Applications with the 8085, Ramesh Gaonkar, 5th Edition
- 2. Digital Electronics and Logic design by N. G. Palan
- 3. R. P. Jain, Modern Digital Electronics, Tata McGraw Hill, 4th Edition
- The 8051 Microcontroller & Embedded Systems by M.A. Mazidi, J.G. Mazidiand R. D. Mckinlay, Second Edition, Pearson
- 5. Microcontrollers (Theory and Applications) by Ajay V Deshmukh, The Tata McGraw Hill Companies
- 6. Object Oriented Programming with C++ by E Balagurusamy, Third/Fourth Edition, Tata McGraw-Hill Publishing Company Limited
- 7. Microprocessor and Applications by Vibhute and Borole, Techmax Publications
- 8. Microprocessor, Principles & Applications by Gilmore (2nd Ed) TMH
- 9. Programming with C++ by D. Ravichandran, Tata McGraw Hill Publishing Company Limited
- 10. Starting out with C++ by Tony Gaddis, Third Edition, Addison Wesley Publishing Company
- 11. Digital Electronics by A. P. Godse & D. A. Godse Technical publications, Pune, Revised third edition, 2008
- 12. Intel's 8031/8051 Data sheet
- 13. The 8051 Microcontroller & Embedded Systems, Dr. Rajiv Kapadia (Jaico Pub. House)
- 14. 8051 Micro-controller by K. J. Ayala, Penram International

- 15. Programming & customizing the 8051 microcontroller By Myke Predko, TMH
- 16. 8085 Kit User Manual
- 17. 8031/8051 User Manual

Evaluation Pattern:

A. Continuous Evaluation (40 Marks):

Method	Marks
Performance and engagement during practical sessions:	30
• Skills, precision, accuracy, safety measures, individual and/or	
collaborative working while performing practical	
• Ability to record proper observations, to analyze data, to plot graph	
and to draw meaningful conclusions of experiments	
• Submission of journal within a week after every practical session	
Based on above criteria, each experiment of this course will be	
assessed for 10 marks during regular practical session and finally the	
total marks obtained by a learner will be converted to marks out of 30.	

Overall performance (attendance, punctuality, sincerity for practical	05
sessions throughout semester)	
Viva	05

B. Semester End Evaluation (Exam Pattern) (60 Marks – 3 hours):

Question	Group	Title	Method	Marks
No.				
1	A / B /	Digital Electronics /	Experiment performance	60
	C / D	8085 Advanced	as per practical slip	
		Programming and		
		8255 Interfacing /		
		Experiments for		
		8031 or 8051 or		
		89C51 / C++		
		Programming		

R. E. Society's

R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce (Autonomous), Ratnagiri

Department of Physics PG Programme 2023-24 Courses & Syllabus

Under Choice Based Credit System (CBCS)

R. E. SOCIETY'S, R. P. GOGATE COLLEGE OF ARTS & SCIENCE AND R. V. JOGALEKAR COLLEGE OF COMMERCE (AUTONOMOUS), RATNAGIRI

SYLLABI OF COURSES OFFERED BY DEPARTMENT OF PHYSICS OF THE COLLEGE IN THE SUBJECT PHYSICS FOR THE FIRST YEAR (SEMESTER I & II) OF PROGRAM M.Sc. AS PER NEP 2020

UNDER

CHOICE BASED CREDIT SYSTEM (CBCS)

WITH THE EFFECT FROM ACADEMIC YEAR 2023-24

Program Outcomes of M.Sc. Physics

Name of Programme	Master of Science
Level	PG
No of Semesters	04
Year of	2023-24
Implementation	
Programme Specific	On completion of the MSc Physics, the learners should be
Outcomes (PSO)	enriched with knowledge and be able to
	1. Physics knowledge: Understand current development in
	various dolmens of modern Physics like Nuclear Physics,
	Electrodynamics, Atomic and Molecular Physics, Classical
	Mechanics, Quantum Mechanics, Statistical Mechanics,
	Mathematical Physics, Solid state Physics, Advanced
	Electronics, Solid state devices, Experimental techniques
	and electronics.
	2. Practical Skills and Analytical Abilities: Develop
	analytical abilities and acquire practical skill in handling
	measuring equipment required to carry out experiments
	in different areas of Physics, verify complex Physics
	problems through experimentation and use them to
	develop science and technology. Learner will be able to
	design Assembly level and High-level language program
	APM etc
	A Motivation and life long learning: Acquire skills like
	collaborative work communication and independent
	learning required for lifelong learning to overcome
	challenges ahead
	4. Research: Clear competitive examination like SET. NET.
	IRF. PET and IEST required for pursue research at
	different research institutes and Universities. Get trained
	for a career in basic sciences and contribute in
	educational institutes, industries and emerging branches
	of science.
	5. Ethics: Demonstrate professional behaviour such as (i)
	being objective, unbiased and truthful in all aspects of
	work and avoiding unethical, irrational behaviour such as
	fabricating, falsifying or misrepresenting data or
	committing plagiarism; (ii)the ability to identify the
	potential ethical issues in work-related situations; (iii)
	appreciation of intellectual property, environmental and

Relevance of PSOs to the local, regional, national, and globalThe Master of Science in Physics programme equips the candidate with knowledge, general competence, and analytical skills on an advanced level, needed in industry,		sustainability issues; and (iv) promoting safe learning and working environment.
 developmental needs consulting, education, and research and public and private administration. The M.ScI and II (Physics) Programme includes various core courses such as Solid-State physics, statistical mechanics, nuclear and particle physics, spectroscopy and microprocessors and advance experiment in electronics. The choice of courses offers a glimpse into the frontier areas of research and allows learners to work on research projects. The programme also provides adequate exposure for the learners to pursue higher education in the fields of technology (M. Tech.), physics (M.Phil./Ph.D.), and other job opportunities in academia and industry. On completion of the programme, the postgraduates will be able to: 1. Apply knowledge and skill in the design and development of electronic system and programming to fulfil the needs of the electronic industry. 2. Pursue research related to physics and material characterization. 3. Able to teach core physics to higher secondary and undergraduate learners. 4. Demonstrate the highest standards of actuarial ethical conduct and professional actuarial behaviour, critical, interpersonal and communication skills as well as a commitment to life-long learning. 	Relevance of PSOs to the local, regional, national, and global developmental needs	 The Master of Science in Physics programme equips the candidate with knowledge, general competence, and analytical skills on an advanced level, needed in industry, consulting, education, and research and public and private administration. The M.ScI and II (Physics) Programme includes various core courses such as Solid-State physics, statistical mechanics, nuclear and particle physics, spectroscopy and microprocessors and advance experiment in electronics. The choice of courses offers a glimpse into the frontier areas of research and allows learners to work on research projects. The programme also provides adequate exposure for the learners to pursue higher education in the fields of technology (M. Tech.), physics (M.Phil./Ph.D.), and other job opportunities in academia and industry. On completion of the programme, the postgraduates will be able to: 1. Apply knowledge and skill in the design and development of electronic system and programming to fulfil the needs of the electronic industry. 2. Pursue research related to physics and material characterization. 3. Able to teach core physics to higher secondary and undergraduate learners. 4. Demonstrate the highest standards of actuarial ethical conduct and professional actuarial behaviour, critical, interpersonal and communication skills as well as a commitment to life-long learning.

Evaluation Scheme

Course Evaluation Scheme: -

The performance of the learners shall be evaluated into two parts. The learner's performance shall be assessed by Continuous Assessment with 40% marks and by conducting the Semester End Examination with 60% marks.

The allocation of marks for the continuous Evaluation and Semester End Examinations are as shown below: -

Sr.No.	Particulars	% Marks
01	Test	20
02	Assignment	10
03	Active participation in class room and attendance	10

A) Continuous Assessment: (40% marks)

B) Semester End Examination: (60% marks)

The Examination shall be of 2 hours duration.

Standard of Passing:

For each course of M.Sc. Physics, there will be separate head of passing for Continuous Evaluation and Semester End Examination. The learner to earn the course credits, shall have to obtain a minimum of 40% marks in the Continuous Evaluation and 40% marks in Semester End Examination separately.

Conversion of Marks: -

The Continuous Evaluation for 2 credit courses of M.Sc. Physics will be of 40 marks. In such cases, the marks obtained by a learner in Continuous Evaluation of a course out of 40, will be converted to marks out of 20.

The Semester End Evaluation for 2 credit courses of M.Sc. Physics will be of 60 marks. In such cases, the marks obtained by a learner in Semester End Evaluation of a course out of 60, will be converted to marks out of 30. Converted marks will be reflected in learner's marksheet. There will be no mark conversion for 4 credit courses.

Performance Grading:

Letter Grades and Grade Points

% of Aggregate Marks Obtained	Course Grade Point	Course Grade	Performance Indicator	Credits Earned
90.0 to 100	10	0	Outstanding	
80 to 89.99	9	A+	Excellent	
70 to 79.99	8	А	Very Good	As per
60 to 69.99	7	B+	Good	course
55 to 59.99	6	В	Above Average	credit
50.0 to 54.99	5	С	Average	
40 to 49.99	4	Р	Pass	
Less Than 40	0	F	Fail	0
Absent	0	Ab	Absent	U

Courses Offered by Department of Physics for M.Sc.-I

Master of Science (M.Sc.) Programme Under Choice Based Credit System (CBCS) Course Structure

M.Sc. Physics-I

(To be implemented from Academic Year 2023-24)

No. of Courses	Semester I		dits	No. of Course s	Semester II	Cre	dits
	Major Mandatory				Major Mandatory		
PSPH 101	Mathematical Methods		2	PSPH 201	Electrodynamics	0	2
PSPH 102	Classical Mechanics	0	4	PSPH 202	Advanced Electronics	0	4
PSPH 103	Quantum Mechanics-I	0	4	PSPH 203	Quantum Mechanics-II	0	4
PSPH 104	Physics LAB-I	04		PSPH 204	Physics LAB-I	0	4
	Major Electives				Major Electives		
PSPH 105	Crystal Physics	02	0.4	PSPH 205	Physics of Semiconductor diodes and Transistors	02	
PSPH 106	Physics LAB-II	02 04		PSPH 206	Physics LAB-II	02	04
	OR				OR		
PSPH 107	Magnetism	02	04	PSPH 207	Semiconductor Physics and Devices	02	04
PSPHP 108	Physics LAB-III	02		PSPH 208	Physics LAB-III	02	
PSPH 109 Research Methodology		04		PSPH 209	On Job Training/ Field Project	0	4
Total Credits		22			Total Credits	2	2

SEMESTER-I

No. of Courses	Semester I	Credits
	Major: Mandatory	
PSPH 101	Mathematical Methods	2
PSPH 102	Classical Mechanics	4
PSPH 103	Quantum Mechanics-I	4
PSPH 104	Physics LAB-I	4
	Major: Elective (Any One from below)	
PSPH 105	Crystal Physics	
PSPH 106	Physics LAB-II	4
PSPH 107 Magnetism		4
PSPH 108	Physics LAB-III	4
PSPH 109	Research Methodology	4
	22	

Revised Syllabus of Course of Master of Science (M.Sc.) Programme at Semester I with Effect from the Academic Year 2023-2024

Name of the Course	Mathematical Methods
Course Code	PSPH101
Class	M.Sc.
Semester	Ι
No of Credits	2
Nature	Theory
Туре	Major
Employability/	The mathematical technique is utilized in the core subject to teach
Entrepreneurship/	mathematical skills such as problem solving. Learners learn
Skill Development	Mathematical Physics and solve a variety of Physics-related tasks.
	They can also handle open-ended problems and mathematical modelling using computational skills. It is beneficial in physics education and research as well.

Course Outcomes:

- 1. Understand the significance of differentiability of complex functions and be familiar with Cauchy-Riemann equations.
- 2. Evaluate integrals along a path in the complex plane and understand the statement of Cauchy's theorem.
- 3. Compute the Taylor and Laurent expansions of simple functions, determining the nature of the singularities and calculate residues.
- 4. Use the Cauchy Residue Theorem to evaluate integrals and sum series.
- 5. Find the Laplace transform and inverse Laplace Transform of a function.
- 6. Find the convolution of two functions and the transform of a convolution.
- 7. Use the Laplace transform in solving differential equations.

Curriculum:

Unit	Title	Learning Points	No of
			Lectures
Ι	Complex Analysis	Complex variables, Limits, Continuity, Derivatives, Cauchy-Reimann Equation, Analytic functions, Harmonic functions, Elementary functions: Exponential and trigonometric, Taylor and Laurent series, Residues, Residues theorem, Principal part of the functions, Residues at poles, zeroes and poles of order m, contour integral, Evaluation of improper real integral, improper integral involving sines and cosines, Definite Integrals involving sine and cosine functions. Reference: AW	10
II	Differential Equations	General treatment of second order linear differential equations with non-constant coefficients, Power series solutions, Frobenius method, Legendre, Hermite and Laguerre polynomials, Bessel equations, Nonhomogeneous equation – Green's function, Sturm-Liouville theory. Reference: - MLB	10
III	Integral Transforms	Introduction to Fourier analysis, Integral transforms: three dimensional Fourier transforms and its applications to PDEs (Green function of Poisson's PDE), convolution theorem, Parseval's relation, Laplace transforms, Laplace transform of derivatives, Inverse Laplace transform and Convolution theorem, use of Laplace's transform in solving differential equations. Reference: -MLB	10

Learning Resources recommended:

- A. Main references:
 - 1. MLB: M.L. Boas, Mathematical methods in the Physical Sciences, Wiley India 2006

- 2. AW: G. Arfken and H. J. Weber: Mathematical Methods for Physicists, Academic Press 2005
- B. Additional references:
 - 1. A.K. Ghatak, I.C. Goyal and S.J. Chua, Mathematical Physics, McMillan
 - 2. A.C. Bajpai, L.R. Mustoe and D. Walker, Advanced Engineering Mathematics, John Wiley.
 - 3. J. Mathews and R.L. Walker, Mathematical Methods of physics
 - 4. P. Dennery and A. Krzywicki, Mathematics for physicists
 - 5. T. Das and S.K. Sharma, Mathematical methods in Classical and Quantum Mechanics
 - 6. R. V. Churchill and J.W. Brown, Complex variables and applications, V Ed. Mc Graw. Hill

Evaluation Pattern

A. Continuous Assessment: (40 Marks)

Sr.	Particulars	Marks	
NO			
01	Unit Test	20	
02	Assignment	10	
03	Active participation in class room	10	
	and attendance		

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Question No	Unit	Question Type	Marks
1	Ι	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	07 08
2	II	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	07 08
3	III	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	07 08
	Ι		05
4	II	Objective type of questions without internal option	05
	III		05

Guidelines for pattern for Semester End Evaluation:

- 1. All questions shall be compulsory with internal option. Questions may be subdivided into sub questions.
- 2. Long and short questions will include descriptive type of questions, derivationbased questions, problem solving /numericals based questions, etc.
- 3. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Revised Syllabus of Course of Master of Science (M.Sc.) Programme at Semester I with Effect from the Academic Year 2023-2024

Name of the Course	Classical Mechanics
Course Code	PSPH102
Class	M.ScI
Semester	Ι
No of Credits	4
Nature	Theory
Туре	Major
Relevance with	Learners learn principles of variational calculus and methods to
Employability/	solve complex classical systems. Learners learn reduction of the
Entrepreneurship/	Two body Central force problem to one dimensional problem
Skill development	and finding orbits for different potentials. Learners also learn
	Hamilton's formalism of mechanics.

Course Outcomes:

- 1. Represent the equations of motion for complicated mechanical systems using the Lagrangian and Hamiltonian formulation of classical mechanics.
- 2. Use the d'Alembert principle to derive the Lagrange equations.
- 3. Understand the concept of small oscillation and will be able to formulate it.
- 4. Find Lagrangian and Hamiltonian for a mechanical system, set up and solve the equations of motion for them including two-body systems, coupled linear and non-linear oscillators, system with time dependent constraints, etc.
- 5. Understand the concept of canonical transformations to write equations of motion.

Curriculum:

Unit	Title	Learning Points	No of Lectures
Ι	Lagrangian Formulation	Review of Newton's laws, Mechanics of a particle, Mechanics of a system of particles, Frames of references, rotating frames, Centrifugal and Coriolis force, Constraints, D'Alembert's principle and Lagrange's equations, Velocity-dependent potentials and the dissipation function, Simple applications of the Lagrangian formulation. Hamilton's, principle, Calculus of variations, Derivation of Lagrange's equations from Hamilton's principle, Lagrange Multipliers and constraint exterimization problems, Extension of Hamilton's principle to nonholonomic systems, Advantages of a variational principle formulation. Reference: RJ, GPS	15
II	Central force and classical scattering	Conservation theorems and symmetry properties, Energy Function and the conservation of energy. The Two-Body Central Force Problem: Reduction to the equivalent one body problem, the equations of motion and first integrals, the equivalent one- dimensional problem and classification of orbits, the virial theorem, the differential equation for the orbit and integrable power-law potentials, The Kepler problem: Inverse square law of force, the motion in time in the Kepler problem, Scattering in a central force field, Transformation of the scattering problem to laboratory coordinates. Reference: - GPS	15
III	Small Oscillations	Small Oscillations: Formulation of the problem, the eigenvalue equation and the principal axis transformation, Frequencies of free vibration and normal coordinates, Forced and damped oscillations, Resonance and beats. Legendre transformations and the Hamilton equations of motion, Cyclic coordinates and conservation theorems, Derivation of Hamilton's equations from a variational principle.	15

		Reference: -GPS, RJ	
IV	Canonical Transformation and Poisson Bracket	Canonical Transformations, Examples of canonical transformations, The symplectic approach to canonical transformations, Poisson brackets and other canonical invariants, Equations of motion, infinitesimal canonical transformations and conservation theorems in the Poisson bracket formulation, The angular momentum Poisson bracket relations. Reference: -RJ	15

Learning Resources recommended:

- A. Main Reference:
 - 1. GPS: Classical Mechanics, H. Goldstein, Poole and Safko, 3rd Edition, Narosa Publication (2001)
 - 2. RJ: -Classical Mechanics, N. C. Rana and P. S. Jog. Tata McGraw Hill Publication.

B. Additional References:

- 1. Classical Mechanics, S. N. Biswas, Allied Publishers (Calcutta).
- 2. Classical Mechanics, V. B. Bhatia, Narosa Publishing (1997).
- 3. Mechanics, Landau and Lifshitz, Butterworth, Heinemann.
- 4. The Action Principle in Physics, R. V. Kamat, New Age Intnl. (1995).
- 5. Classical Mechanics, Vol I and II, E. A. Deslougue, John Wiley (1982).
- 6. Theory and Problems of Lagrangian Dynamics, Schaum Series, McGraw (1967).
- 7. Classical Mechanics of Particles and Rigid Bodies, K. C. Gupta, Wiley Eastern (2001)

Evaluation Pattern:

A. Continuous Assessment (40 Marks):

Sr.	Particulars	Marks
No.		
01	Unit Test	20
02	Assignment	10
03	Active participation in class room	10
	and attendance	

Question No	Unit	Question Type	Marks
1	Ι	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
2	II	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
3	III	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
4	IV	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
5	I II III IV	Objective type of questions without internal option	03 03 03 03

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Guidelines for pattern for Semester End Evaluation:

- 1. All questions shall be compulsory with internal option. Questions may be subdivided into sub questions.
- 2. Long and short questions will include descriptive type of questions, derivationbased questions, problem solving /numericals based questions, etc.
- 3. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Revised Syllabus of Courses of Master of Science (M.Sc.) Programme at Semester I with Effect from the Academic Year 2023-2024

Name of the Course	Quantum Mechanics-I
Course Code	PSPH103
Class	M.ScI
Semester	Ι
No of Credits	4
Nature	Theory
Туре	Major
Employability/ entrepreneurship/ skill development (if any) 100 words	Learners learn higher concepts of Quantum mechanics along with its mathematical formalism and learn to solve advanced problems in order to enhance analytical thinking skills.

Course Outcomes:

- 1. Understand the central concepts and principles in quantum mechanics.
- 2. Solve the Schrödinger equation for simple systems in one and three dimensions.
- 3. Work with vector spaces.
- 4. Understand How to calculate wave function, energy Eigen value using matrix formulation.
- 5. Understand use of Fourier transformation in quantum mechanics.
- 6. Understand the concepts of angular momentum and spin, as well as the rules for quantization and addition of these.
- 7. Understand the concept of spin-orbit coupling, what is meant by identical particles and quantum statistics.

Curriculum:

Unit	Title	Learning Points	No of Lectures
Ι	Review and formalism of Quantum Mechanics	Review of Quantum Mechanics: Postulates of quantum mechanics, observables and operators, measurements, state function and expectation values, the time-dependent Schrodinger equation, time development of state functions, solution to the initial value problem. The Superposition principle, commutator relations, their connection to the uncertainty principle, complete set of commuting observables. Time development of expectation values, conservation theorems and parity.	15
		Formalism: Linear Vector Spaces and operators, Dirac notation, Hilbert space, Hermitian operatorsand their properties, Matrix mechanics: Basis and representations, unitary transformations, the energy representation. Schrodinger, Heisenberg and interaction picture. Reference: - RL	
		Wave packet: Gaussian wave packet, Fourier	
II	Wave packet and Schrodinger equation solutions	One dimensional problem: General properties of one-dimensional Schrodinger equation, Particle in a box, Harmonic oscillator by raising and lowering operators and Frobenius method, unbound states, one dimensional barrier problems, finite potential well.	15
		Reference: - NZ, GL	
III	Schrodinger equation solutions- 3D problems	Schrodinger equation solutions- 3D problems : Orbital angular momentum operators in cartesian and spherical polar coordinates, commutation and uncertainty relations, spherical harmonics, two particle problem- coordinates relative to center of mass, radial equation for a spherically symmetric centralpotential, hydrogen atom, eigenvalues and radial eigenfunctions, degeneracy, probability distribution.	15

		Reference: - GL	
IV	Angular Momentum	Angular Momentum: - Ladder operators, eigenvalues and eigen functions of L ² and L _z using spherical harmonics, angular momentum and rotations, total angular momentum J, LS coupling; eigenvalues of J ² and Jz, addition of angular momentum, coupled and uncoupled representation of eigenfunctions, Clebsch Gordan coefficient for $j_1 = j_2 = \frac{1}{2}$ and $j_1 = 1$ and $j_2 = \frac{1}{2}$. Angular momentum matrices, Pauli spin matrices, spin eigenfunctions, free particle wave function including spin, addition of two spins. Reference: - RL, GL, NZ	15

Learning Resources Recommended:

- A. Main references:
 - 1. RL: Richard Liboff, Introductory Quantum Mechanics, 4th edition, Pearson.
 - 2. DG: D J Griffiths, Introduction to Quantum Mechanics 4th edition
 - 3. GL: A Ghatak and S Lokanathan, Quantum Mechanics: Theory and Applications, 5th edition.
 - 4. NZ: N Zettili, Quantum Mechanics: Concepts and Applications, 2nd edition, Wiley.
- B. Additional References
 - 1. W Greiner, Quantum Mechanics: An introduction, Springer, 2004
 - 2. R Shankar, Principles of Quantum Mechanics, Springer, 1994
 - 3. P.M. Mathews and K. Venkatesan, A Textbook of Quantum Mechanics, Tata McGraw Hill (1977).
 - 4. J. J. Sakurai Modern Quantum Mechanics, Addison-Wesley (1994).

Evaluation Pattern:

A. Continuous Assessment (40 Marks):

Sr.	Particulars	Marks
No.		
01	Unit Test	20
02	Assignment	10
03	Active participation in class room	10
	and attendance	

Question No	Unit	Question Type	Marks
1	Ι	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
2	II	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
3	III	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
4	IV	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
5	I II III IV	Objective type of questions without internal option	03 03 03 03

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Guidelines for pattern for Semester End Evaluation:

- 1. All questions shall be compulsory with internal option. Questions may be subdivided into sub questions.
- 2. Long and short questions will include descriptive type of questions, derivationbased questions, problem solving /numericals based questions, etc.
- 3. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Revised Syllabus of Course of Master of Science (M.Sc.) Programme at Semester I with Effect from the Academic Year 2023-2024

Name of the Course	Physics Lab-I
Course Code	PSPH104
Class	M.ScI
Semester	Ι
No of Credits	4
Nature	Practical
Туре	Major
Relevance with	Learners learn various experimental and measurement skills
Employability/	including skills of independent investigation of Physics-related
Entrepreneurship/	problems. Learners also develop the fundamental understanding
Skill development	of the instruments used. Learner will able to design electronic systems and to troubleshoot them independently.

Course Outcomes:

- 1. Understand & practice the skills while performing experiments.
- 2. Understand the use of apparatus and their use without fear & hesitation.
- 3. Correlate the physics theory concepts to practical application.
- 4. Understand the concept of errors and their estimation.
- 5. To design and trouble shoot electronics circuits.

Curriculum:

Unit	Title	Learning Points	No of Lectures
Group A	General Physics experiments	 Michelson Interferometer. Analysis of sodium spectrum. Carrier lifetime by pulsed reverse method. Study of He-Ne laser- Measurement of divergence and wavelength. Determination of particle size of lycopodium particles by laser diffraction method. Susceptibility measurement by Quincke's method /Guoy's balance method. 	60
Group B	Electronics experiments	 h/e by vacuum photocell Diac - Triac phase control circuit. Temperature on-off controller using IC LM35 Study of 8-bit DAC. 16-bit digital multiplexer. Delayed linear sweep generator using IC 555 Regulated dual power supply using IC LM 317 & IC LM337 voltage regulator ICs. Regulated power supply using IC LM317 voltage regulator 	60

Note:

- Minimum number of experiments to be performed and reported in the journal = 08 with minimum 4 experiments from each Group. i.e., Group A: 04 and Group B: 04.
- 2. Journal should be certified by the laboratory in-charge and Head of the Department only if the learner performs satisfactorily the minimum number of experiments as stipulated above.
- 3. Learner will be allowed to appear for the semester end practical examination of this course only if learner submits a certified journal of this course or a certificate from the head of the Physics Department that learner has completed this practical course as per minimum requirements.
- 4. At the semester-end Practical exam, the learner shall perform any one experiment from Group A or B. If the learner performs the long experiment from group A, then he will perform a short experiment from Group B, or vice versa.
- 5. For the semester-end Practical Exam 3 hours of duration for a long experiment and 1 hour of duration for a short experiment.

Learning Resources recommended:

- 1. Advanced Practical Physics -Worsnop and Flint
- 2. Atomic spectra- H.E. White
- 3. Experiments in modern physics -Mellissinos
- 4. Semiconductor electronics by Gibson
- 5. A course of experiments with Laser Sirohi
- 6. Elementary experiments with Laser- G. White
- 7. Solid state devices- W.D. Cooper
- 8. Electronic text lab manual P.B. Zbar
- 9. Digital principles and applications by Malvino and leach
- 10. Digital circuit practice by R.P. Jain
- 11. Electronic principles -A. P. Malvino
- 12. Operational amplifiers and linear Integrated circuits Coughlin & Driscoll
- 13. Op-amps and linear integrated circuit technology- R. Gayakwad
- 14. Digital Electronics Roger Tokheim

Evaluation Pattern:

A. Continuous Assessment: (40 Marks)

Method	Marks
Journal	20
Lab performance	10
Seminar	10

B. Semester End Examination: (60 Marks)

Question No.	Group	Title	Method	Marks
1	A or B	General Physics and Electronics	Any one long experiment performance from Group A or B as per the practical slip	40
2	A or B	General Physics and Electronics	Any one short experiment performance from Group A or B as per the practical slip	20

Revised Syllabus of Course of Master of Science (M.Sc.) Programme at Semester I with Effect from the Academic Year 2023-2024

Name of the Course	Crystal Physics
Course Code	PSPH105
Class	M.Sc-I
Semester	Ι
No of Credits	2
Nature	Theory
Туре	Elective
Relevance with	Learners learn about X-Ray diffraction techniques and acquire skills
Employability/	to calculate Millar indices and study reciprocal lattices of various
Entrepreneurship/	crystal systems which can be used in research field.
Skill development	

Course Outcomes:

- 1. Understand inter atomic forces and bonds.
- 2. Account for how crystalline materials are studied using diffraction, including concepts like the Ewald sphere, form factor, structure factor and scattering amplitude.
- 3. Understand the concept of reciprocal space and be able to use it as a tool.
- 4. Understand the significance of Brilloune zones.
- 5. Understand what phonons are and perform estimates of their dispersive and thermal properties.
- 6. Understand thermal and electrical properties in the free-electron model.

Curriculum:

Unit	Title	Learning Points	No of Lectures
Ι	Diffraction of Waves by Crystals and Reciprocal Lattice	Diffraction of Waves by Crystals and Reciprocal Lattice: - Bragg law, Scattered Wave Amplitude – Fourier analysis, Reciprocal Lattice Vectors, Diffraction Conditions, Brillouin Zones, Reciprocal Lattice to SC, BCC and FCC lattice. Interference of Waves, Atomic Form Factor, Elastic Scattering by crystal, Ewald Construction, Structure Factor, Temperature Dependence of the Reflection Lines, experimental Techniques (Laue Method, Rotating Crystal Method, Powder Method) Scattering from Surfaces, Elastic Scattering by amorphous solids.	15
Π	Lattice vibration and thermal properties	Lattice vibration and thermal properties: - Vibrations of Monoatomic Lattice, normal mode frequencies dispersion relation, Lattice with two atoms per unit cell, normal mode frequencies, dispersion relation., Quantization of lattice vibrations, phonon momentum, Inelastic scattering of neutrons by phonons, Surface vibrations, Inelastic Neutron scattering. Anharmonic Crystal Interaction. Thermal conductivity – Lattice Thermal Resistivity, Umklapp Process, Imperfections.	15

Learning Resources recommended:

- A. Main References: -
 - CK: Charles Kittel "Introduction to Solid State Physics", 7th edition John Wiley & sons.
 - **2.** MAW: M.A.Wahab "Solid State Physics –Structure and properties of Materials" Narosa Publications 1999.
- B. Additional Main References: -
 - **1.** JRC: J.Richard Christman "Fundamentals of Solid State Physics" John Wiley & sons

- 2. MAO: M. Ali Omar "Elementary Solid-State Physics" Addison Wesley (LPE)
- **3.** IL: H.Ibach and H.Luth 3rd edition "Solid State Physics An Introduction to Principles of Materials Science" Springer International Edition (2004)

Evaluation Pattern

A. Continuous Assessment (40 Marks):

Sr.	Particulars	Marks
No.		
01	Unit Test	20
02	Assignment	10
03	Active participation in class room	10
	and attendance	

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Question No	Unit	Question Type	Marks
1	Ι	A. Long questions with 100% Internal option.A. Short questions with 100% Internal option.	10 10
2	II	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	10 10
3	I II	Objective type of questions without internal option	10 10

Guidelines for pattern for Semester End Evaluation:

- 1. All questions shall be compulsory with internal option. Questions may be subdivided into sub questions.
- 2. Long and short questions will include descriptive type of questions, derivationbased questions, problem solving /numericals based questions, etc.
- 3. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Revised Syllabus of Course of Master of Science (M.Sc.) Programme at Semester I with Effect from the Academic Year 2023-2024

Name of the Course	Physics Lab- II
Course Code	PSPH106
Class	M.ScI
Semester	Ι
No of Credits	2
Nature	Practical
Туре	Elective
Relevance with	Learners learn various experimental and measurement skills
Employability/	including skills of independent investigation of Physics-related
Entrepreneurship/	problems. Learners also develop the fundamental understanding
Skill development	of the instruments used. Learner will able to design electronic systems and to troubleshoot them independently.

Course Outcomes:

- 1. Understand & practice the skills while performing experiments.
- 2. Understand the use of apparatus and their use without fear & hesitation.
- 3. Correlate the physics theory concepts to practical application.
- 4. Understand the concept of errors and their estimation.
- 5. To design and trouble shoot electronics circuits.

Curriculum:

Unit	Title	Learning Points	No of Lectures
Group A	General Physics	 Resistivity by four probe method. DC Hall effect. Absorption spectrum of specific liquid 	30
Group B	Electronics	 Active filter circuits (second order) Study of 4-digit multiplex display system Constant current supply using IC 741 and LM317 	30

Learning Resources Recommended:

- 1. Manual of experimental physics E.V. Smith
- 2. Semiconductor Measurements Runyan
- 3. Semiconductors and solid-state physics Mackelvy
- 4. Handbook of semiconductors Hunter
- 5. Op-amps and linear integrated circuit technology R A Gayakwad
- 6. Operational amplifiers and linear integrated circuits- Coughlin & Driscoll
- 7. Digital Electronics by Roger Tokheim (5th Ed, page 371)
- 8. Advance practical physics -Worsnop and Flint.

Note:

- Minimum number of experiments to be performed and reported in the journal = 04 with minimum 2 experiments from each Group. i.e., Group A: 02 and Group B: 02.
- 2. Journal should be certified by the laboratory in-charge and Head of the Department only if the learner performs satisfactorily the minimum number of experiments as stipulated above.
- 3. Learner will be allowed to appear for the semester end practical examination of this course only if learner submits a certified journal of this course or a certificate from the head of the Physics Department that learner has completed this practical course as per minimum requirements.
- 4. At the semester-end Practical exam, the learner shall perform any one experiment from Group A or B. If the learner performs the long experiment from group A, then he will perform a short experiment from Group B, or vice versa.
- 5. For the semester-end Practical Exam 3 hours of duration for a long experiment and 1 hour of duration for a short experiment.

Evaluation Pattern:

A. Continuous Evaluation: (40 Marks)

Method	Marks
Journal	20
Lab performance	10
Seminar	10

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Question No.	Group	Title	Method	Marks
1	A or B	General Physics and Electronics	Any one long experiment performance from Group A or B as per the practical slip	40
2	A or B	General Physics and Electronics	Any one short experiment performance from Group A or B as per the practical slip	20

Revised Syllabus of Course of Master of Science (M.Sc.) Programme at Semester I with Effect from the Academic Year 2023-2024

Name of the Course	Magnetism
Course Code	PSPH107
Class	M.ScI
Semester	Ι
No of Credits	2
Nature	Theory
Туре	Elective
Relevance with	Learners gain theoretical understanding of the atomic origin of
Employability/	magnetism and able to solve problem based on magnetism and
Entrepreneurship/	enhance problem solving skills.
Skill development	

Course Outcomes:

- 1. Understand diamagnetic and paramagnetic behavior of materials and its quantum mechanical formulation.
- 2. Understand magnetic ordering in ferrimagnetic, ferromagnetic and antiferromagnetic materials.
- 3. Understand Hund's Rule in magnetism.
- 4. Use Langevin diamagnetic equation.
- 5. Solve numericals based on magnetism.
| Unit | Title | Learning Points | No of
Lectures |
|------|-----------------------------------|---|-------------------|
| Ι | Diamagnetism and
Paramagnetism | Langevin diamagnetic equation, diamagnetic
response, Quantum mechanical formulation,
core diamagnetism. Quantum Theory of
Paramagnetism, Rare Earth Ions, Hund's Rule,
Iron Group ions, Crystal Field Splitting and
Quenching of orbital angular momentum
Adiabatic Demagnetization of a paramagnetic
Salt, Paramagnetic susceptibility of conduction
electrons.
Reference: -CK, JRC, MAW, MAO | 15 |
| II | Magnetic Ordering | Ferromagnetic order- Exchange Integral,
Saturation magnetization, Magnons, neutron
magnetic scattering Ferrimagnetic order, spiels,
Yttrium Iron Garnets, Anti Ferromagnetic order.
Ferromagnetic Domains – Anisotropy energy,
origin of domains, transition region between
domains, Bloch wall, Coercive force and
hysteresis.
Reference: -CK, JRC, MAW, MAO | 15 |

Learning Resources recommended:

- A. Main References: -
 - **1.** CK: Charles Kittel "Introduction to Solid State Physics", 7th edition John Wiley & sons.
 - 2. JRC: J.Richard Christman "Fundamentals of Solid State Physics" John Wiley & sons
 - **3.** MAW: M.A.Wahab "Solid State Physics –Structure and properties of Materials" Narosa Publications 1999.
 - **4.** MAO: M. Ali Omar "Elementary Solid-State Physics" Addison Wesley (LPE)
- B. Additional References: -
 - **1.** IL: H.Ibach and H.Luth 3rd edition "Solid State Physics An Introduction to Principles of Materials Science" Springer International Edition (2004)

Evaluation Pattern

- Sr.
No.ParticularsMarks01Unit Test2002Assignment1003Active participation in class room
and attendance10
- A. Continuous Assessment (40 Marks):

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Question No	Unit	Question Type	Marks
1	Ι	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	10 10
2	II	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	10 10
3	I II	Objective type of questions without internal option	10 10

Guidelines for pattern for Semester End Evaluation:

- 1. All questions shall be compulsory with internal option. Questions may be subdivided into sub questions.
- 2. Long and short questions will include descriptive type of questions, derivationbased questions, problem solving /numericals based questions, etc.
- 3. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Name of the Course	Physics Lab- III
Course Code	PSPH108
Class	M.ScI
Semester	Ι
No of Credits	2
Nature	Practical
Туре	Elective
Relevance with	Learners learn various experimental and measurement skills
Employability/	including skills of independent investigation of Physics-related
Entrepreneurship/	problems. Learners also develop the fundamental understanding
Skill development	of the instruments used. Learner will able to design electronic systems and to troubleshoot them independently.

Course Outcomes:

On successful completion of this course learners will be able to:

- 1. Understand & practice the skills while performing experiments.
- 2. Understand the use of apparatus and their use without fear & hesitation.
- 3. Correlate the physics theory concepts to practical application.
- 4. Understand the concept of errors and their estimation.
- 5. To designed and trouble shoot electronics circuits.

Unit	Title	Learning Points	No of Lectures
Group A	General Physics	 Coupled Oscillations Temperature dependence of avalanche and Zener breakdown diodes. Magneto resistance of Bi specimen 	30
Group B	Electronics	 Waveform Generator using ICs. Study of elementary digital voltameter Instrumentation amplifier and its application 	30

Learning Resources Recommended:

- 1. Advanced Practical Physics Worsnop and Flint
- 2. Experiments in modern physics -Mellissinos
- 3. Solid state devices W.D. Cooper
- 4. Electronic text lab manual PB Zbar
- 5. Electronic devices & circuits Millman and Halkias
- 6. Integrated Circuits K. R. Botkar
- 7. Op-amps and linear integrated circuit technology by Gayakwad
- 8. Operational amplifiers and linear integrated circuits- Coughlin & Driscoll
- 9. Operational amplifiers: experimental manual C.B. Clayton
- 10. Digital Electronics by Roger Tokheim

Note:

- Minimum number of experiments to be performed and reported in the journal = 04 with minimum 2 experiments from each Group. i.e., Group A: 02 and Group B: 02.
- 2. Journal should be certified by the laboratory in-charge and Head of the Department only if the learner performs satisfactorily the minimum number of experiments as stipulated above.
- 3. Learner will be allowed to appear for the semester end practical examination of this course only if learner submits a certified journal of this course or a certificate from the head of the Physics Department that learner has completed this practical course as per minimum requirements.

- 4. At the semester-end Practical exam, the learner shall perform any one experiment from Group A or B. If the learner performs the long experiment from group A, then he will perform a short experiment from Group B, or vice versa.
- 5. For the semester-end Practical Exam 3 hours of duration for a long experiment and 1 hour of duration for a short experiment.

Evaluation Pattern:

A. Continuous Evaluation: (40 Marks)

Method	Marks
Journal	20
Lab performance	10
Seminar	10

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Question No.	Group	Title	Method	Marks
1	A or B	General Physics and Electronics	Any one long experiment performance from Group A or B as per the practical slip	40
2	A or B	General Physics and Electronics	Any one short experiment performance from Group A or B as per the practical slip	20

Name of the Course	Research Methodology
Course Code	PSPH109
Class	M.ScI
Semester	I
No of Credits	4
Nature	Theory
Туре	Compulsory
Relevance with	Learner will gain the knowledge of Research Methodology in
Employability/	Physics. Further, the learner will be benefited in the
Entrepreneurship/	form of increase in research aptitude, analytical and decision-
Skill development	making skills. Acquisition of the knowledge in the field of
	research will increase the chances of employability and will offer
	better prospects in industry.

Course Outcomes:

On successful completion of this course learners will be able to:

- 1. Understand fundamentals of research methods.
- 2. Learn design and measurement concept of research.
- 3. Know data collection and analysis tool.
- 4. Get knowledge of scientific report writing.

Unit	Title	Learning Points	No of Lectures
Ι	Fundamentals of Research Methods	Fundamentals of Research Methods : Definition of research, Role and objectives of research, importance of research, Applications and types of research, Creativity and innovation, Critical thinking, Research process and steps in it, Collecting and reviewing the literature, Conceptualization and Formulation of: research problem, identifying variables, constructing hypothesis and Synopsis. Interpretation of results and discussion.	15
II	Research Design and Measurement Concepts and Literature Searching	Research Design and Measurement Concepts: Selecting and defining a research problem, Need for research design, Features of a good research design, Different research designs, Scales of measurements, Nominal, Ordinal, Internal and ratio scales, Errors in measurements, Validity and Reliability in measurement, Scale Construction Techniques. Digital: Web sources, E-journals, Journal access, Citation Index, Impact factor, H-index, E- consortium, UGC info net, eBooks, Internet discussion groups and communities, Blogs, preprint servers, Search engines, Scirus, Google Scholar, Scopus.	15
III	Documentation, scientific writing and Academic Integrity	Reference: - CRK, RK Documentation and scientific writing : Results and Conclusions, Preparation of manuscript for Publication of Research paper, Presenting a paper in scientific seminar, Thesis writing. Structure and Components of Research Report, Types of Report: research papers, thesis, Research Project Reports, Pictures and Graphs, citation styles, writing a review of paper, Bibliography. for illustration, style, publications of scientific work, Research and Academic Integrity : Intellectual property rights (IPRs). Plagiarism, Copyright issues, Ethics in research, and case studies. Reference: SP, CRK	15
IV	Data analysis	Statistical analysis and fitting of data : Introduction to Statistics – Probability Theories - Conditional Probability, Poisson Distribution,	15

Learning Resources recommended:

- A. Main References:
 - 1. CRK:- Kothari C.R., "Research Methodology, Methods and Techniques" (Second revised edition, New Age International Publication, 2004).
 - 2. SP:- Saravanavel P., "Research Methodology" (Kitab Mahal, Sixteenth edition, 2007).
 - 3. RK: -Ranjit Kumar, "Research Methodology, a step-by-step guide for beginners" (Pearson education Australia, Second edition 2005).
 - MS:- Mark Saunders, Philip Lewis, Adrain Thornhiu, "Research Methods for Business Students" (Pearson Education ltd, Seventh edition, 2016) DG: -How to write and publish by Robert A. Day and Barbara Gastel, (Cambridge University Press).
- B. Additional Reference: -
 - 1. Thesis & Assignment Writing–J Anderson, B.H.Dursten & M.Poole, Wiley Eastern, 1977
 - A Hand Book of Methodology of Research P. Rajammal and P. Devadoss, R. M. M. Vidya Press, 1976.
 - 3. The Craft of Scientific Writing by Michael Alley, (Springer).
 - 4. Research Methodology by R. Panneerselvam, PHI, New Delhi 2005
 - 5. Research Methodology- A step by step Guide for Beginners, (2nd ed.) Kumar Ranjit, 2005, Pearson Education.
 - 6. How to write and publish by Robert A. Day and Barbara Gastel, (Cambridge University Press).
 - 7. S. Gupta, (2005). Research Methodology and Statistical techniques, Deep and Deep Publications (P) Ltd. New Delhi, India.
 - 8. R. Kothari, (2008). Research Methodology, New Age International, New Delhi, India.
 - 9. Standard /Reputed Journal authors' instructions.
 - 10. Web resources: www.sciencedirect.com for journal references,
 - 11. www.aip.org and www.aps.org for reference styles.
 - 12. Web resources: www.nature.com, www.sciencemag.org,
 - 13. www.springer.com, www.pnas.org, www.tandf.co.uk,
 - 14. www.opticsinfobase.org for research updates.

Evaluation Pattern

A. Continuous Assessment (40 Marks):

Sr.	Particulars	Marks
No.		
01	Unit Test	20
02	Assignment	10
03	Active participation in class room	10
	and attendance	

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Question No	Unit	Question Type	Marks
1	Ι	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
2	II	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
3	III	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
4	IV	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option	06 06
5	I II III IV	Objective type of questions without internal option	03 03 03 03

Guidelines for pattern for Semester End Evaluation:

- 1. All questions shall be compulsory with internal option. Questions may be subdivided into sub questions.
- 2. Long and short questions will include descriptive type of questions, derivationbased questions, problem solving /numericals based questions, etc.
- 3. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

SEMESTER-II

No. of Courses	Semester II	Credits	
	Major: Mandatory		
PSPH 201	Electrodynamics	2	
PSPH 202	Advanced Electronics	4	
PSPH 203	Quantum Mechanics-II	4	
PSPH 204	Physics LAB-I	4	
	Major: Elective		
PSPH 205	Physics of Semiconductor diodes and Transistors	04	
PSPH 206	Physics LAB-II	04	
	OR		
PSPH 207	Semiconductor Physics and Devices		
PSPH 208	Physics LAB-III	04	
PSPH 209	On Job Training/ Field Project	04	
	Total Credits	22	

Name of the Course	Electrodynamics
Course Code	PSPH201
Class	M.ScI
Semester	ΙΙ
No of Credits	2
Nature	Theory
Туре	Major
Relevance with	Learners learn advanced concepts of electrodynamics. They learn
Employability/	about the EM waves from the perspective originating from Maxwell's
Entrepreneurship/ Skill development	equations and their propagation through different media and through waveguides.

Course Outcomes:

On successful completion of this course learners will be able to:

- 1 Use four vector and tensor for electrodynamics.
- 2 Formulate covariant formulation for electrodynamics.
- 3 Identify the nature of electromagnetic wave and its propagation through different media, interfaces and cavities.
- 4 Use Maxwell equations in analyzing the electromagnetic field due to time varying charge and current distribution.
- 5 Explain charged particle dynamics and radiations from localized time varying electromagnetic sources.

Unit	Title	Learning Points	No of Lectures
Ι	Electrodynamics in Four vector notation	Four vectors and tensors, Lorentz transformation in 4-vector notation, Transformations of electric and magnetic field; Electromagnetic field Tensor in Four dimensions and Maxwell's Equations, Dual Field Tensor, Covariance of Maxwell's equations. Reference: - WG	10
II	Electromagnetic wave and wave guide	Electromagnetic waves in vacuum, Polarization of plane waves. Electromagnetic waves in matter, Wave guides, boundary conditions, classification of fields in wave guides, phase velocity and group velocity, resonant cavities. Reference: - WG	10
III	Radiation Theory	Motion of Charged Particles in Electromagnetic Field: Uniform E and B fields, non-uniform fields, diffusion across magnetic fields, time varying E and B fields, Radiation by moving charges: Lienard-Wiechert potentials and fields for a point charge, charges moving with uniform velocity, accelerated charges, radiation from accelerated charges moving (i) with low velocities and (ii) with relativistic velocities, bremsstrahlung, synchrotron radiation; Cherenkov radiation. Rayleigh's scattering and the colour of sky. Reference: - HM	10

Learning Resources recommended:

- A. Main Reference:
 - 1. WG: W. Greiner, Classical Electrodynamics (Springer- Verlag, 2000) (WG).
 - 2. HM: M.A. Heald and J.B. Marion, Classical Electromagnetic Radiation, 3rd edition (Saunders, 1983) (HM)
- B. Additional references:
 - 1. J.D. Jackson, Classical Electrodynamics, 4Th edition, (John Wiley & sons) 2005 (JDJ)
 - 2. W.K.H. Panofsky and M. Phillips, Classical Electricity and Magnetism,2nd edition, (Addison Wesley) 1962.

- 3. D.J. Griffiths, Introduction to Electrodynamics,2nd Ed., Prentice Hall, India,1989.
- 4. J.R. Reitz, E.J. Milford and R.W. Christy, Foundation of Electromagnetic Theory, 4th ed., Addison -Wesley, 1993

Evaluation Pattern

A. Continuous Assessment (40 Marks):

Sr.	Particulars	Marks
No.		
01	Unit Test	20
02	Assignment	10
03	Active participation in class room	10
	and attendance	

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Question No	Unit	Question Type	Marks
1	Ι	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	07 08
2	II	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	07 08
3	III	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	07 08
4	I II III	Objective type of questions without internal option	05 05 05

Guidelines for pattern for Semester End Evaluation:

- 4. All questions shall be compulsory with internal option. Questions may be subdivided into sub questions.
- 5. Long and short questions will include descriptive type of questions, derivationbased questions, problem solving /numericals based questions, etc.
- 6. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Name of the Course	Advanced Electronics
Course Code	PSPH202
Class	M.ScI
Semester	ΙΙ
No of Credits	4
Nature	Theory
Туре	Major
Relevance with	Learners acquire the 8085 and 8051 controller programming
Employability/	skills, the analogue circuit designing and implementation skills.
Entrepreneurship/	They will apply their knowledge to design of electronic systems.
Skill development	

Course Outcomes:

On successful completion of this course learners will be able to:

- 1 Understand Counters and Time Delays, Stack and Sub-routines for 8085 microprocessors.
- 2 Understand History of Microcontrollers and Microprocessors, Embedded versus External Memory Devices, 8-bit and 16-bit Microcontrollers, CISC and RISC Processors, Harvard and Von Neumann Architectures.
- 3 Understand Instruction set of 8051 microcontrollers.
- 4 Write programs for 8085 microprocessor and 8051 microcontrollers.
- 5 Understand the concept of Linear Power supply, Switch Mode Power supply, Uninterrupted Power Supply, Step up and Step-down Switching Voltage Regulators.
- 6 Understand the principle and operation of various types of inverters.
- 7 Understand the concept and operation of various types of signal conditioners.
- 8 Understand the concept and operation of various types of data transmission systems.
- 9 Understand the structure, mechanism, mathematical analysis needed, types and applications of optical fiber.
- 10 Understand Microprocessors/ Microcontrollers based Instrumentation Systems.

Unit	Title	Learning Points	No of Lectures
Ι	Microprocessors:Counters and Time Delays, Stack and Sub-routines.Introduction to Microcontrollers:Introduction, Microcontrollers and Microprocessors, History of Microcontrollers and Microprocessors, Embedded 		15
II	Analog and Data Acquisition Systems	 Reference: - RSG, AVD Power Supplies: Linear Power supply, Switch Mode Power supply, Uninterrupted Power Supply, Step up and Step-down Switching Voltage Regulators. Inverters: Principle of voltage driven inversion, Principle of current driven inversion, sine wave inverter, square wave inverter. Signal Conditioning: Operational Amplifier, Instrumentation Amplifier using IC, Precision Rectifier, Voltage to Current Converter, Current to Voltage Converter, Op-Amp Based Butterworth Higher Order Active Filters and Multiple Feedback Filters, Voltage Controlled Oscillator, Analog Multiplexer, Sample and Hold circuits, Analog to Digital Converters, Digital to Analog Converters. 	15
III	Data Transmission Systems and Fiber Optics	 Data Transmission Systems: Analog and Digital Transmissions, Pulse Amplitude Modulation, Pulse Width Modulation, Time Division Multiplexing, Pulse Modulation, Digital Modulation, Pulse Code Format, Modems. Optical Fiber: Introduction to optical fibers, wave propagation and total internal reflection 	15

		in optical fiber, structure of optical fiber, Types of optical fiber, numerical aperture, acceptance angle, single and multimode optical fibers, optical fiber materials and fabrication, attenuation, dispersion, splicing and fiber connectors, fiber optic communication system, fiber sensor, optical sources and optical detectors for optical fiber. Reference: - BS, HSK	
IV	Instrumentation Circuits and Designs	Instrumentation Circuits and Designs: Microprocessors/ Microcontrollers based D C motor speed controller, Microprocessors /Microcontrollers based temperature controller, electronic weighing single pan balance using strain gauge/ load cell, Optical analog communication system using fiber link, electronic intensity meter using optical sensor, IR remote controlled ON/OFF switch. Reference: - AVD, MMM, KJA	15

Learning Resources recommended:

- A. Main Reference:
 - 1. AVD: -Microcontrollers (Theory and Applications) by Ajay V. Deshmukh, TMH.
 - 2. RSG: Microprocessor Architecture, Programming and Applications with the 8085 R. S. Gaonkar, 4th Edition. Penram International.
 - 3. RAG: Op-Amps and Linear Integrated Circuits R. A. Gayakwad , 3rd Edition Prentice Hall India.
 - 4. AJ: Power Electronics and its applications, Alok Jain, 2nd Edition, Penram International India.
 - 5. CD: -Operational Amplifiers and Linear Integrated Circuits, Robert F. Coughlin and Frederic F. Driscoll, 6th Edition, Pearson Education Asia.
 - 6. BS: -A text book of optics; Brijlal Subrhamanyam.
 - 7. HSK: Electronic Instrumentation, H.S. Kalsi, Tata-McGraw. Hill, 1999.
 - 8. MMM: The 8051 Microcontroller & Embedded Systems by M.A. Mazidi, J.G. Mazidi and R.D. Mckinlay.
 - 9. KJA: The 8051 Microcontroller: K.J.Ayala: Penram International.
- **B.** Additional Reference
 - 1. RK: The 8051 Microcontroller and Embedded Systems, Dr. Rajiv Kapadia, Jaico Publishing House.

- 2. MP: Programming & customizing the 8051 Mocrocontroller : Myke Predko, TMH.
- 3. KG: Optical Fiber Communications, Keiser G., Mcgraw Hill, Int. Learner Ed.
- 4. KD: Electronic Communication Systems; 4th. Ed. Kennedy and Davis, (Tata-McGraw. Hill, 2004.

Evaluation Pattern:

A. Continuous Assessment (40 Marks):

Sr.	Particulars	Marks
No.		
01	Unit Test	20
02	Assignment	10
03	Active participation in class room	10
	and attendance	

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Question No	Unit	Question Type	Marks
1	Ι	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
2	II	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
3	III	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
4	IV	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
5	I II III IV	Objective type of questions without internal option	03 03 03 03

Guidelines for pattern for Semester End Evaluation:

- 1. All questions shall be compulsory with internal option. Questions may be subdivided into sub questions.
- 2. Long and short questions will include descriptive type of questions, derivationbased questions, problem solving /numericals based questions, etc.
- 3. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Name of the Course	Quantum Mechanics – II
Course Code	PSPH 203
Class	M.ScI
Semester	II
No of Credits	4
Nature	Theory
Туре	Major
Relevance with	Learners learn advanced concepts of quantum mechanics such as
Employability/	perturbation theory, approximation methods to solve complex
Entrepreneurship/ Skill development	problems based on these concepts. These problem-solving skills will also be useful in competitive exams such as NET, SET, and GATE, Pre-PhD. etc.

Course Outcomes:

On successful completion of this course learners will be able to

- 1 Understand and formulate time dependent and time independent perturbation theory.
- 2 Understand various approximation methods and apply it to various problems.
- 3 Understand scattering theory and its various aspects.
- 4 Understand the concept of identical particles through its wave functions.
- 5 Understand how Pauli's exclusion principle is obeyed by fermions.
- 6 Understand the concept of Relativistic Quantum Mechanics.

Unit	Title	Learning Points	No of Lectures
Ι	Perturbation Theory	Time independent perturbation theory: First order and second order corrections to the energy eigenvalues and eigenfunctions.Degenerate perturbation Theory: first order 	15
II	Approximation Methods	 Variation Method: Basic principle, applications to simple potential problems, He-atom. WKB Approximation: WKB approximation, turning points, connection formulas, Quantization conditions, applications. Reference: - GL, DJG 	15
III	Scattering Theory	Scattering Theory : Laboratory and Centre of mass frames, differential and total scattering cross-sections, scattering amplitude, Partial wave analysis and phase shifts, optical theorem, S-wave scattering from finite spherical attractive and repulsive potential wells, Born approximation. Reference: - DJG, NZ, RL	15
IV	Relativistic Quantum Mechanics and Identical Particles	IdenticalParticles:Symmetricandantisymmetricwavefunctions,BosonsandFermions,PauliExclusionPrinciple,slaterdeterminant.Relativistic Quantum Mechanics:TheKleinGordonandDiracequations,Diracmatrices,spinors,positiveandnegativeenergysolutionsphysicalinterpretation,Nonrelativisticlimit of theDirac equation.Reference: - NZ, RL, BDReference:NZ, RL, BDReference:Refere	15

Learning Resources recommended:

- A. Main references:
 - 1. RL: Richard Liboff, Introductory Quantum Mechanics, 4th edition, Pearson.
 - 2. DJG: D J Griffiths, Introduction to Quantum Mechanics 4th edition
 - 3. GL: A Ghatak and S Lokanathan, Quantum Mechanics: Theory and Applications, 5th edition.

- 4. NZ: N Zettili, Quantum Mechanics: Concepts and Applications, 2nd edition, Wiley.
- 5. BD: J. Bjorken and S. Drell, Relativistic Quantum Mechanics, McGraw-Hill (1965).
- B. Additional References
 - 1. W Greiner, Quantum Mechanics: An introduction, Springer, 2004
 - 2. R Shankar, Principles of Quantum Mechanics, Springer, 1994
 - 3. P.M. Mathews and K. Venkatesan, A Textbook of Quantum Mechanics, Tata McGraw Hill (1977).
 - 4. J.J. Sakurai Modern Quantum Mechanics, Addison-Wessley (1994).

Evaluation Pattern:

C.	Continuous Assessment	(40	Marks):
		`	,

Sr.	Particulars	Marks
No.		
01	Unit Test	20
02	Assignment	10
03	Active participation in class room	10
	and attendance	

D. Semester End Evaluation (Paper Pattern): (60 Marks)

Question No	Unit	Question Type	Marks
1	Ι	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
2	II	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
3	III	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
4	IV	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
5	I II III IV	Objective type of questions without internal option	03 03 03 03

Guidelines for pattern for Semester End Evaluation:

- 1. All questions shall be compulsory with internal option. Questions may be subdivided into sub questions.
- 2. Long and short questions will include descriptive type of questions, derivationbased questions, problem solving /numericals based questions, etc.
- 3. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Physics Lab-I
PSPH204
M.ScI
ΙΙ
4
Practical
Major
Learners learn various experimental and measurement skills
including skills of independent investigation of Physics-related
problems. Learners also develop the fundamental understanding
of the instruments used. Learner's design electronic systems and
troubleshoot them independently. Learners acquire the 8085-
programming skill.

Course Outcomes:

On successful completion of this course learners will be able to:

- 1. Understand & practice the skills while performing experiments.
- 2. Understand the use of apparatus and their use without fear & hesitation.
- 3. Correlate the physics theory concepts to practical application.
- 4. Understand the concept of errors and their estimation.
- 5. Design and troubleshoot electronics circuits.

Unit	Title	Learning Points	No of Lectures
Group A	General Physics	 Ultrasonic Interferometry-Velocity measurements in different Fluids. Measurement of Refractive Index of Liquids using Laser. Measurement of dielectric constant. Faraday Effect -Magneto Optics Effect: a. To Calibrate Electromagnet b. To determine verdet's constant For KCL & KI Solution. Double slit-Fraunhofer diffraction. Carrier mobility by conductivity Characteristics of a Geiger Muller counter and measurement of dead time 	60
Group B	Electronics	 Shift registers. Study of 8085 microprocessor Kit and execution of simple Programmes. Waveform generation using 8085. Study of sample and hold circuit. Switching Voltage Regulator. Pulse width modulation for speed control of dc toy motor. Use of monitor utility in 8085 programs Hex counter Flashing Message 	60

Note:

- Minimum number of experiments to be performed and reported in the journal = 08 with minimum 4 experiments from each Group. i.e., Group A: 04 and Group B: 04.
- 2. Journal should be certified by the laboratory in-charge and Head of the Department only if the learner performs satisfactorily the minimum number of experiments as stipulated above.
- 3. Learner will be allowed to appear for the semester end practical examination of this course only if learner submits a certified journal of this course or a certificate from the head of the Physics Department that learner has completed this practical course as per minimum requirements.

- 4. At the semester-end Practical exam, the learner shall perform one long experiment from Group A or B. If the learner performs the long experiment from group A, then he will perform a short experiment from Group B, or vice versa.
- 5. For the semester-end Practical Exam 3 hours of duration for a long experiment and 1 hour of duration for a short experiment.

Learning Resources recommended:

- 1. Advance practical physics Worsnop and Flint
- 2. Experiments in modern physics Mellissinos
- 3. Manual of experimental physics -EV Smith
- 4. Experimental physics for students Whittle & Yarwood
- 5. Medical Electronics- Khandpur
- 6. A course of experiments with He-Ne Laser Sirohi, Wiley Eastern Ltd
- 7. Digital Principles and applications-Malvino and Leach
- 8. Integrated Circuits K. R. Botkar
- 9. Experiment in digital principles D. P. Leach
- 10. Semiconductor electronics-Gibson
- 11. Microprocessor Architecture, programming and applications with the 8085-R.S. Gaonkar
- 12. Microprocessor fundamentals -Schaum Series, Tokheim
- 13. Semiconductor Electronics Gibson
- 14. 8085 kit user Manual

Evaluation Pattern

A. Continuous Assessment: (40 Marks)

Method	Marks
Journal	20
Lab performance	10
Seminar	10

B. Semester End Examination: (60 Marks)

Question No.	Group	Title	Method	Marks
1	A or B	General Physics and Electronics	one Long Experiment performance from Group A or B as per the practical slip	40
2	A or B	General Physics and Electronics	one Short Experiment performance from Group A or B as per the practical slip	20

Name of the Course	Physics of Semiconductor diodes and Transistors
Course Code	PSPH205
Class	M.ScI
Semester	II
No of Credits	2
Nature	Theory
Туре	Elective
Relevance with	Learners acquire knowledge about the fabrication of p-n junction by
Employability/	different methods and also study their characteristics. It provides a
Entrepreneurship/	basic background for advanced courses in electronics system designs
Skill development	to fulfill skills required in semiconductor industries.

Course Outcomes:

On successful completion of this course learners will be able to

- 1 Understand fabrication methods of different types of p-n junctions.
- 2 Understand IV and C-V characteristics of p-n junctions.
- 3 Calculate the contact potential and the maximum electrical field in a p-n junction in equilibrium.
- 4 Understand breakdown mechanisms in p-n junctions.
- 5 Calculate the excess carrier concentrations at the boundaries between the spacecharge region and the neutral n- and p-type regions of a p-n junction for either forward or reverse bias.
- 6 Distinguish between the current conduction mechanisms and calculate the minority and majority carrier currents in a forward or reverse biased p-n junction diode.
- 7 Understand principle of operation and construction of BJT and heterojunction bipolar transistors.

Unit	Title	Learning Points	No of Lectures
Ι	Semiconductor Devices I	p-n junction : Fabrication of p-n junction by diffusion and ion-implantation; Abrupt and linearly graded junctions; Thermal equilibrium conditions; Depletion regions; Depletion capacitance, Capacitance – voltage (C-V) characteristics, Evaluation of impurity distribution, Varactor, Ideal and Practical Current- voltage (I-V) characteristics; Tunneling and avalanche reverse junction break down mechanisms; Minority carrier storage, diffusion capacitance, transient behavior; Ideality factor and carrier concentration measurements; Carrier life time measurement by reverse recovery of junction diode; p- i-n diode; Tunnel diode, Introduction to p-n junction solar cell and semiconductor laser diode. Reference: - SMS, SB	15
II	Semiconductor Devices II	Metal – Semiconductor Contacts: Schottky barrier – Energy band relation, Capacitance- voltage (C-V) characteristics, Current-voltage (I-V) characteristics; Schottky barrier – Ideality factor, Barrier height and carrier concentration measurements; Ohmic contacts. Bipolar Junction Transistor (BJT): Static Characteristics; Frequency Response and Switching. Semiconductor heterojunctions, Heterojunction bipolar transistors, Quantum wellstructures. Reference: - SMS, SB, WRR, ABL	15

Learning Resources recommended:

- A. Main References:
 - 1. SMS: S.M. Sze; Semiconductor Devices: Physics and Technology, 2nd edition, John Wiley, New York, 2002.
 - 2. SB: B.G. Streetman and S. Banerjee; Solid State Electronic Devices, 5th edition, Prentice Hall of India, NJ, 2000.
 - 3. WRR: W.R. Runyan; Semiconductor Measurements and Instrumentation, McGraw Hill, Tokyo, 1975.
 - 4. ABL: Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall, Englewood Cliffs, N.J., 1984.

- B. Additional References:
 - 1. Jasprit Singh; Semiconductor Devices: Basic Principles, John Wiley, New York, 2001.
 - 2. Donald A. Neamen; Semiconductor Physics and Devices: Basic Principles, 3rd edition, Tata McGraw-Hill, New Delhi, 2002.
 - 3. M. Shur; Physics of Semiconductor Devices, Prentice Hall of India, New Delhi, 1995.
 - 4. Pallab Bhattacharya; Semiconductor Optoelectronic Devices, Prentice Hall of India, New Delhi, 1995.

Evaluation Pattern

C. Continuous Assessment (40 Marks):

Sr.	Particulars	Marks
No.		
01	Unit Test	20
02	Assignment	10
03	Active participation in class room	10
	and attendance	

D. Semester End Evaluation (Paper Pattern): (60 Marks)

Question No	Unit	Question Type	Marks
1	Ι	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	10 10
2	II	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	10 10
3	I II	Objective type of questions without internal option	10 10

Guidelines for pattern for Semester End Evaluation:

- 1. All questions shall be compulsory with internal option. Questions may be subdivided into sub questions.
- 2. Long and short questions will include descriptive type of questions, derivationbased questions, problem solving /numericals based questions, etc.
- 3. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Name of the Course	Physics Lab-II
Course Code	PSPH 206
Class	M.ScI
Semester	ΙΙ
No of Credits	2
Nature	Practical
Туре	Elective
Relevance with	Learners learn various experimental and measurement skills
Employability/	including skills of independent investigation of Physics-related
Entrepreneurship/	problems. Learners also develop the fundamental understanding
Skill development	systems and to troubleshoot them independently.

Course Outcomes:

On successful completion of this course learners will be able to

- 1. Understand & practice the skills while performing experiments.
- 2. Understand the use of apparatus and their use without fear & hesitation.
- 3. Correlate the physics theory concepts to practical application.
- 4. Understand the concept of errors and their estimation.
- 5. Design and troubleshoot electronics circuits.

Unit	Title	Learning Points	No of Lectures
Group A	General Physics	 Barrier capacitance of a junction diode Energy Band gap by four probe method Determine of Young's modulus of metal rod by interference method. 	30
Group B	Electronics	 Adder-subtractor circuits using ICs Study of Presettable counters- 74190 and 74193 TTL Characteristics of Totempole Open collector and tristate devices 	30

Learning Resources Recommended:

- 1. Electronic instrumentation & measurement: W. D. Cooper
- 2. Introduction to solid state physics: C. Kittel
- 3. Solid state physics: A. J. Dekkar
- 4. Electronic engineering: Millman Halkias
- 5. Manual of experimental physics: E.V. Smith
- 6. Experimental physics for students: Whittle & Yarwood
- 7. Semiconductor measurements: Runyan
- 8. Experiments in digital principles: D.P. Leach
- 9. Digital principles and applications: Melvino and Leach
- 10. Digital circuit practice: R. P. Jain
- 11. Electronic instrumentation: H. S. Kalsi
- 12. Advance Practical Physics: Worsnop and Flint

Note:

- Minimum number of experiments to be performed and reported in the journal = 04 with minimum 02 experiments from each Group. i.e., Group A: 02 and Group B: 02.
- 2. Journal should be certified by the laboratory in-charge and Head of the Department only if the learner performs satisfactorily the minimum number of experiments as stipulated above.
- 3. Learner will be allowed to appear for the semester end practical examination of this course only if learner submits a certified journal of this course or a certificate from the head of the Physics Department that learner has completed this practical course as per minimum requirements.

- 4. At the semester-end Practical exam, the learner shall perform any one experiment from Group A or B. If the learner performs the long experiment from group A, then he will perform a short experiment from Group B, or vice versa.
- 5. For the semester-end Practical Exam 3 hours of duration for a long experiment and 1 hour of duration for a short experiment.

Evaluation Pattern:

Method	Marks
Journal	20
Lab performance	10
Seminar	10

A. Continuous Evaluation: (40 Marks)

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Question No.	Group	Title	Method	Marks
1	A or B	General Physics and Electronics	Any one Long Experiment performance from Group A or B as per the practical slip	40
2	A or B	General Physics and Electronics	Any one Short Experiment performance from Group A or B as per the practical slip	20

Name of the Course	Semiconductor Physics and Devices
Course Code	PSPH207
Class	M.ScI
Semester	II
No of Credits	2
Nature	Theory
Туре	Elective
Relevance with	The learners learn different aspects of semiconductors, their
Employability/	classification, crystal structures, etc. They also study the transport
Entrepreneurship/	properties and different types of recombination. They acquire skill to
Skill development	study their characteristics. They also acquire skills to apply their
	knowledge to different devices such as BJT, MOSFET, MODFET etc.

Course Outcomes:

On successful completion of this course learners will be able to:

- 1 Calculate the intrinsic carrier concentration in semiconductors and apply the concept of compensation and space charge neutrality to calculate the electron and hole concentrations in extrinsic semiconductor samples.
- 2 Compute the electron and hole concentrations if the Fermi or quasi-Fermi level is given.
- 3 Understand the carrier generation and various recombination processes and excess carrier concentrations as a function of time for low-level injection conditions in a semiconductor.
- 4 Determine the drift and diffusion components of electron and hole currents.
- 5 Understand the applications of continuity equation.
- 6 Understand the concept of MESFET.
- 7 Understand I-V characteristics of MESFET, MODFET.

Unit	Title	Learning Points	No of Lectures
Ι	Semiconductor Physics	Classification of Semiconductors; Crystal structure with examples of Si, Ge & GaAs semiconductors; Energy band structure of Si, Ge & GaAs; Extrinsic and compensated Semiconductors; Temperature dependence of Fermi-energy and carrier concentration. Drift, diffusion and injection of carriers; Carrier generation and recombination processes- Direct recombination, Indirect recombination, Surface recombination, Auger recombination; Applications of continuity equation- Steady state injection from one side, Minority carriers at surface, Haynes Shockley experiment, High field effects. Hall Effect; Four – point probe resistivity measurement; Carrier life time measurement by light pulse technique. Reference: SMS	15
II	Field Effect Transistors	Field Effect Transistors : - Metal-semiconductor field effect transistor (MESFET)- Device structure, Principles of operation, Current voltage (I-V) characteristics, High frequency performance. Modulation doped field effect transistor (MODFET), Introduction to ideal MOS device, MOSFET fundamentals, Measurement of mobility, channel conductance etc. from I _{ds} vs, V _{ds} and I _{ds} vs V _g characteristics, Introduction to Integrated circuits. Reference: - SMS, SB, ABL	15

Learning Resources recommended:

- A. Main References:
 - 1. SMS: S.M. Sze; Semiconductor Devices: Physics and Technology, 2nd edition, John Wiley, New York, 2002.
 - 2. SB: B.G. Streetman and S. Banerjee; Solid State Electronic Devices, 5th edition, Prentice Hall of India, NJ, 2000.
 - 3. ABL: Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall, Englewood Cliffs, N.J., 1984.

- B. Additional References:
 - 1. Jasprit Singh; Semiconductor Devices: Basic Principles, John Wiley, New York, 2001.
 - 2. Donald A. Neamen; Semiconductor Physics and Devices: Basic Principles, 3rd edition, Tata McGraw-Hill, New Delhi, 2002.
 - 3. M. Shur; Physics of Semiconductor Devices, Prentice Hall of India, New Delhi, 1995.
 - 4. Pallab Bhattacharya; Semiconductor Optoelectronic Devices, Prentice Hall of India, New Delhi, 1995.
 - 5. WRR: W.R. Runyan; Semiconductor Measurements and Instrumentation, McGraw Hill, Tokyo, 1975.

Evaluation Pattern

Sr.	Particulars	Marks	
No.			
01	Unit Test	20	
02	Assignment	10	
03	Active participation in class room and attendance	10	

A. Continuous Assessment (40 Marks):

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Question No	Unit	Question Type	Marks
1	Ι	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	10 10
2	II	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	10 10
3	I II	Objective type of questions without internal option	10 10

Guidelines for pattern for Semester End Evaluation:

- 1. All questions shall be compulsory with internal option. Questions may be subdivided into sub questions.
- 2. Long and short questions will include descriptive type of questions, derivationbased questions, problem solving /numericals based questions, etc.
- 3. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Name of the Course	Physics Lab-III
Course Code	PSPH208
Class	M.ScI
Semester	ΙΙ
No of Credits	2
Nature	Practical
Туре	Elective
Relevance with	Learners learn various experimental and measurement skills
Employability/	including skills of independent investigation of Physics-related
Entrepreneurship/	problems. Learners also develop the fundamental understanding
Skill development	of the instruments used. Learner will be able to design electronic systems and troubleshoot them independently. Learners acquire the 8085-programming skill.

Course Outcomes:

On successful completion of this course learners will be able to:

- 1 Understand & practice the skills while performing experiments.
- 2 Understand the use of apparatus and their use without fear & hesitation.
- 3 Correlate the physics theory concepts to practical application.
- 4 Understand the concept of errors and their estimation.
- 5 Write flowcharts and assembly language programs for 8085 microprocessors.
- 6 Execute programs on 8085 microprocessor kit.

Unit	Title	Learning Points	No of Lectures
Group A	General Physics	 Linear Voltage Differential Transformer I-V/C-V measurement on semiconductor specimen Zeeman Effect using Fabry-Perot etalon/Lummer – Gehrecke plate 	30
Group A	Electronics	 Ambient Light control power switch. SID & SOD using 8085 Interfacing TTL with buzzers, relay, motor and solenoids 	30

Learning Resources Recommended:

- 1. Semiconductor electronics Gibson
- 2. Electronic instrumentation & measurement: W. D. Cooper
- 3. Introduction to solid state physics C. Kittel
- 4. Solid state physics A. J. Dekkar
- 5. Electronic engineering Millman Halkias
- 6. Manual of experimental physics: E.V. Smith
- 7. Experimental physics for students: Whittle & Yarwood
- 8. Semiconductor measurements Runyan
- 9. Experiments in digital principles-D.P. Leach
- 10. Digital principles and applications Malvino and Leach
- 11. Microprocessor Architecture, Programming and Applications with the 8085 R. S. Gaonkar
- 12. Microprocessor fundamentals- Schaum Series-Tokheim
- 13. 8085 Kit User manual
- 14. Electronic Instrumentation H. S. Kalsi
- 15. Advance practical physics Worsnop and Flint

Note:

- Minimum number of experiments to be performed and reported in the journal = 04 with minimum 02 experiments from each Group. i.e., Group A: 02 and Group B: 02.
- 2. Journal should be certified by the laboratory in-charge and Head of the Department only if the learner performs satisfactorily the minimum number of experiments as stipulated above.
- 3. Learner will be allowed to appear for the semester end practical examination of this course only if learner submits a certified journal of this course or a certificate from the head of the Physics Department that learner has completed this practical course as per minimum requirements.
- 4. At the semester-end Practical exam, the learner shall perform any one experiment from Group A or B. If the learner performs the long experiment from group A, then he will perform a short experiment from Group B, or vice versa.
- 5. For the semester-end Practical Exam 3 hours of duration for a long experiment and 1 hour of duration for a short experiment.

Evaluation Pattern:

A. Continuous Evaluation: (40 Marks)

Method	Marks
Journal	20
Lab performance	10
Seminar	10

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Question No.	Group	Title	Method	Marks
1	A or B	General Physics and Electronics	Any one Long Experiment performance from Group A or B per the practical slip	40
2	A or B	General Physics and Electronics	Any one Short Experiment performance from Group A or B as per the practical slip	

Revised Syllabus of Course of Master of Science (M.Sc.) Programme at Semester II with Effect from the Academic Year 2023-2024

Name of the Course	On Job Training/ Field Project
Course Code	PSPH209
Class	M.Sc.
Semester	Π
No of Credits	4
Nature	Practical
Туре	On Job Training/ Field Project
Relevance with	The primary goal of the course is to provide learners with the
Employability/	theoretical and experimental knowledge and skills necessary to
Entrepreneurship/	identify the social needs, to provide solutions to them and to do work
Skill development	in research or in industry or in community. Learners develop
	technical and analytical skills that lead to the development and
	working on a project. They can use procedural knowledge in their
	professional field in future and acquire communication skills,
	collaborative approach and ability to apply it for betterment of
	society.

Guidelines and Evaluation pattern for On Job Training/ Project/Extended Experiment (100 Marks)

Introduction:

Inclusion of On Job Training/ Field Project in the course curriculum of the M.Sc. programme is one of the ambitious aspects in the programme structure. The main objective of inclusion of On Job Training/ Project is to inculcate ability to interpret particular aspect of the study in his/ her own words.

Guidelines for On Job Training

On-the-Job Training/Field Project: Learners will be required to undertake a designated project or tasks in an organization or industry relevant to their field of study. The course aims to provide learners with practical exposure and hands-on experience in a professional work environment related to their field of study.

Course Objectives:

By the end of the course, learners should be able to:

- 1. Gain exposure to real-world insights and apply theoretical knowledge to practical situations.
- 2. Enhance skills regarding problem-solving, decision-making, and communication skills.
- 3. Understand organizational dynamics and work culture.
- 4. Build industry connections and networking opportunities.

Course Duration:

Minimum 20 days / 120 hours of On Job Training with an Organization/Private firm.

- The theme of the On Job Training should be based on any study area of the Major course.
- Systematic Report of the work should be submitted.
- Work completion Certificate is Mandatory.

Report Structure:

The learners will be required to submit a comprehensive report at the end of the On-the-Job Training/Field Project. A project report has to be brief in content and must include the following aspects:

a) Title Page:

Mentioning the title of the report, name of the learner, program, institution, and the period of training.

b) Certificate of Completion:

A certificate issued by the organization or supervisor confirming the successful completion of the training.

c) Declaration:

A statement by the learner declaring that the report is their original work and acknowledging any assistance or references used.

d) Acknowledgments:

Recognizing individuals or organizations that provided support, guidance, or resources during the training.

e) Table of Contents:

Providing a clear outline of the report's sections and page numbers.

f) Executive Summary:

A bird's eye view of learner's entire presentation has to be precisely offered under this Category.

g) Introduction on the Company:

A Concise representation of company/organization defining its scope, products/ services etc.

h) Your Role in the Organization during the on-Job Training:

The key aspects handled, the department under which learner were deployed and brief Summary report duly acknowledged by the reporting head.

i) Challenges:

The challenges confronted while churning out theoretical knowledge into practical world.

j) Conclusion:

A brief overview of learner experience and suggestions to bridge the gap between theory and practice.

Course Outcomes:

- 1. Apply theoretical knowledge and concepts acquired during the academic program to real-world work scenarios.
- 2. Develop practical skills and competencies necessary for successful professional engagement.
- 3. Demonstrate effective problem-solving, decision-making, and critical thinking abilities in a work environment.
- 4. Adapt to and navigate organizational dynamics and work culture in the chosen industry.

5. Prepare a comprehensive report documenting the training/project experience, findings, and recommendations.

Evaluation Pattern for On Job Training

A. Continuous Evaluation: (40 Marks)

Method	Marks
Certificate for performance in Training Place	30
Presentation	10

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Sr No	Criteria	Marks
1	On Job Training Report as per report structure	40
2	Presentation/Viva	20

Guidelines for Field Project

Course Outcomes:

By the end of the course, learners should be able to:

- 1 Understand the ethics and research methodology.
- 2 Do a literature review.
- 3 Do research.
- 4 Analyze the research work data.
- 5 Write research thesis.
- 6 Design, build and test necessary experimental setup.

Course Duration: One Semester Minimum 120 hours of field project work.

Course Outline:

- 1. Identifying problem for project work (20 Hours).
- **2.** Literature survey (20 Hours).

- 3. Designing and implementing the project through necessary experimental work (30 Hours).
- 4. Data collection and its analysis and interpretation. (20 Hours).
- 5. Report writing and presentation (30 Hours).

Evaluation Pattern for Field Project

A. Continuous Evaluation: (40 Marks)

Method	Marks
Lab performance as per course outline	30
Presentation	10

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Sr No	Criteria	Marks
1	Experimental/Theoretical methodology/Working condition of project or model	15
2	Significance of the study/Society application and Inclusion of recent References	10
3	Depth of knowledge in the subject / Results and Discussions	10
4	Project Report	10
5	Presentation	15

Format of Project Report:

a) Title Page:

Mentioning the title of the report, name of the learner, program, institution, and the project.

b) Certificate of Completion:

A certificate issued by guide confirming the successful completion of the project.

c) Declaration:

A statement by the learner declaring that the report is the original work and acknowledging any assistance or references used.

d) Acknowledgments:

Recognizing individuals or organizations that provided support, guidance, or resources during the training/project.

e) Table of Contents:

Providing a clear outline of the report's sections and page numbers.

f) Abstract:

A bird's eye view of learner's entire presentation has to be precisely offered under this category. A brief overview of the project, its objectives and key findings should be mentioned.

g) Introduction:

Background information about the project and its significance. Objectives and scope of the project.

h) Literature Review:

Overview of relevant literature and studies related to the chosen field and development issues.

i) Methodology:

Description of: Planning of experimental procedure as per the need of the project. Designing and implementation of the project as per the objectives through theoretical, experimental or computational methods.

j) Observations and data analysis:

Details of Testing, debugging, troubleshooting as per the need. Data collection and analysis.

k) Conclusion:

Summary of the key findings and outcomes of the project.

l) References & Appendices:

List of all sources cited in the project report. Additional supporting materials.

The project report shall be prepared as per the broad guidelines given below:

- ➢ Font type: Times New Roman,
- ▶ Font size: 12-For content, 14-for Title
- ▶ Line Space: 1.5-for content and 1-for in table work, Justified format
- ➢ Page Size: A4
- Margin: in Left-1.5, Up-Down-Right-1
- > The Project Report shall be hard bounded.

Format

1st page (Main Page)

Title of the problem of the Project

A Project Submitted

to

R. P. Gogate college of Arts & Science and

R.V. Jogalekar College of Commerce College (Autonomous)

under

University of Mumbai

for partial completion of the degree

of

Master in Science

Under the Faculty of science

By

Name of Student

Under the Guidance of

Name of the Guiding Teacher

R. P. Gogate college of Arts & Science and

R.V. Jogalekar College of Commerce College (Autonomous),

Ratnagiri

<Month and Year>

On separate page Index

Sr No	Title	Page No.
01		
02		
03		
04		
05		

On separate page

Declaration by learner

I the undersigned Miss/Mr. ______ [Name of the learner] here by, declare that work embodied in this project work titled ______ forms my own contribution to the research work carried out under the guidance of [Name of the guiding teacher] ______ is a result of my own project / research work and has not been previously submitted to any other University for any other Degree/ Diploma to this or any other University.

Wherever reference has been made to previous works of others, it has been clearly indicated as such and included in the bibliography.

I, here by further declare that all information of this document has been obtained and presented in accordance with academic rules and ethical conduct.

Name and Signature of the learner

Certified by Name and signature of the Guiding Teacher

> On separate page Acknowledgment (To be written by learner)

R. E. SOCIETY'S, R. P. GOGATE COLLEGE OF ARTS & SCIENCE AND R. V. JOGALEKAR COLLEGE OF COMMERCE (AUTONOMOUS), RATNAGIRI

SYLLABI OF COURSES OFFERED BY DEPARTMENT OF PHYSICS OF THE COLLEGE IN THE SUBJECT PHYSICS (ELECTRONICS-1) FOR THE SECOND YEAR (SEMESTER III & IV) OF PROGRAM M.SC.

> UNDER CHOICE BASED CREDIT SYSTEM (CBCS)

WITH THE EFFECT FROM ACADEMIC YEAR 2023-24

Program Outcomes of M.Sc. Physics

Name of Programme	Master of Science
Level	PG
No of Semesters	04
Year of	2023-24
Implementation	
Implementation Programme Specific Outcomes (PSO)	 On completion of the MSc Physics, the learners should be enriched with knowledge and be able to Physics knowledge: Understand current development in various dolmens of modern Physics like Nuclear Physics, Electrodynamics, Atomic and Molecular Physics, Classical Mechanics, Quantum Mechanics, Statistical Mechanics, Mathematical Physics, Solid state Physics, Advanced Electronics, Solid state devices, Experimental techniques and electronics. Practical Skills and Analytical Abilities: Develop analytical abilities and acquire practical skill in handling measuring equipment required to carry out experiments in different areas of Physics, verify complex Physics problems through experimentation and use them to develop science and technology. Learner will be able to design Assembly level and High-level language program related microcontroller, microprocessor, C++, VHDL, ARM etc. Motivation and life-long learning: Acquire skills like collaborative work, communication and independent learning required for lifelong learning to overcome challenges ahead. Research: Clear competitive examination like SET, NET, JRF, PET and JEST required for pursue research at different research institutes and Universities. Get trained for a career in basic sciences and contribute in educational institutes, industries and emerging branches of science. Ethics: Demonstrate professional behaviour such as (i) being objective, unbiased and truthful in all aspects of work and avoiding unethical, irrational behaviour such as fabricating, falsifying or misrepresenting data or committing plagiarism; (ii)the ability to identify the potential ethical issues in work-related situations; (iii) appreciation of intellectual property, environmental and
	and working environment.
Relevance of PSOs to	The Master of Science in Physics programme equips the
the local. regional.	candidate with knowledge, general competence, and
national. and global	analytical skills on an advanced level, needed in industry.
developmental needs	consulting, education, and research and public and private
	administration. The M.ScI and II (Physics) Programme
	includes various core courses such as Solid-State physics.
	statistical mechanics, nuclear and particle physics.
	spectroscopy and microprocessors and advance experiment

in electronics. The choice of courses offers a glimpse into
the frontier areas of research and allows learners to work
on research projects. The programme also provides
adequate exposure for the learners to pursue higher
education in the fields of technology (M. Tech.), physics
(M.Phil./Ph.D.), and other job opportunities in academia
and industry.
On completion of the programme, the postgraduates will be
able to:
1. Apply knowledge and skill in the design and
development of electronic system and programming to
fulfil the needs of the electronic industry.
2 Pursue research related to physics and material
characterization
3 Able to teach core physics to higher secondary and
undergraduate learners
A Demonstrate the highest standards of actuarial ethical
sonduct and professional actuarial behaviour critical
interpersonal and communication shills as well as a
interpersonal and communication skills as well as a
commitment to life-long learning.

Evaluation Scheme

Course Evaluation Scheme: -

The performance of the learners shall be evaluated into two parts. The learner's performance shall be assessed by Continuous Assessment with 40% marks and by conducting the Semester End Examination with 60% marks.

The allocation of marks for the continuous Evaluation and Semester End Examinations are as shown below: -

A) Continuous Assessment: (40% marks)

Sr.No.	Particulars	% Marks
01	Test	20
02	Assignment	10
03	Active participation in class room	10
	and attendance	

B) Semester End Examination: (60% marks)

The Examination shall be of 2hours duration.

Standard of Passing:

For each course of M.Sc. Physics, there will be separate head of passing for Continuous Evaluation and Semester End Examination. The learner to earn the course credits, shall have to obtain a minimum of 40% marks in the Continuous Evaluation and 40% marks in Semester End Examination separately.

Conversion of Marks: -

The Continuous Evaluation for 2 credit courses of M.Sc. Physics will be of 40 marks. In such cases, the marks obtained by a learner in Continuous Evaluation of a course out of 40, will be converted to marks out of 20.

The Semester End Evaluation for 2 credit courses of M.Sc. Physics will be of 60 marks. In such cases, the marks obtained by a learner in Semester End Evaluation of a course out of 60, will be converted to marks out of 30. Converted marks will be reflected in learner's marksheet. There will be no mark conversion for 4 credit courses.

Performance Grading: Letter Grades and Grade Points

% of Aggregate Marks Obtained	Course Grade Point	Course Grade	Performance Indicator	Credits Earned
90.0 to 100	10	0	Outstanding	
80 to 89.99	9	A+	Excellent	
70 to 79.99	8	А	Very Good	As per
60 to 69.99	7	B+	Good	course
55 to 59.99	6	В	Above Average	credit
50.0 to 54.99	5	С	Average	
40 to 49.99	4	Р	Pass	
Less Than 40	0	F	Fail	0
Absent	0	Ab	Absent	0

Courses Offered by Department of Physics for M.Sc.-II

No. of Courses	Semester III	Credits	No. of Courses	Semester IV	Credits
PSPH301	Statistical Mechanics	04	PSPH401	Experimental Physics	04
PSPH302	Nuclear Physics	04	PSPH402	Atomic and Molecular Physics	04
PSPH303	8, 16 – bit Microprocessors, Microcontroller and PIC Microcontrollers	04	PSPH403	32-bit microprocessor, interfacing 8-bit microcontrollers & PIC microcontrollers	04
PSPH304	Programming Using C++, VC++, Embedded Systems and RTOS	04	PSPH404	VHDL, Understanding USB and Communication Interface.	04
PSPH305	Physics lab-1	04	PSPH405	Physics lab-2	04
PSPH306	Project-1	04	PSPH406	Project-2	04
Total Credits		24	Total Credit	S	24

SEMESTER-III

No. of Courses	Semester III	Credits
PSPH301	Statistical Mechanics	4
PSPH302	Nuclear Physics	4
PSPH303	8, 16 – bit Microprocessors, Microcontroller and PIC Microcontrollers	4
PSPH304	Programming Using C++, VC++, Embedded Systems and RTOS	4
PSPH305	Physics Lab-1	4
PSPH306	Project	4
Total Credits		24

Revised Syllabus of Course of Master of Science (M.Sc.) Programme at Semester III with Effect from the Academic Year 2023-2024

Name of the Course	Statistical Mechanics
Course Code	PSPH301
Class	M.ScII
Semester	III
No of Credits	4
Nature	Theory
Туре	Core
Highlight revision specific to employability/ entrepreneurship/ skill development	The curriculum includes introduction to statistical mechanics based on theoretical foundation of ensemble theory. It is expected to develop strong analytical skills to interpret complex relationships between macroscopic and microscopic states and their applications to simple thermodynamic systems. It deals with advanced concepts like partition functions, probability distributions and quantum states. It also introduces Fermi Dirac and Bose Einstein Statistics which are used in frontier research field.

Nomenclature: Statistical Mechanics

Course Outcomes:

On successful completion of this course learners will:

- 1. Understand the concept of microstates and macrostates of a system.
- 2. Understand need of using statistical approach to study thermodynamic system.
- 3. Understand the concept of Liouville's theorem and its consequences.
- 4. Be able to identify and describe the statistical nature of concepts and laws in thermodynamics, in particular: entropy, temperature, chemical potential, Free energies, and partition functions.
- 5. Be able to use of micro canonical, canonical and grand canonical ensembles to derive the properties of various classical and quantum thermodynamic systems.
- 6. Understand the basic of formulation of Quantum Statistics.

Curriculum:

Unit	Title	Learning Points	
Ι	Statistical Thermodynamics and Ensemble	 The Statistical Basis of Thermodynamics: - The macroscopic and the microscopic states, contact between statistics and thermodynamics, the classical ideal gas, The entropy of mixing and the Gibbs paradox, the enumeration of the microstates. Elements of Ensemble Theory - Phase space of a classical system, Liouville's theorem and its consequences. The microcanonical ensemble - Examples Quantum states and the phase space. Reference: - PB 	15
II	Canonical Ensemble	The Canonical Ensemble - Equilibrium between a system and a heat reservoir, a system in the canonical ensemble, physical significance of the various statistical quantities in the canonical ensemble, expressions of the partition function, the classical systems, energy fluctuations in the canonical ensemble, correspondence with the microcanonical ensemble, the equipartition theorem and the virial theorem, system of harmonic oscillators, statistics of paramagnetism, thermodynamics of magnetic systems. Reference: - PB	15
III	Grand Canonical Ensemble	The Grand Canonical Ensemble - Equilibrium between a system and a particle-energy reservoir, a system in the grand canonical ensemble, physical significance of the various statistical quantities, Examples, Density and energy fluctuations in the grand canonical ensemble, correspondence with other ensembles. Reference: - PB	15
IV	Formulation of Quantum Statistics	Quantum-mechanical ensemble theory: the density matrix, Statistics of the various ensembles, Examples, systems composed of indistinguishable particles, the density matrix and the partition function of a system of free particles. Reference: - PB	15

Note: A good number of numerical examples are expected to be covered on all topics covered.

Learning Resources recommended:

Main Reference:

1. PB: - Statistical Mechanics - R. K. Pathria & Paul D. Beale (Third Edition), Elsevier 2011 – Chap. 1 to 5

Additional References:

- 1. NG: Thermodynamics and Statistical Mechanics, Greiner, Neise and Stocker, Springer 1995.
- 2. KH: Introduction to Statistical Physics, Kerson Huang, Taylor and Francis 2001.
- 3. FR: Thermal and Statistical Physics, F Reif.
- 4. JKB: Statistical Mechanics, J.K. Bhattacharjee.
- 5. JKB: Non-equilibrium Statistical Mechanics, J.K. Bhattacharjee.
- 6. RF: Statistical Mechanics, Richard Feynman.
- 7. LL: Statistical Mechanics, Landau and Lifshitz.
- 8. HBC: Thermodynamics, H.B. Callen.

Evaluation Pattern

A. Continuous Assessment (40 Marks):

Sr.	Particulars	Marks
No.		
01	Unit Test	20
02	Assignment	10
03	Active participation in class room	10
	and attendance	

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Question No	Unit	Question Type	Marks
1	Ι	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
2	II	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
3	III	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
4	IV	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
5	I II III IV	Objective type of questions without internal option	03 03 03 03

Guidelines for pattern for Semester End Evaluation:

- 1. All questions shall be compulsory with internal option. Questions may be subdivided into sub questions.
- 2. Long and short questions will include descriptive type of questions, derivationbased questions, problem solving /numericals based questions, etc.
- 3. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Revised Syllabus of Course of Master of Science (M.Sc.) Programme at Semester III with Effect from the Academic Year 2023-2024

Name of the Course	Nuclear Physics
Course Code	PSPH302
Class	M.ScII
Semester	III
No of Credits	4
Nature	Theory
Туре	Core
Highlight revision specific to employability/ entrepreneurship/ skill development	The curriculum includes various radioactive decay processes and their selection rules. It imparts basic knowledge of elementary particle physics and applications of these concepts to analyze a nuclear reaction. Working with complex physics problems develops critical thinking and problem- solving skills.

Nomenclature: Nuclear Physics

Course Outcomes:

On successful completion of this course, learners will understand:

- 1. all static properties of nuclei.
- 2. the Deuteron Problem and its ground state properties.
- 3. the double scattering experiments.
- 4. the differences between various radioactive decays, state selection rules.
- 5 selection rule for radioactive decay.
- 6. the development and concepts of various nuclear models.
- 7. concept of scattering and reaction cross sections of nuclear reaction.
- 8. the concept of elementary particles.

Curriculum:

Unit	Title	Learning Points	No of Lectures
		Properties of Nucleus: - All static properties of nuclei (charge, mass, binding energy, size, shape, angular momentum, magnetic dipole momentum, electric quadrupole momentum, statistics, parity, isospin), Measurement of Nuclear size and estimation of R ₀ (mirror nuclei and mesonic atom method)	
Ι	Nucleus and Deuteron theory	Deuteron Theory: - Deuteron Problem and its ground state properties, Estimate the depth and size of (assume) square well potential, Tensor force as an example of non-central force, nucleon-nucleon scattering-qualitative discussion on results, Spin-orbit strong interaction between nucleon, double scattering experiment.	15
		Reference: - KK, SNG, SBP	
II	Theory of alpha, beta and gamma decay	 Alpha decay: - Review of alpha decay Beta decay: - Introduction to Beta decay and its energetic, Fermi theory: derivation of Fermi's Golden rule, Information from Fermi-curie plots, Comparative half-lives, selection rules for Fermi and G-T transitions. Gamma decay: Multipole radiation, Selection rules for gamma ray transitions, Gamma ray interaction with matter, and Charge-particle interaction with matter. Reference: - SBP, KK 	15
III	Nuclear Models and Nuclear reactions	 Nuclear Models: Shell Model (extreme single particle): Introduction, Assumptions, Evidences, Spin-orbit interactions, Predictions including Schmidt lines, limitations, Collective model - Introduction to Nilsson Model. Nuclear Reactions: Kinematics, scattering and reaction cross sections, Compound nuclear reaction, direct nuclear reaction. Q-value equation, energy release in fusion and fission reaction. Reference: SBP, KK 	15
IV	Elementary Particle Physics	Introduction to the elementary particle Physics, The Eight-fold way, the Quark Model, the November revolution and aftermath, The standard Model, Revision of the four forces, cross sections, decays and resonances, Introduction to Quantum Electrodynamics, Introduction to Quantum Chromodynamics. Weak interactions and Unification Schemes (Qualitative description),	15

Qualitative introduction to CP violation and TCP theorem. Reference: - DG		Revision of Lorentz transformations, Four-vectors, Energy and Momentum. Properties of Neutrino, helicity of Neutrino, Parity, Qualitative discussion on Parity violation in beta decay and Wu's Experiment, Charge conjugation, Time reversal, Qualitative introduction to CP violation and TCP theorem. Reference: - DG	
---	--	---	--

Note: - A good number of numerical examples are expected to be covered on all topics covered.

Learning Resources recommended:

Main References:

- 1. KK: Introductory Nuclear Physics, Kenneth Krane, Wiley India Pvt. Ltd.
- 2. DG: -Introduction to Elementary Particles, David Griffith, John Wiley and sons.
- 3. SBP: Nuclear Physics An Introduction, S. B. Patel, New age international publication, second edition.
- 4. SNG: Nuclear Physics, S. N. Ghoshal.

Other References:

- 1. HAE: Introduction to Nuclear Physics, H. A. Enge, Eddison Wesley.
- 2. ES: Nuclei and Particles, E. Segre, W. A. Benjamin.
- 3. BLC: Concepts of Nuclear Physics, B. L. Cohen.
- 4. FH: Subatomic Particles, H. Fraunfelder and E. Henley, Prentice Hall.
- 5. HSH: Nuclear Physics: Experimental and Theoretical, H. S. Hans, New Age International.
- 6. DF: Introduction to Nuclear and Particle Physics, A. Das & T. Ferbel, World Scientific
- 7. DHP: Introduction to high energy physics, D. H. Perkins, Addison Wesley.
- 8. BJ: Nuclear and Particle Physics, W. E. Burcham and M. Jones, Addison Wesley.
- 9. SMW: Introductory Nuclear Physics, S. M. Wong, Prentice Hall.
- 10. RE & RR: Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, Robert Eisberg and Robert Resnick, Wiley (2006)

Evaluation Pattern

A. Continuous Assessment (40 Marks):

Sr.	Particulars	Marks
No.		
01	Unit Test	20
02	Assignment	10
03	Active participation in class room 10	
	and attendance	

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Question No	Unit	Question Type	Marks
1	Ι	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
2	II	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
3	III	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
4	IV	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
5	I II III IV	Objective type of questions without internal option	03 03 03 03

Guidelines for pattern for Semester End Evaluation:

- 1. All questions shall be compulsory with internal option. Questions may be subdivided into sub questions.
- 2. Long and short questions will include descriptive type of questions, derivationbased questions, problem solving /numericals based questions, etc.
- 3. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Revised Syllabus of Course of Master of Science (M.Sc.) Programme at Semester III with Effect from the Academic Year 2023-2024

Name of the Course	8, 16 – bit Microprocessors, Microcontroller and PIC Microcontrollers
Course Code	PSPH303
Class	M.ScII
Semester	III
No of Credits	4
Nature	Theory
Туре	Core
Highlight revision specific to employability/	The curriculum is designed to focus on study of microprocessors and microcontrollers and their applications in embedded systems, electronics manufacturing and computer hardware. It is designed to
entrepreneurship/ skill development	develop programming skills with microprocessors 8085, 8086 and microcontrollers 8051 and PIC.

Nomenclature: 8, 16 – bit Microprocessors, Microcontroller and PIC Microcontrollers

Course Outcomes:

On successful completion of this course learners will:

- 1. Understand microprocessor 8085 interrupt structure and Serial I/O of data with the processor.
- 2. Understand functioning of programmable peripheral chips: 8255A, 8259A, 8237 and 8279 and write assembly language programs for the same.
- 3. Understand 8086 microprocessor, its architecture, interrupt structure and its Instruction set.
- 4. Be able to write assembly language programs for 8086 microprocessors.
- 5. Understand Timer/Counter, interrupts and serial I/O Programming for 8051 microcontrollers.
- 6. Understand architecture of 16C61/71 PIC microcontrollers.
- 7. Be able to write assembly language programs for 16C61/71PIC microcontroller.

Curriculum:

Unit	Title	Learning Points	No of Lectures
Ι	8085 Microprocessor and programmable peripheral devices	1. 8085 Interrupts : The 8085 Interrupt, 8085 Vectored Interrupts, Restart as Software Instructions, Additional I/O Concepts and Processes.	
		2. Serial I/O and Data Communication: Basic Concepts in Serial I/O, Software Controlled Asynchronous Serial I/O, The 8085 Serial I/O lines: SOD and SID	15
		3. Programmable Peripheral Devices : The 8255A (Programmable Peripheral Interface): Interfacing Keyboard and Seven Segment Display, The 8259A (Programmable Interrupt Controller), Direct Memory Access (DMA) and 8237 (DMA Controller), 8279 (Programmable Keyboard/Display Interface).	
		Reference: RSG	
		 8086 microprocessor hardware: Register organization of 8086, Architecture, Pin Signal Descriptions of 8086, Physical Memory Organization, General Bus operation, I/O Addressing Capability, Special Processor Activities, Minimum mode 8086 system and timings, Maximum mode of 8086 system and timings. 8086 Instruction set and assembler directives: Machine Language Instructions Formats, addressing modes of 8086, Instruction set 	
II	8086 microprocessor	of 8086. 3. The Art of Assembly Language Programming with 8086: A few machine level programs, Machine coding the programs, Programming with an assembler (only using Debug), Assembly language example programs.	15
		4. Special architectural features and related programming : Introduction to Stack, Stack structure of 8086, Interrupts and Interrupt Service Routines, Interrupt cycle of 8086, non-maskable interrupt, Maskable interrupt (INTR).	
		Keierence: AB	
III	8051 Microcontroller	8051 microcontrollers: Timer/Counters, Interrupts, Serial communication : Programming 8051 Timers, Counter Programming, Basics of Serial Communication, 8051 Connection to RS232,	15

		8051 Serial Port Programming in assembly language, 8051 Interrupts, Programming Timer Interrupts, Programming External hardware Interrupts, Programming the Serial Communication Interrupt, Interrupt Priority in 8051/52. Reference: MMM	
IV	PIC Microcontroller	 16C61/71PIC Microcontrollers: Overview and Features, PIC 16C6X/7X, PIC Reset Actions, PIC Oscillator Connections, PIC Memory Organization, PIC 16C6X/7X Instructions, Addressing Modes, I/O Ports, Interrupts in PIC 16C61/71, PIC 16C61/71Timers, PIC 16C71 Analog-to-Digital Converter. Reference: AVD 	15

Learning Resources recommended:

Main References:

- 1. RSG: Microprocessor Architecture, Programming and Applications with the 8085 by Ramesh S. Gaonkar, Fifth Edition, Penram International Publication (India) Pvt. Ltd.
- 2. AB: Advanced Microprocessors and Peripharals by A K Ray and K M Bhurchandi, Second edition, Tata MacGraw Hill Publishing Company Ltd.
- 3. MMM: The 8051 Microcontroller and Embedded Systems by M A Mazidi, J G Mazidi and R D Mckinlay, Second Edition, Pearson.
- 4. AVD: Microcontrollers by Ajay V Deshmukh, Tata-Mcgraw Hill Publication.

Additional References:

- 1. DVH: Microprocessors and interfacing, programming and hardware, By Douglas V. Hall (TMH)
- 2. RK: The 8051 Microcontroller & Embedded Systems-Dr. Rajiv Kapadia (Jaico Pub. House)
- 3. KJA: 8086 Microprocessor: Programming and Interfacing K. J. Ayala, Penram International.
- 4. KJA: 8051 Microcontroller, K. J. Ayala, Penram International.
- 5. JBP: Design with PIC microcontrollers by John B. Peatman, Pearson Education Asia.
- 6. MP: Programming & customizing the 8051 microcontrollers By Myke Predko, TMH.

Evaluation Pattern

A. Continuous Assessment (40 Marks):

Sr.	Particulars	Marks
No.		
01	Unit Test	20
02	Assignment	10
03	Active participation in class room	10
	and attendance	

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Question No	Unit	Question Type	Marks
1	Ι	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
2	II	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
3	III	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
4	IV	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
5	I II III IV	Objective type of questions without internal option	03 03 03 03

Guidelines for pattern for Semester End Evaluation:

- 1. All questions shall be compulsory with internal option. Questions may be subdivided into sub questions.
- 2. Long and short questions will include descriptive type of questions, derivationbased questions, problem solving /numericals based questions, etc.
- 3. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Revised Syllabus of Course of Master of Science (M.Sc.) Programme at Semester III with Effect from the Academic Year 2023-2024

Name of the Course	Programming Using C++, VC++, Embedded Systems and RTOS
Course Code	PSPH304
Class	M.ScII
Semester	III
No of Credits	4
Nature	Theory
Туре	Core
Highlight revision specific to employability/ entrepreneurship/ skill development	The curriculum designed to provide skills of writing, compiling and executing codes in C++ and VC++ for carrying out numerical analysis and for handling physical problems. The curriculum includes study of embedded systems like chocolate vending machine, washing machine, etc. The curriculum not only enhances learner employability but also equips learners with skills and knowledge needed for entrepreneurial pursuits in software development, embedded systems and technical fields.

Nomenclature: Programming Using C++, VC++, Embedded Systems and RTOS

Course Outcomes:

On successful completion of this course learners will:

- 1. Be able to write C++ program using decision making, Looping, Function, Arrays, Pointers, classes, Inheritance, polymorphism, virtual functions.
- 2. Be able to write basic VC++ programs.
- 3. Understand the basics, classification, purpose and applications of embedded systems.
- 4. Understand basic concept of multitasking, types of scheduling under Real Time Operating System.

Curriculum:

Unit	Title	Learning Points	No of Lectures
I	Programming Using C++	Programming Using C++ : - Introduction to Computers and programming, Introduction to C++, Expressions and interactivity, Making decisions, Looping, Functions, Arrays, Sorting arrays, Pointers.	15
		Reference: - TG	
	Introduction to	Introduction to classes : - Classes, Inheritance, polymorphism, virtual functions.	4 6
11	classes and VC++	VC++: - Introduction to VC++	15
		Reference: - TG, YK	
		Introduction to Embedded Systems: What is an embedded system, Embedded System v/s General Computing System, Classification of Embedded Systems, Major Application Areas of Embedded Systems, Purpose of Embedded Systems, Smart Running Shoes.	
III	Embedded systems	A Typical Embedded system : Core of the embedded system.	
		CharacteristicsandqualityAttributedofEmbedded Systems:Characteristics of an EmbeddedSystem,QualityAttributes of EmbeddedSystems.	15
		Embedded Systems-Application and Domain- Specific: Washing Machine, Automatic-Domain Specific examples of embedded system.	
		Design Process and design Examples: Automatic Chocolate Vending machine (ACVM), Smart Card, Digital Camera, Mobile Phone, A Set of Robots.	
		Reference: -SKV, RK	
IV	Real–Time Operating System based Embedded System Design	Real-Time Operating System based Embedded System Design: - Operating system Basics, Types of Operating Systems, Tasks, Process and Threads, Multi-processing and Multitasking, Task Scheduling, Threads, Processes and Scheduling: Putting them altogether, task Communication, task Synchronizations, Device Drivers, how to choose an RTOS. Reference: - SKV	15

Learning Resources recommended:

- A. Main reference: -
 - 1. TG: -Starting out with C++ from control structure through objects by Tony Gaddis, sixth edition, Penram international publications, India.
 - 2. YK: Introduction to Visual C++ by Yashwant Kanetkar.
 - 3. SKV: Introduction to embedded system by Shibu K. V., Sixth Reprint 2012, Tata McGraw Hill.
 - 4. RK: "Embedded Systems" Architecture, Programming and Design, by Raj Kamal, Second Edition, The McGraw-Hill Companies.
- B. Additional references:
 - **1**. EB: Object Oriented Programming with C++, By E. Balagurusamy, 2nd ed. TMH.
 - 2. NRP: OOPS with C++ from the Foundation, By N. R. Parsa, Dream Tech Press India Ltd.

Evaluation Pattern

A. Continuous Assessment (40 Marks):

Sr.	Particulars	Marks
No.		
01	Unit Test	20
02	Assignment	10
03	Active participation in class room	10
	and attendance	

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Question No	Unit	Question Type	Marks
1	Ι	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
2	II	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
3	III	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
4	IV	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
5	I II III IV	Objective type of questions without internal option	03 03 03 03

Guidelines for pattern for Semester End Evaluation:

- 1. All questions shall be compulsory with internal option. Questions may be subdivided into sub questions.
- 2. Long and short questions will include descriptive type of questions, derivationbased questions, problem solving /numericals based questions, etc.
- 3. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Revised Syllabus of Course of Master of Science (M.Sc.) Programme at Semester III with Effect from the Academic Year 2023-2024

Name of the Course	Physics Lab -I
Course Code	PSPH305
Class	M.ScII
Semester	III
No of Credits	4
Nature	Practical
Туре	Core
Highlight revision specific to employability/ entrepreneurship/ skill development	The curriculum provides practical exposure in programming skills for microprocessors 8085, 8086, PIC microcontroller and 8051 controller along with compiling and executing the codes. It also provides hands-on experience in working with different microprocessor and microcontroller systems. The curriculum includes basics about higher level language C++ through simple programming. It also includes concepts of object-oriented programming. It also provides training in debugging and troubleshooting of embedded systems.

Nomenclature: Physics Lab-I

Course Outcomes:

On successful completion of this course, learners will:

- 1 Be able to write and execute assembly language programmes for 8085 interrupts and 8086 microprocessors.
- 2 Be able to write and execute simple and interfacing type assembly language programmes based on 8051 microcontroller and PIC 16F84A.
- 3 Be able to write, debug and execute C++ and Visual C++ programmes.

Curriculum:

Unit	Title	Learning Points	
			Lectures
Group A	8085/8086 Microprocessor and 8051 based experiments	 A1: 8085/8086 Microprocessor based experiments: (Any one experiment from 1 & 2. Experiment no. 3 is compulsory) 1. Study of 8085 interrupts (Vector Interrupt 7.5). 2. Study of PPI 8255 as Handshake I/O (mode 1): interfacing switches and LED's. 3. 8086 assembly language programming: Simple data manipulation programs. (8/16-bit addition, subtraction, multiplication, division, 8/16-bit data transfer, finding greatest/smallest number, finding positive/negative numbers, finding odd/even numbers, ascending/descending of numbers, converting BCD nos. into Binary using INT 20, displaying a string of characters using INT 20, displaying a string of characters using INT 20) (Note: Assembly language programming of 8086 may be done by operating PC in real mode by using 'Debug' program. A separate 8086 study kit is not needed.) A2: Microcontroller 8031/8051 based experiments: :(Experiment no. 1 is compulsory and any <i>two</i> experiments from 2, 3 & 4) 1. 8031/51 assembly language programming: Simple data manipulation programs. (8/16-bit addition, subtraction, multiplication, division, 8/16-bit data transfer, cubes of nos., to rotate a 32- bit number, finding greatest/smallest number from a block of data, decimal / hexadecimal counter) 2. Study of IN and OUT port of 8031/51 by Interfacing switches, LEDs and Relays: To display bit pattern on LED's, to count the number of "ON" switches and display on LED's, to trip a relay depending on the logic condition of switches, event counter (using LDR and light source) 3. Study of external interrupts (INT0/INT1) of 8031/51. 4. Study of internal timer and counter in 8031/51. 	60
Group B	PIC microcontroller, C++ and VC++ based experiments	 B1: (16F84 or 16FXXX) PIC Micro-controller- based experiments (Using assembly language only): (Any two experiments from 1, 2, 3 & 4) 1. a) Interfacing LED's: flashing LED's, to display bit pattern, 8-bit counter. 1. b) Interfacing Push Buttons: to increment and decrement the count value at the output by recognizing of push buttons, etc 2. Interfacing Relay: to drive an ac bulb through a relay; the relay should be tripped on recognizing of a push button. 	60

3. Interfacing buzzer: the buzzer should be
activated for two different frequencies,
depending on recognizing of corresponding
push buttons.
B2: C++ and Visual C++ experiments: (Any two
experiments from 1, 2, & 3. Experiment no. 4 is
compulsory
1. a) C++ Program (Conversion from decimal
system to binary, octal, hexadecimal system).
b) C++ Program (Program on mean, variance,
standard deviation for a set of numbers).
2. a) C++ Program (Sorting of data in ascending or
descending order).
b) C++ experiment (Programs on class, traffic
lights).
3. C++ experiment (Programs on inheritance, over
loading).
4. Visual C++ experiments: -
a) Get window on screen.
b) Get several windows on screen.
c) Display window on screen and interact
with it.
d) Display a message in the center of the
window.
e) Display a message at any place on a
window when clicked with left mouse
button.
f) Create simple window using MFC.
g) Create a window of desired size using
MFC.
h) To Attach a menu to a window using
MFC.

Note:

- 1. Minimum number of experiments to be performed and reported in the journal = 10
- 2. Journal should be certified by the laboratory in-charge and Head of the Department only if the learner performs satisfactorily the minimum number of experiments as stipulated above.
- 3. Learner will be allowed to appear for the semester end practical examination of this course only if learner submits a certified journal of this course or a certificate from the head of the Physics Department that learner has completed this practical course as per minimum requirements.

Learning Resources recommended:

- 1. RSG: Microprocessor Architecture, Programming and Applications with the 8085 by Ramesh S. Gaonkar, Fifth Edition, Penram International Publication (India) Pvt. Ltd.
- 2. AB: Advanced Microprocessors and Peripharals by A K Ray and K M Bhurchandi, Second edition, Tata MacGraw Hill Publishing Company Ltd.
- 3. MMM: The 8051 Microcontroller and Embedded Systems by M A Mazidi, J G Mazidi and R D Mckinlay, Second Edition, Pearson.
- 4. AVD: Microcontrollers by Ajay V Deshmukh, Tata-Mcgraw Hill Publication.

Evaluation Pattern

A. Continuous Evaluation: (40 Marks)

Method	Marks
Journal	20
Lab performance	10
Seminar	10

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Question No.	Group	Title	Method	Marks
1	Group A	8085/8086 Microprocessor and 8051 based experiments	Experiment performance as per the practical slip	30
2.	Group B	PIC microcontroller, C++ and VC++ experiments	Experiment performance as per the practical slip	30
Revised Syllabus of Course of Master of Science (M.Sc.) Programme at Semester III with Effect from the Academic Year 2023-2024

Name of the Course	Project-I
Course Code	PSPH306
Class	M.ScII
Semester	III
No of Credits	4
Nature	Project
Туре	Core
Highlight revision specific to employability/ entrepreneurship/ skill development	The primary goal of the course is to give an exposure to the learner to identify the social needs, to provide solutions based on acquired knowledge and to work on the solution.Technical and analytical training acquired from this course lead to the development of communication skills, collaborative approach and ability to apply it in various professional fields.

Nomenclature: Project-I

Course Outcomes:

On successful completion of this course, learners will:

- 1. Understand the ethics and research methodology.
- 2. Do a literature review.
- 3. Do research.
- 4. Analyze the research work data.
- 5. Write research article.

Curriculum:

Unit	Title	Learning Points	No of Lectures
-	Project-I	Identifying problem for project work, literature survey, deciding methodology, practical implementation of the Project, data analysis and conclusions, preparing project report (a dissertation).	120

Learning Resources recommended:

- 1. Research Papers
- 2. Internet
- 3. Books and journals

Evaluation Pattern

A. Continuous Evaluation: (40 Marks)

Method	Marks
Lab performance	30
Presentation	10

B. Semester End Evaluation (Evaluation Pattern): (60 Marks)

Sr No	Criteria	Marks
1	Experimental/Theoretical methodology/Working condition of project or model	15
2	Significance of the study/Society application and Inclusion of recent References	10
3	Depth of knowledge in the subject / Results and Discussions	10
4	Project Report	10
5	Presentation	15

Project guidelines:

- 1. Every learner will have to complete one project each in Semester III and Semester IV with four credits (100 marks) each.
- 2. Learners can take one long project or two short projects.
- 3. However, for one long project learners have to submit two separate project reports / dissertation consisting of the problem definition, literature survey and current status, objectives, methodology and some preliminary experimental work in Semester III and actual experimental work, results and analysis in semester IV with four credits each.

- 4. The project can be a theoretical or experimental project, related to advanced topic, electronic circuits, models, industrial project, training in a research institute, training of handling a sophisticated equipment etc.
- 5. Maximum three learners can do a joint project. Each one of them will submit a separate project report with details.
- 6. In case of electronic projects, use of readymade electronic kits available in the market should be avoided.
- 7. The electronics project / models should be demonstrated during presentation of the project.
- 8. In case a learner takes training in a research institute/training of handling sophisticate equipment, he/she should mention in a report what training he/she has got, which instruments he/she handled and their principle and operation etc.
- 9. Each project will be of 100 marks with 40% by continuous evaluation and 60% by semester end evaluation.
- 10. The project report should be file bound/spiral bound/hard bound

Format of Project Report:

a) Title Page:

Mentioning the title of the report, name of the learner, program, institution, and the project.

b) Certificate of Completion:

A certificate issued by guide confirming the successful completion of the project.

c) Declaration:

A statement by the learner declaring that the report is the original work and acknowledging any assistance or references used.

d) Acknowledgments:

Recognizing individuals or organizations that provided support, guidance, or resources during the training/project.

e) Table of Contents:

Providing a clear outline of the report's sections and page numbers.

f) Abstract:

A bird's eye view of learner's entire presentation has to be precisely offered under this category. A brief overview of the project, its objectives and key findings should be mentioned.

g) Introduction:

Background information about the project and its significance. Objectives and scope of the project.

h) Literature Review:

Overview of relevant literature and studies related to the chosen field and development issues.

i) Methodology:

Description of: Planning of experimental procedure as per the need of the project. Designing and implementation of the project as per the objectives through theoretical, experimental or computational methods.

j) Observations and data analysis:

Details of Testing, debugging, troubleshooting as per the need. Data collection and analysis.

k) Conclusion:

Summary of the key findings and outcomes of the project.

l) References & Appendices:

List of all sources cited in the project report. Additional supporting materials.

The project report shall be prepared as per the broad guidelines given below:

- ➢ Font type: Times New Roman.
- ▶ Font size: 12-For content, 14-for Title.
- > Line Space: 1.5-for content and 1-for in table work, Justified format.
- ➢ Page Size: A4.
- ▶ Margin: in Left-1.5, Up-Down-Right-1.
- > The Project Report shall be hard bounded.

Format 1st page (Main Page)

Title of the problem of the Project

A Project Submitted

to

R. P. Gogate College of Arts & Science and

R.V. Jogalekar College of Commerce (Autonomous), Ratnagiri

under

University of Mumbai

for partial completion of the degree

of

Master in Science

Under the Faculty of science

By

Name of Learner

Under the Guidance of

Name of the Guiding Teacher

R. P. Gogate College of Arts & Science and

R.V. Jogalekar College of Commerce (Autonomous), Ratnagiri

<Month and Year>

On separate page Index

Sr No	Title	Page No.
01		
02		
03		
04		
05		

On separate page

Declaration by learner

I the undersigned Miss/Mr. _____ [Name of the learner] here by, declare that work embodied in this project work titled ______ forms my own contribution to the research work carried out under the guidance of [Name of the guiding teacher] ______ is a result of my own project / research work and has not been previously submitted to any other University for any other Degree/ Diploma to this or any other University.

Wherever reference has been made to previous works of others, it has been clearly indicated as such and included in the bibliography.

I, here by further declare that all information of this document has been obtained and presented in accordance with academic rules and ethical conduct.

Name and Signature of the learner

Certified by Name and signature of the Guiding Teacher

On separate page

Acknowledgment (To be written by learner)

SEMESTER-IV

No. of Courses	Semester IV	Credits
PSPH401	Experimental Physics	4
PSPH402	Atomic and Molecular Physics	4
PSPH403	32-bit microprocessor, interfacing 8-bit microcontrollers & PIC microcontrollers	4
PSPH404	VHDL, Understanding USB and Communication Interface.	4
PSPH405	Physics lab-2	4
PSPH406	Project-2	4
	24	

Revised Syllabus of Course of Master of Science (M.Sc.) Programme at Semester IV with Effect from the Academic Year 2023-2024

Name of the Course	Experimental Physics
Course Code	PSPH401
Class	M.ScII
Semester	IV
No of Credits	4
Nature	Theory
Туре	Core
Highlight revision specific to employability/ entrepreneurship/ skill development	The curriculum focuses on population and sample, probability distributions, normal distribution, t-distribution, binomial distribution, and Poisson distribution, which equips individuals with strong data analysis and statistical skills that will be useful in careers such as data-driven industries, research, and decision-making processes. The curriculum leads to the study of various spectroscopic and microscopy techniques, such as XRD, XRF, SEM, TEM, and AFM, which are useful in materials characterization, nanotechnology, and materials science research. Theoretical knowledge with data analysis, vacuum systems, nuclear detectors, and spectroscopy develops research and analytical skills, which are essential for academic and industrial research positions.

Nomenclature: Experimental Physics

Course Outcomes:

On successful completion of this course learners will:

- 1. Understand the basics of different probability distributions and central limit theorem.
- 2. Understand types of errors and carry out error analysis.
- 3. Understand basics of kinetic theory of gases, pressure, particle collisions, velocity and free trajectory, flow of gases and its types.
- 4. Understand fundamentals and technology of vacuum systems.
- 5. Understand the classification, basic types, operation, range of application of most common instrumentation used for vacuum production and measurement.
- 6. Understand block diagram, construction, operation and applications of various types of nuclear detectors and accelerators.
- 7. Understand various characterization techniques (spectroscopic and microscopic) used for materials analysis.

Curriculum:

Unit	Title	Learning Points	No of
			Lectures
Ι	Data Analysis for Physical Sciences	Data Analysis for Physical Sciences : Population and Sample, Data distributions Probability, Probability Distribution, Distribution of Real Data, The normal distribution, The normal distribution, From area under a normal curve to an interval, Distribution of sample means, The central limit theorem, The t distribution, The log-normal distribution, Assessing the normality of data, Population mean and continuous distributions, Population mean and expectation value, The binomial distribution, The Poisson distribution, Experimental Error, Measurement, error and uncertainty, The process of measurement, True value and error, Precision and accuracy, Random and systematic errors, Uncertainty in measurement. Reference: - LK	15
II	Vacuum Techniques	Vacuum Techniques: - Fundamental processes at low pressures, Mean Free Path, Time to form monolayer, Number density, Materials used at low pressures, vapour pressure Impingement rate, Flow of gases, Laminar and turbulent flow, Production of low pressures, High Vacuum Pumps and systems, Ultra High Vacuum Pumps and System, Measurement of pressure, Leak detections. Reference: - AR	15
III	Nuclear Detectors and accelerators	 Nuclear Detectors: Gamma ray spectrometer using NaI scintillation detector, High Purity Germanium detector, Multi-wire Proportional counter. Accelerators: CockroftWalten Generator, Van de Graaff Generator, Sloan and Lawrence type Linear Accelerator, Proton Linear Accelerator, Cyclotron and Synchrotron. Reference: - GK, EP & SEG, WRL 	15
IV	Characterization techniques for material analysis	Spectroscopy: XRD, XRF, XPS, EDAX, Raman, UV Visible spectroscopy, FTIR spectroscopy. Microscopy: SEM, TEM, AFM Reference: - KPR	15

Learning Resources recommended:

Main Reference: -

- 1. LK: Data Analysis for Physical Sciences (Featuring Excel®) Les Kirkup, 2nd Edition, Cambridge University Press (2012), Chapters 1-6 and 9.
- 2. AR: Vacuum Technology, A. Roth, North Holland Amsterdam.
- 3. WRL: Techniques for Nuclear and Particle Physics Experiments, W.R. Leo, Springer-Verlag.
- 4. GK: Radiation Detection and Measurement, Glenn F. Knoll, John Wiley and sons, Inc.
- 5. EP & SEG: Principles of Particle Accelerators, E. Persico, E. Ferrari, S.E. Segre.
- 6. KPR: An Introduction to Materials Characterization, Khangaonkar P. R., Penram International Publishing.

Additional Reference: -

- 1. Statistical Methods in Practice for scientist's ad Technologists, Richard Boddy and Gordon Smith, John Wiley & Sons (2009)
- 2. DKA, AT & ACG: Ultra-High Vacuum Techniques, D. K. Avasthi, A. Tripathi, A. C. Gupta, Allied Publishers Pvt. Ltd (2002)
- 3. VVR, TBG & KLC: Vacuum Science and Technology, V. V. Rao, T. B. Ghosh, K. L. Chopra, Allied Publishers Pvt. Ltd (2001)
- 4. WJ: -Nuclear Radiation Detection- William James Price, McGraw Hill.
- 5. MSL: Particle Accelerators, Livingston, M. S.; Blewett, J.
- 6. HAE: Introduction to Nuclear Physics, HA Enge, pp 345-353
- 7. JY: Electricity & Magnetism and Atomic Physics Vol. II, J. Yarwood.
- 8. CNB: Fundamentals of Molecular Spectroscopy, C. N. Banwell, Tata-McGraw Hill.
- 9. WL: Techniques for Nuclear & Particle Physics Experiment- William Leo.
- 10. WKC: Rutherford Backscattering Spectrometry, W. K. Chu, J. W. Mayer, M. A. Nicolet, Academic Press.
- 11. JPS: A Guide to Materials Characterization and Chemical Analysis, John P. Sibilia, Wiley- VCH; 2 editions.
- 12. LCF: Fundamentals of Surface and Thin Film Analysis, L.C. Feldman and J.W. Mayer North Holland Amsterdam Page 49 of 86
- 13. CBD: Elements of X-ray diffraction, Cullity, B. D Addison-Wesley Publishing Company, Inc.
- 14. TP: Nano: The Essentials: T. Pradeep, TMH Publications.

Evaluation Pattern

A. Continuous Assessment (40 Marks):

Sr.	Particulars	Marks
No.		
01	Unit Test	20
02	Assignment	10
03	Active participation in class room and attendance	10

Question No	Unit	Question Type	Marks
1	Ι	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
2	II	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
3	III	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
4	IV	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
5	I II III IV	Objective type of questions without internal option	03 03 03 03

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Guidelines for pattern for Semester End Evaluation:

- 1. All questions shall be compulsory with internal option. Questions may be subdivided into sub questions.
- 2. Long and short questions will include descriptive type of questions, derivationbased questions, problem solving /numericals based questions, etc.
- 3. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Revised Syllabus of Course of Master of Science (M.Sc.) Programme at Semester IV with Effect from the Academic Year 2023-2024

Name of the Course	Atomic and Molecular Physics
Course Code	PSPH402
Class	M.ScII
Semester	IV
No of Credits	4
Nature	Theory
Туре	Core
Highlight revision specific to employability/ entrepreneurship/ skill development	The curriculum leads to the study of various types of electron systems and their Schrodinger equations. It develops problem-solving skills related to atomic and molecular systems, such as the Zeeman effect, Paschen-Back effect, and Stark effect, which are essential for understanding the behaviour of these systems under external perturbations. It also develops analytical thinking skills to analyze and interpret complex physical phenomena, such as the fine structure of hydrogenic atoms, Lamb shift, hyperfine structure, and isotope shift, and derive relationships between different parameters. The curriculum focuses on the absorption and emission of electromagnetic radiation by an atom and various aspects of the spectra of atoms as well as molecules, which is beneficial in research.

Nomenclature: Atomic and Molecular Physics

Course Outcomes:

On successful completion of this course learners will:

- 1 Understand the energy eigen value and eigen function of one electron atom.
- 2 Understand Hyperfine structure and fine structure of Hydrogen atom.
- 3 Understand Linear and quadratic Stark effect in spherical polar coordinates, Zeeman effect in strong and weak fields, Paschen-Back effect.
- 4 Understand the exchange degeneracy and how this affects the excited states of helium.
- 5 Understand the Periodic table from the viewpoint of the electronic structure.
- 6 Understand spin-orbit coupling for multi-electron atoms.
- 7 Understand and interpret Schrodinger equation for two electron atoms.
- 8 Understand interaction of one electron atoms with electromagnetic radiation.
- 9 Understand concept of Born Oppenheimer approximation.
- 10 Understand Rotational, Vibrational, Rotational-Vibrational spectra.
- 11 Understand Raman Spectroscopy.
- 12 Understand principle of ESR and NMR.

Unit	Title	Learning Points	No of
			Lectures
Ι	One electron and two electron atoms	Review* of one-electron eigenfunctions and energy levels of bound states, Probability density, Virial theorem, Fine structure of hydrogenic atoms, Lamb shift. Hyperfine structure and isotope shift, Linear and quadratic Stark effect in spherical polar coordinates, Zeeman effect in strong and weak fields, Paschen-Back effect. Schrodinger equation for two electron atoms: Identical particles, The Exclusion Principle, Exchange forces and the helium atom, independent particle model, ground and excited states of two electron atoms. Reference: - ER, BJ, GW	15
II	Central field and coupling	The central field, Thomas-Fermi potential, the gross structure of alkalis, The Hartree theory, ground state of multi-electron atoms and the periodic table, The L-S coupling approximation, allowed terms in LS coupling, fine structure in LS coupling, relative intensities in LS coupling, j-j coupling approximation and other types of coupling. Reference: - GW, ER	15

Curriculum:

III	Interaction of one electron atoms with electromagnetic radiation	Interaction of one electron atoms with electromagnetic radiation: Electromagnetic radiation and its interaction with charged particles, absorption and emission transition rates, dipole approximation. Einstein coefficients, selection rules, Line intensities and life times of excited state, line shapes and line widths. X-ray spectra. Reference: - BJ	15
IV	Molecular Physics	 Born-Oppenheimer approximation - rotational, vibrational and electronic energy levels of diatomic molecules, Linear combination of atomic orbitals (LCAO) and Valence bond (VB) approximations, comparison of valence bond and molecular orbital theories A) Rotation of molecules: rotational energy levels of rigid and non-rigid diatomic molecules, classification of molecules, linear, spherical, symmetric and asymmetric tops. B) Vibration of molecules: vibrational energy levels of diatomic molecules, simple harmonic and anharmonic oscillators, diatomic vibrating rotator and vibrational-rotational spectra. C) Electronic spectra of diatomic molecules: vibrational and rotational structure of electronic spectra. Quantum theory of Raman effect, Pure rotational Raman spectra, Vibrational Raman effect, Applications General theory of Nuclear Magnetic Resonance (NMR). NMR spectrometer, Principle of Electron spin resonance ESR. ESR spectrometer. 	15

Learning Resources recommended:

Main Reference:

- 1. ER: Robert Eisberg and Robert Resnick, Quantum physics of Atoms, Molecules, Solids, Nuclei and Particles, John Wiley & Sons, 2nded, (ER)
- 2. BJ: B.H. Bransden and G. J. Joachain, Physics of atoms and molecules, Pearson Education 2nded, 2004 (BJ)
- 3. GKW: G. K. Woodgate, Elementary Atomic Structure, Oxford university press, 2nd ed.
- 4. GA: G. Aruldhas, Molecular structure and spectroscopy, Prentice Hall of India 2nded, 2002.
- 5. IL: Ira N. Levine, Quantum Chemistry, Pearson Education, 5th edition, 2003.

Additional Reference:

- 1. Leighton, Principals of Modern Physics, McGraw hill.
- 2. Igor I. Sobelman, Theory of Atomic Spectra, Alpha Science International Ltd. 2006
- 3. C. N. Banwell, Fundamentals of molecular spectroscopy, Tata McGraw-Hill, 3rd ed.
- 4. Wolfgang Demtröder, Atoms, molecules & photons, Springer-Verlag 2006
- 5. Sune Svanberg, Atomic and Molecular Spectroscopy Springer, 3^{rd} ed 2004
- 6. C.J. Foot, Atomic Physics, Oxford University Press, 2005 (CF)

Evaluation Pattern

A. Continuous Assessment (40 Marks):

Sr.	Particulars	Marks
No.		
01	Unit Test	20
02	Assignment	10
03	Active participation in class room and attendance	10

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Question No	Unit	Question Type	Marks
1	Ι	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
2	II	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
3	III	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
4	IV	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
5	I II III IV	Objective type of questions without internal option	03 03 03 03

Guidelines for pattern for Semester End Evaluation:

- 1. All questions shall be compulsory with internal option. Questions may be subdivided into sub questions.
- 2. Long and short questions will include descriptive type of questions, derivationbased questions, problem solving /numericals based questions, etc.
- 3. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Revised Syllabus of Course of Master of Science (M.Sc.) Programme at Semester IV with Effect from the Academic Year 2023-2024

Name of the Course	32-bit microprocessor, interfacing 8-bit microcontrollers &
	PIC microcontrollers
Course Code	PSPH403
Class	M.ScII
Semester	IV
No of Credits	4
Nature	Theory
Туре	Core
Highlight revision	The curriculum focuses on the interfacing of microcontrollers / PIC
specific to	with various devices like LEDs, push buttons, relays, 7-segment
entrepreneurship/	for designing electronics systems, which are useful in industries like
skill development	automotive, healthcare, and consumer electronics. The curriculum
	leads to study the architecture and assembly language programming
	of ARM7. Learners with expertise in these areas have better
	employability prospects.

Nomenclature: 32-bit microprocessor, interfacing 8-bit microcontrollers & PIC microcontrollers.

Course Outcomes:

On successful completion of this course learners will:

- 1 Understand PIC 16F8XX Flash Microcontrollers.
- 2 Be able to interface Microcontroller /PIC with hardware like LED, Switch, ADC, DAC.
- 3 Understand Industrial application of microcontrollers/PIC.
- 4 Understand architecture, development tools,3-stage pipeline organization of ARM.
- 5 Understand instruction set of ARM7.
- 6 Understand thumb instruction set of ARM7.
- 7 Be able to write assembly language programs for ARM7.

Curriculum:

Unit	Title	Learning Points	No of
			Lectures
Ι	PIC 16F8XX Flash Microcontrollers	PIC 16F8XX Flash Microcontrollers : - Introduction, Pin Diagram, STATUS Register, Power Control Register (PCON), OPTION_REG Register, Program memory, Data memory, I/O Ports, Capture/Compare/PWM (CCP) Modules in PIC 16F877, Analog-to-Digital Converter. Reference: AVD	15
II	Interfacing microcontroller/ PIC microcontroller and Industrial Applications of microcontrollers:	Interfacing microcontroller/PIC microcontroller and Industrial Applications of microcontrollers: Light Emitting Diodes (LEDs), Push Buttons, Relays and Latch Connections, Keyboard Interfacing; Interfacing 7-Segment Displays, LCD Interfacing, ADC and DAC Interfacing with 89C51 Microcontrollers. Introduction and Measurement Applications.	15
III	32-bit ARM Processor	The ARM Architecture: The Acorn RISC Machine, Architectural inheritance, The ARM Programmer's model, ARM development tools. ARM Organization and Implementation: 3 – stage Pipeline ARM organization, ARM instruction execution, ARM implementation. ARM Processor Cores: ARM7TDM. Reference: - SF	15
IV	ARM 7 Instruction set and program	ARM Assembly language Programming: Data processing instructions, Data transfer instructions, Control flow instructions, Writing simple assembly language programs. The ARM Instruction Set: Introduction, Exceptions, Condition execution, Branch and Branch with Link (B, BL), Branch, Branch with Link and exchange (BX,BLX), Software Interrupt (SWI), Data processing instructions, Multiply instructions, Count leading zeros (CLZ), Single word and unsigned byte data transfer instructions, Half-word and signed byte data transfer instructions, Multiple register transfer instructions, Swap memory and register instructions (SWP), Status register to general register transfer instructions, General register to Status register transfer instructions. The Thumb Instruction Set: The Thumb bit in the CPSR, The Thumb programmer's model, Thumb branch instructions, Thumb software interrupt instruction, Thumb data processing instructions, Thumb single register data transfer instructions, Thumb single register data transfer instructions, Thumb multiple register data transfer instructions, Thumb breakpoint instruction, Thumb implementation, Thumb applications, Example and exercises. Reference: SF	15

Learning Resources recommended:

Main Reference: -

- 1. AVD: Microcontrollers by Ajay V. Deshmukh, Tata-Mcgraw Hill Publication.
- 2. MMM: The 8051 Microcontroller & Embedded Systems by M.A. Mazidi, J.G. Mazidi and R.D. Mckinlay, Second Edition, Pearson.
- 3. SF: ARM System-on-Chip Architecture, by Steve Furber, Second Edition, Pearson Page 59 of 86.

Additional Reference:

- 1. DVH: Microprocessors and interfacing, programming and hardware, By Douglas V. Hall (TMH)
- 2. KJA: 8086 Microprocessor: Programming and Interfacing K.J.Ayala, Penram International.

Evaluation Pattern

A. Continuous Assessment (40 Marks):

Sr.	Particulars	Marks
No.		
01	Unit Test	20
02	Assignment	10
03	Active participation in class room	10
	and attendance	

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Question No	Unit	Question Type	Marks
1	Ι	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
2	II	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
3	III	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
4	IV	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
5	I II III IV	Objective type of questions without internal option	03 03 03 03

Guidelines for pattern for Semester End Evaluation:

- 1. All questions shall be compulsory with internal option. Questions may be subdivided into sub questions.
- 2. Long and short questions will include descriptive type of questions, derivationbased questions, problem solving /numericals based questions, etc.
- 3. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Revised Syllabus of Course of Master of Science (M.Sc.) Programme at Semester IV with Effect from the Academic Year 2023-2024

Name of the Course	VHDL, Understanding USB and Communication
	Interface.
Course Code	PSPH404
Class	M.Sc-II
Semester	IV
No of Credits	4
Nature	Theory
Туре	Core
Highlight revision specific to employability/ entrepreneurship/ skill development	The curriculum covers VHDL and digital design ideas, which prepare learners to describe and implement sophisticated hardware systems using hardware description languages. This skill set is in great demand in industries involving FPGA design and digital system development. The curriculum includes the study of communication protocols such as USB, I2C, SPI, Bluetooth, and Wi-Fi, which are used to develop skills in programming, interfacing, and implementing these protocols, which can lead to opportunities in telecommunications, and networking.

Nomenclature: VHDL, Understanding USB and Communication Interface.

Course Outcomes:

On successful completion of this course learners will be able to:

- 1 Understand the IEEE Standard 1076 Hardware Description Language (VHDL).
- 2 Understand the concept of architecture, data types of VHDL.
- 3 Understand entity, operators, Signal and generate statements, sequential statements, loops and decision-making statements, package and component statements in VHDL.
- 4 Understand hardware details of USB.
- 5 Understand USB communication through Transfer Basics, Elements of a Transfer, USB 2.0 Transactions, Ensuring Successful Transfers, Super Speed Transactions.
- 6 Understand USB protocols for data transfer.
- Understand block diagram and operation of various communication interfaces like, I2C, SPI, UART, Wire Interface, Parallel Interface, RS-232, RS-485, USB, IEEE 1394 (Fire wire), Infrared (IrDA), Bluetooth, WiFi, ZigBee, GPR.

Curriculum:

Unit	Title	Learning Points	No of
			Lectures
Ι	VHDL-I	Introduction to VHDL: VHDL Terms, Describing Hardware in VHDL, Entity, Architectures, Concurrent Signal Assignment, Event Scheduling, Statement concurrency, Structural Designs, Sequential Behavior, Process Statements, Process Declarative Region, Process Statement Part, Process Execution, Sequential Statements, Architecture Selection, Configuration Statements, Power of Configurations. Behavioral Modeling: Introduction to Behavioral Modeling, Transport Versus Inertial Delay, Inertial Delay, Transport Delay, Inertial Delay Model, Transport Delay Model, Simulation Deltas, Drivers, Driver Creation, Bad Multiple Driver Model, Generics, Block Statements, Guarded Blocks. Sequential Processing: Process Statement, Sensitivity List, Process Example, Signal Assignment Versus Variable Assignment, Incorrect Mux Example, Correct Mux, Example, Sequential Statements, IF Statements, CASE Statements, LOOP statements, NEXT Statement, EXIT Statement, ASSERT Statement, Assertion BNF, WAIT Statements, WAIT ON Signal, WAIT UNTIL Expression, WAIT FOR time expression, Multiple WAIT Conditions, WAIT Time-Out, Sensitivity List Versus WAIT Statement, Concurrent Assignment Problem, Passive Processes. Reference: - DLP	15
II	VHDL-II	Data Types: Object Types, Signal, Variables, Constants, Data Types, Scalar Types, Composite Types, Incomplete Types, File Types, File Type Caveats, Subtypes. Subprograms and Packages: Subprograms Function, Conversion Functions, Resolution Functions, Procedures, Packages, Package Declaration, Deferred Constants, Subprogram Declaration, Package Body. Predefined Attributes: Value Kind Attributes, Value Type Attributes, Value Array Attributes, Value Block Attributes, Function Kind Attributes, Function Type Attributes, Function Array Attributes, Function Signal Attributes, Function Array Attributes, Function Signal Attributes, Attributes 'EVENT and, LAST-VALUE Attribute 'LAST-EVENT Attribute, 'ACTIVE and 'LAST- ACTIVE Signal Kind Attributes, Attribute 'DELAYED, Attribute 'STABLE, Attribute 'QUIET, Attribute TRANSACTION, Type Kind Attributes, Range Kind Attributes. Configurations: Default Configurations, Component Configurations, Lower-Level Configurations, Entity- Architecture Pair Configuration, Port Maps, Mapping Library Entities, Generics in Configurations, Generic Value Specification in Architecture, Generic Specifications in Configurations, Board-Socket-Chip Analogy, Block, Configurations, Architecture configurations.	15

		-	
III	Understanding USB and USB Protocols	 USB Basics: Uses and limits, Evolution of an interface, Bus components, Division of Labor, developing a Device. Inside USB Transfers: Transfer Basics, Elements of a Transfer, USB 2.0 Transactions, Ensuring Successful Transfers, SuperSpeed Transactions. A Transfer Type for Every Purpose: Control transfers, Bulk Transfers, Interrupt Transfers, Isochronous Transfers, More about time-critical transfers. Enumeration: How the Host learns about devices: The Process, Descriptors. Control Transfers: Structured Requests for Critical Data: Elements of a Control Transfer, Standard Requests, Other Requests. Chip Choices: Components of USB device. How the Host Communicates: Device Drivers, Inside the Layers, Writing Drivers, Using GUIDs. Reference: - JA 	15
IV	Communication Interface	 On board Communication Interface: Inter Integrated Circuit (I2C), Serial Peripheral Interface (SPI), Universal Asynchronous Receiver Transmitter (UART), Wire Interface, Parallel Interfaces. External Communication Interfaces: RS-232 & RS- 485, USB, IEEE 1394 (Firewire), Infrared (IrDA), Bluetooth, Wi-Fi, ZigBee, GPRS. Detailed studies of I2C Bus refer: I2C Bus Specification Version 2.1 by Philips The I2C-Bus Benefits designers and manufacturers. Introduction to the I2C-Bus Specification. The I2C-Bus Concept. General Characteristics. Bit Transfer, Data validity, START and STOP conditions. Transferring Data Byte format, Acknowledge. Arbitration and Clock Generation Synchronization, Arbitration, Use of the clock synchronizing mechanism as a handshake. Formats with 7-Bit Addresses. 7-Bit Addressing, Definition of bits in the first byte. 10-Bit Addressing, Definition of bits in the first two bytes, Formats with 10-bit addresses. Detailed study of Bluetooth: Overview, Radio Specifications, FHSS Reference: - SKV, WS, www.nxp.com 	15

Learning Resources recommended:

Main reference: -

- 1. DLP: VHDL programming by example by Douglas L. Perry, Fourth edition, Tata McGraw-Hill.
- 2. JA: The Developers Guide "USB Complete", by Jan Axelson, Fourth Edition, Penram International Publishing (India) Pvt Ltd.
- 3. SK: Introduction to embedded systems, by Shibu K. V. Sixth Reprint 2012, Tata Mcgraw Hill.

- 4. WS: -Wireless Communications and Networks, by William Stallings, 2nd edition Pearson.
- 5. www.nxp.com

Evaluation Pattern

A. Continuous Assessment (40 Marks):

Sr.	Particulars	Marks
No.		
01	Unit Test	20
02	Assignment	10
03	Active participation in class room	10
	and attendance	

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Question No	Unit	Question Type	Marks
1	Ι	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
2	II	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
3	III	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
4	IV	A. Long questions with 100% Internal option.B. Short questions with 100% Internal option.	06 06
5	I II III IV	Objective type of questions without internal option	03 03 03 03

Guidelines for pattern for Semester End Evaluation:

- 1. All questions shall be compulsory with internal option. Questions may be subdivided into sub questions.
- 2. Long and short questions will include descriptive type of questions, derivationbased questions, problem solving /numericals based questions, etc.
- 3. Objective type of questions will include MCQs, fill in the blanks, answer in one or two lines, match the following, true or false, etc.

Revised Syllabus of Course of Master of Science (M.Sc.) Programme at Semester IV with Effect from the Academic Year 2023-2024

Name of the Course	Physics Lab-2
Course Code	PSPH405
(refer to learner	
handbook)	
Class	M.ScII
Semester	IV
No of Credits	4
Nature	Practical
Туре	Core
Highlight revision	The curriculum provides hands-on experience with external components and communication peripherals interfacing with
employability/	microcontrollers. It helps learners to build and improve their practical
entrepreneurship/	abilities in circuit design, programming, testing, and debugging. The
skill development	curriculum teaches learners how to interface various peripherals, such as DACs ADCs and stepper motors with microcontrollers and
	VHDL, preparing them to construct advanced applications in robotics,
	automation, and control systems. The curriculum motivates the students to design integrated circuits using VHDL. The practical
	experiments specified in the curriculum, like the arm base
	manipulation programmes, the arm base interfacing programming,
	and microcontroller-based applications improve their employability
	and skill development.

Nomenclature: Physics Lab-2

Course Outcomes:

On successful completion of this course learners will:

- 1 Be able to draw and write flowcharts, assembly language programs for 8051 microcontrollers.
- 2 Be able to Interface stepper motor, ADC with 8051.
- 3 Be able to draw and write flowcharts, assembly language programs for PIC 16F84A.
- 4 Be able to Interface seven segment display, optocoupler with 16F84A.
- 5 Be able to draw and write flowcharts, assembly language programs for ARM7 processor.
- 5 Execute programs on ARM7 kit.
- 6 Draw and write flowcharts, assembly language programs (basic and interfacing) in VHDL.
- 7 Implement logic on an FPGA and a CPLD kit.

Curriculum:

Unit	Title	Learning Points	No of
			Lectures
Group A	8051 microcontroller and PIC microcontroller:	 A1: Interfacing 8031/8051 based experiments: (Any two experiments from 1, 2 & 3) 1. Interfacing 8-bit DAC with 8031/51 to generate waveforms: square, sawtooth, triangular. 2. Interfacing stepper motor with 8031/51: to control direction, speed and number of steps. 3. Interface 8-bit ADC (0804) with 8031/51: to convert an analog signal into its binary equivalent. A2: Interfacing (16F84 or 16FXXX) PIC Microcontroller-based experiments (Using assembly language only): (Any two experiments from 1, 2 & 3) 1. Interfacing Opto-Couplers: using as input and output. 2. Interfacing 7-Segment Display in the multiplexing mode: to display a two-digit number. 3. Use of built-in ADC or Interface 8-bit ADC (0804): converting an analog signal into its binary equivalent by using built-in ADC of the PIC microcontroller and convert an analog signal into its binary equivalent. 	60
Group B	VHDL and AKM 7	B1: Basic VHDL experiments: (Any two	60
		experiments from 1, 2, & 3.J	

1. a) Write VHDL programs to realize: logic	
gates, half adder and full adder.	
b) Write VHDL programs to realize the	
following combinational designs: 2 to 4	
decoder, 8 to 3 encoder without priority, 4	
to 1 multiplexer, 1 to 4 demultiplexer.	
2. Write VHDL programs to realize the	
following: SR – Flip Flop, JK – Flip Flop, T –	
Flip Flop.	
3. Write a VHDL program to realize a $2/3/4$ -	
bit ALU (2- arithmetic.2-logical operations)	
B2: VHDL Interfacing based experiments: (Any	
two ovnorimonts from 1 2 8 3)	
1 Interfacing stonnor motor: unite WIDI	
1. Interfacing stepper motor: write vHDL	
code to control direction, speed and	
number of steps.	
2. Interfacing dc motor: write VHDL code to	
control direction and speed using PWM.	
3. Interfacing relays: write VHDL code to	
control ac bulbs (at least two) using relays.	
B3: ARM7 based experiments: (Any two	
experiments from 1, 2, 3 & 4)	
1. Simple data manipulation programs	
(addition, subtraction, multiplication,	
division etc).	
2. Study of IN and OUT port of ARM7 by	
Interfacing switches, LEDs etc.	
3. Study of Timer.	
4. Interfacing DAC/ADC using I2C Protocols.	

Learning Resources recommended:

- 1. SF: ARM System-on-Chip Architecture, by Steve Furber, Second Edition, Pearson.
- 2. DLP: VHDL programming by example by Douglas L. Perry, Fourth edition, Tata McGraw-Hill.
- 3. Manual of VHDL kit.
- 4. MMM: The 8051 Microcontroller and Embedded Systems by M A Mazidi, J G Mazidi and R D Mckinlay, Second Edition, Pearson.
- 5. AVD: Microcontrollers by Ajay V Deshmukh, Tata-Mcgraw Hill Publication.

Evaluation Pattern

A. Continuous Evaluation (40 Marks)

Method	Marks
Journal	20
Lab performance	10
PPT presentation	10

B. Semester End Evaluation (Paper Pattern) (60 Marks)

Question No.	Group	Title	Method	Marks
1	Group A	8051 microcontroller and PIC microcontroller	Experiment performance as per the practical slip	30
2.	Group B	VHDL and ARM 7	Experiment performance as per the practical slip	30

Note:

- 1. Minimum number of experiments to be performed and reported in the journal = 10
- 2. Journal should be certified by the laboratory in-charge and Head of the Department only if the learner performs satisfactorily the minimum number of experiments as stipulated above.
- 3. Learner will be allowed to appear for the semester end practical examination of this course only if learner submits a certified journal of this course or a certificate from the head of the Physics Department that learner has completed this practical course as per minimum requirements.

Revised Syllabus of Course of Master of Science (M.Sc.) Programme at Semester IV with Effect from the Academic Year 2023-2024

Name of the Course	Project-2
Course Code	PSPH406
Class	M.ScII
Semester	IV
No of Credits	4
Nature	Project
Туре	Core
Highlight revision	The primary goal of the course is to give an exposure to the learner to
specific to	identify the social needs, to provide solutions based on acquired
employability/	knowledge and to work on the solution. Technical and analytical
entrepreneurship/	training acquired from this course lead to the development of
skill development	communication skills, collaborative approach and ability to apply it in
	various professional fields.

Nomenclature: Project

Course Outcomes:

On successful completion of this course learners will be able to:

- 1. Understand the ethics and research methodology.
- 2. Do a literature review.
- 3. Do research.
- 4. Analyze the research work data.
- 5. Write research article.

Curriculum:

Unit	Title	Learning Points	No of Lectures
-	Project-2	Identifying problem for project work, literature survey, deciding methodology, practical implementation of the Project, data analysis and conclusions, preparing project report (a dissertation).	120

Learning Resources recommended:

- 1. Previous Project Literature.
- 2. Internet.
- 3. Research Publications.
- 4. Project related references

Evaluation Pattern

A. Continuous Evaluation: (40 Marks)

Method	Marks
Lab performance	30
Presentation	10

B. Semester End Evaluation (Paper Pattern): (60 Marks)

Sr No	Criteria	Marks
1	Experimental/Theoretical methodology/Working condition of project or model	15
2	Significance of the study/Society application and Inclusion of recent References	10
3	Depth of knowledge in the subject / Results and Discussions	10
4	Project Report	10
5	Presentation	15

Project guidelines:

- 1. Every learner will have to complete one project each in Semester III and Semester IV with four credits (100 marks) each.
- 2. Learners can take one long project or two short projects.
- 3. However, for one long project learners have to submit two separate project reports / dissertation consisting of the problem definition, literature survey and current status, objectives, methodology and some preliminary experimental work in Semester III and actual experimental work, results and analysis in semester IV with four credits each.
- 4. The project can be a theoretical or experimental project, related to advanced topic, electronic circuits, models, industrial project, training in a research institute, training of handling a sophisticated equipment etc.
- 5. Maximum three learners can do a joint project. Each one of them will submit a separate project report with details.
- 6. In case of electronic projects, use of readymade electronic kits available in the market should be avoided.
- 7. The electronics project / models should be demonstrated during presentation of the project.
- 8. In case a learner takes training in a research institute/training of handling sophisticate equipment, he/she should mention in a report what training he/she has got, which instruments he/she handled and their principle and operation etc.
- 9. Each project will be of 100 marks with 40% by internal and 60% by external evaluation.
- 10. The project report should be hard bound.

Format of Project Report:

a) Title Page:

Mentioning the title of the report, name of the learner, program, institution, and the project.

b) Certificate of Completion:

A certificate issued by guide confirming the successful completion of the project.

c) Declaration:

A statement by the learner declaring that the report is the original work and acknowledging any assistance or references used.

d) Acknowledgments:

Recognizing individuals or organizations that provided support, guidance, or resources during the training/project.

e) Table of Contents:

Providing a clear outline of the report's sections and page numbers.

f) Abstract:

A bird's eye view of learner's entire presentation has to be precisely offered under this category. A brief overview of the project, its objectives and key findings should be mentioned.

g) Introduction:

Background information about the project and its significance. Objectives and scope of the project.

h) Literature Review:

Overview of relevant literature and studies related to the chosen field and development issues.

i) Methodology:

Description of: Planning of experimental procedure as per the need of the project. Designing and implementation of the project as per the objectives through theoretical, experimental or computational methods.

j) Observations and data analysis:

Details of Testing, debugging, troubleshooting as per the need. Data collection and analysis.

k) Conclusion:

Summary of the key findings and outcomes of the project.

l) References & Appendices:

List of all sources cited in the project report. Additional supporting materials.

The project report shall be prepared as per the broad guidelines given below:

- ➢ Font type: Times New Roman,
- ➢ Font size: 12-For content, 14-for Title
- ▶ Line Space: 1.5-for content and 1-for in table work, Justified format
- ➢ Page Size: A4
- Margin: in Left-1.5, Up-Down-Right-1
- > The Project Report shall be hard bounded.

Format

1st page (Main Page)

Title of the problem of the Project

A Project Submitted

to

R. P. Gogate college of Arts & Science and

R.V. Jogalekar College of Commerce College (Autonomous)

under

University of Mumbai

for partial completion of the degree

of

Master in Science

Under the Faculty of science

By

Name of Learner

Under the Guidance of

Name of the Guiding Teacher

R. P. Gogate college of Arts & Science and

R.V. Jogalekar College of Commerce College (Autonomous),

Ratnagiri

<Month and Year>

On separate page Index

Sr No	Title	Page No.
01		
02		
03		
04		
05		

On separate page

Declaration by learner

I the undersigned Miss/Mr. _____ [Name of the learner] here by, declare that work embodied in this project work titled ______ forms my own contribution to the research work carried out under the guidance of [Name of the guiding teacher] ______ is a result of my own project / research work and has not been previously submitted to any other University for any other Degree/ Diploma to this or any other University.

Wherever reference has been made to previous works of others, it has been clearly indicated as such and included in the bibliography.

I, here by further declare that all information of this document has been obtained and presented in accordance with academic rules and ethical conduct.

Name and Signature of the learner

Certified by Name and signature of the Guiding Teacher

On separate page

Acknowledgment (To be written by learner)